
Under review as a conference paper at ICLR 2023

AN ADAPTIVE ENTROPY-REGULARIZATION FRAME-
WORK FOR MULTI-AGENT REINFORCEMENT LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose an adaptive entropy-regularization framework (ADER)
for multi-agent reinforcement learning (RL) to learn the adequate amount of
exploration for each agent based on the degree of required exploration. In order to
handle instability arising from updating multiple entropy temperature parameters
for multiple agents, we disentangle the soft value function into two types: one for
pure reward and the other for entropy. By applying multi-agent value factorization
to the disentangled value function of pure reward, we obtain a relevant metric to
assess the necessary degree of exploration for each agent. Based on this metric,
we propose the ADER algorithm based on maximum entropy RL, which controls
the necessary level of exploration across agents over time by learning the proper
target entropy for each agent. Experimental results show that the proposed scheme
significantly outperforms current state-of-the-art multi-agent RL algorithms.

1 INTRODUCTION

RL is one of the most notable approaches to solving decision-making problems such as robot control
(Hester et al., 2012; Ebert et al., 2018), traffic light control (Wei et al., 2018; Wu et al., 2020) and
games (Mnih et al., 2015; Silver et al., 2017). The goal of RL is to find an optimal policy that
maximizes expected return. To guarantee convergence of model-free RL, the assumption that each
element in the joint state-action space should be visited infinitely often is required (Sutton & Barto,
2018), but this is impractical due to large state and/or action spaces in real-world problems. Thus,
effective exploration has been a core problem in RL. In practical real-world problems, however, the
given time for learning is limited and thus the learner should exploit its own policy based on its
experiences so far. Hence, the learner should balance exploration and exploitation in the dimension
of time and this is called exploration-exploitation trade-off in RL. The problem of exploration-
exploitation trade-off becomes more challenging in multi-agent RL (MARL) because the state-action
space grows exponentially as the number of agents increases. Furthermore, the necessity and benefit
of exploration can be different across agents and even one agent’s exploration can hinder other agents’
exploitation. Thus, the balance of exploration and exploitation across multiple agents should also
be considered for MARL in addition to that across the time dimension. We refer to this problem
as multi-agent exploration-exploitation trade-off. Although there exist many algorithms for better
exploration in MARL (Mahajan et al., 2019; Kim et al., 2020; Liu et al., 2021a; Zhang et al., 2021),
the research on multi-agent exploration-exploitation trade-off has not been investigated much yet.

In this paper, we propose a new framework based on entropy regularization for adaptive exploration
in MARL to handle the multi-agent exploration-exploitation trade-off. The proposed framework
allocates different target entropy across agents and across time based on our newly-proposed metric
for the benefit of further exploration for each agent. To implement the proposed framework, we
adopt the method of disentanglement between exploration and exploitation (Beyer et al., 2019; Han
& Sung, 2021) to decompose the joint soft value function into two types: one for the return and
the other for the entropy sum. This disentanglement alleviates instability which can occur due to
the updates of the temperature parameters. It also enables applying value factorization to return
and entropy separately since the contribution to the reward can be different from that to the entropy
from an agent’s perspective. Based on this disentanglement, we propose a metric for the desired
level of exploration for each agent, based on the partial derivative of the joint value function of pure

1

Under review as a conference paper at ICLR 2023

return with respect to (w.r.t.) policy action entropy. The intuition behind this choice is clear for
entropy-based exploration: Agents with higher gradient of joint pure-return value w.r.t. their action
entropy should increase their target action entropy resulting in higher exploration level in order to
contribute more to pure return. Under the constraint of total target entropy sum across all agents,
which we will impose, the target entropy of agents with lower gradient of joint pure-return value w.r.t.
their action entropy will then be reduced and inclined to exploitation rather than exploration. Thus,
multi-agent exploration-exploitation trade-off can be achieved. The experiments demonstrate the
effectiveness of the proposed framework for multi-agent exploration-exploitation trade-off.

2 BACKGROUND

Basic setup We consider a decentralized partially observable MDP (Dec-POMDP), which describes
a fully cooperative multi-agent task (Oliehoek & Amato, 2016). Dec-POMDP is defined by a
tuple < N ,S, {Ai},P, {Ωi},O, r, γ >, where N = {1, 2, · · · , N} is the set of agents. At time
step t, Agent i ∈ N makes its own observation oit ∈ Ωi according to the observation function
O(s, i) : S ×N → Ωi : (st, i) 7→ oit, where st ∈ S is the global state at time step t. Agent i selects
action ait ∈ Ai, forming a joint action at = {a1t , a2t , · · · , aNt }. The joint action yields the next global
state st+1 according to the transition probability P(·|st, at) and a joint reward r(st, at). Each agent
i has an observation-action history τ i ∈ (Ωi × Ai)

∗ and trains its decentralized policy πi(ai|τ i)
to maximize the return E[

∑∞
t=0 γ

trt]. We consider the framework of centralized training with
decentralized execution (CTDE), where decentralized policies are trained with additional information
including the global state in a centralized way during the training phase (Oliehoek et al., 2008).

Value Factorization It is difficult to learn the joint action-value function, which is defined
as QJT (s, τ ,a) = E[

∑∞
t=0 γ

trt|s, τ ,a] due to the problem of the curse of dimensionality as
the number of agents increases. For efficient learning of the joint action-value function, value
factorization techniques have been proposed to factorize it into individual action-value functions
Qi(τ

i, ai), i = 1, · · · , N . One representative example is QMIX, which introduces a monotonic
constraint between the joint action-value function and the individual action-value function. The joint
action-value function in QMIX is expressed as

QJT (s, τ ,a) = fmix(s,Q1(τ
1, a1), · · · , QN (τN , aN)),

∂QJT (s, τ ,a)

∂Qi(τ i, ai)
≥ 0, ∀i ∈ N , (1)

where fmix is a mixing network which combines the individual action-values into the joint action-
value based on the global state. To satisfy the monotonic constraint ∂QJT /∂Qi ≥ 0, the mixing
network is restricted to have positive weights. There exist other value-based MARL algorithms with
value factorization (Son et al., 2019; Wang et al., 2020a). Actor-critic based MARL algorithms also
considered value factorization to learn the centralized critic (Peng et al., 2021; Su et al., 2021).

Maximum Entropy RL and Entropy Regularization Maximum entropy RL aims to promote
exploration by finding an optimal policy that maximizes the sum of cumulative reward and entropy
(Haarnoja et al., 2017; 2018a). The objective function of maximum entropy RL is given by

JMaxEnt(π) = Eπ

[∞∑
t=0

γt(rt + αH(π(·|st)))

]
, (2)

where H(·) is the entropy function and α is the temperature parameter which determines the
importance of the entropy compared to the reward. Soft actor-critic (SAC) is an off-policy
actor-critic algorithm which efficiently solves the maximum entropy RL problem (2) based on
soft policy iteration, which consists of soft policy evaluation and soft policy improvement. For
this, the soft Q function is defined as the sum of the total reward and the future entropy, i.e.,
Qπ(st, at) := rt + Eτt+1∼π

[∑∞
l=t+1 γ

l−t(rl +
∑N

i=1 αH(π(·|sl)))
]
. In the soft policy evaluation

step, for a fixed policy π, the soft Q function is estimated with convergence guarantee by repeat-
edly applying the soft Bellman backup operator T π

sac to an estimate function Q : S × A → R,
and the soft Bellman backup operator is given by T π

sacQ(st, at) = rt + γEst+1
[V (st+1)], where

V (st) = Eat∼π[Q(st, at)−α log π(at|st)]. In the soft policy improvement step, the policy is updated
using the evaluated soft Q function as follows: πnew = argmaxπ Eat∼π [Qπold(st, at)− α log π(at|st)].
By iterating the soft policy evaluation and soft policy improvement, called the soft policy iteration,

2

Under review as a conference paper at ICLR 2023

SAC converges to an optimal policy that maximizes (2) within the considered policy class in the case
of finite MDPs. SAC also works effectively for large MDPs with function approximation.

One issue with SAC is the adjustment of the hyperparameter α in (2), which control the relative
importance of the entropy with respect to the reward. The magnitude of the reward depends not only
on tasks but also on the policy which improves over time during the training phase. Thus, Haarnoja
et al. (2018b) proposed a method to adjust the temperature parameter α over time to guarantee the
minimum average entropy at each time step. For this, they reformulated the maximum entropy RL as
the following entropy-regularized optimization:

JER(π0:T) = Eπ0:T

[
T∑

t=0

rt

]
s.t. E(st,at)∼πt

[− log(πt(at|st))] ≥ H0 (3)

where H0 is the target entropy. Here, to optimize the objective (3), the technique of dynamic pro-
gramming is used, i.e., maxπt:T

E[
∑T

i=t ri] = maxπt

{
E[rt] + maxπt+1:T

E[
∑T

i=t+1 ri]
}

. Starting
from time step T , we obtain the optimal policy π∗

0:T and α∗
0:T by applying the backward recursion.

That is, we begin with the constrained optimization at time step T , given by
max
πT

E[rT] s.t. E(sT ,aT)∼πT
[− log(πT (aT |sT))] ≥ H0 (4)

and convert the problem into the Lagrangian dual problem as follows:
min
αT

max
πT

E[rT − αT log πT (aT |sT)]− αTH0 = min
αT

E[−αT log π∗
T (aT |sT)− αTH0]. (5)

Here, the optimal temperature parameter α∗
T at time step T , which corresponds to the Lagrangian

multiplier, is obtained by solving the problem (5). Then, the backward recursion can be applied to
obtain optimal α at time step t based on the Lagrange dual problem:

α∗
t = argmin

αt

Eat∼π∗
t
[−αt log π

∗
t (at|st)− αtH0]︸ ︷︷ ︸

:=J(αt)

, (6)

where π∗
t is the maximum entropy policy at time step t. Here, by minimizing the loss function J(α),

α is updated to increase (or decrease) if the entropy of policy is lower (or higher) than the target
entropy. In the infinite-horizon case, the discount factor γ is included and π∗

t is replaced with the
current approximate maximum entropy solution by SAC. In this way, the soft policy iteration of SAC
is combined with the α adjustment based on the loss function J(α) defined in (6). This algorithm
effectively handles the reward magnitude change over time during training (Haarnoja et al., 2018b).
Hence, one needs to set only the target entropyH0 for each task and then α is automatically adjusted
over time for the target entropy.

Related Works Here, we mainly focus on the entropy-based MARL. Other related works regarding
multi-agent exploration are provided in Appendix E. There exist previous works on entropy-based
MARL. Zhou et al. (2020) proposed an actor-critic algorithm, named LICA, which learns implicit
credit assignment and regularizes the action entropy by dynamically controlling the magnitude of
the gradient regarding entropy to address the high sensitivity of the temperature parameter caused
by the curvature of derivative of entropy. LICA allows multiple agents to perform consistent level
of exploration. However, LICA does not maximize the cumulative sum of entropy but regularize
the action entropy. Zhang et al. (2021) proposed an entropy-regularized MARL algorithm, named
FOP, which introduces a constraint that the entropy-regularized optimal joint policy is decomposed
into the product of the optimal individual policies. FOP introduced a weight network to determine
individual temperature parameters. Zhang et al. (2021) considered individual temperature parameters
for updating policy, but in practice, they used the same value (for all agents) which is annealed during
training for the temperature parameters. This encourages multiple agents to focus on exploration
at the beginning of training, which considers exploration-exploitation only in time dimension in a
heuristic way.

A key point is that the aforementioned algorithms maximize or regularize the entropy of the policies to
encourage the same level of exploration across the agents. Such exploration is still useful for several
benchmark tasks but cannot handle the multi-agent exploration-exploitation trade-off. Furthermore,
in the previous methods, the joint soft Q-function defined as the total sum of return and entropy is
directly factorized by value decomposition, and hence the return is not separated from the entropy in
the Q-value. From the perspective of one agent, however, the contribution to the reward and that to
the entropy can be different. What we actually need to assess the goodness of a policy is the return
estimate, which is difficult to obtain by such unseparated factorization.

3

Under review as a conference paper at ICLR 2023

3 METHODOLOGY

In order to address the aforementioned problems, we propose an ADaptive Entropy-Regularization
framework (ADER), which can balance exploration and exploitation across multiple agents by
learning the target entropy for each agent.

3.1 MOTIVATION

Figure 1: Reward surface in
the considered matrix game.
a1 and a2 correspond to x-axis
and y-axis, respectively.

The convergence of model-free RL requires the assumption that all
state-action pairs should be visited infinitely often, and this neces-
sitates exploration (Sutton & Barto, 2018). In practice, however,
the number of time steps during which an agent can interact with
the environment is limited. Thus, a balance between exploration
and exploitation in the dimension of time is crucial for high perfor-
mance in RL. Furthermore, in the case of MARL, a balance between
exploration and exploitation in the dimension of agents should be
considered. This is because 1) the degree of necessity and benefit
of exploration can be different across multiple agents and 2) one
agent’s exploration can hinder other agents’ exploitation, resulting
in the situation that simultaneous exploration of multiple agents can make learning unstable. We
refer to this problem as multi-agent exploration-exploitation trade-off. To handle the problem of
multi-agent exploration-exploitation trade-off, we need to control the amount of exploration of each
agent adaptively and learn this amount across agents (i.e., agent dimension) and over time (i.e., time
dimension). In the case of entropy-based exploration, we should allocate higher target entropy values
to the agents who need more exploration or have larger benefit from exploration and allocate lower
target entropy values to the agents who need more exploitation or have less benefit from exploration.
In order to see the necessity of such adaptive exploration-exploitation trade-off control in MARL, let
us consider a modified continuous cooperative matrix game (Peng et al., 2021). The considered game
consists of two agents: each agent has an one-dimensional continuous action ai which is bounded in
[−1, 1]. The shared reward is determined by the joint action, and the reward surface is given in Fig. 1.
As seen in Fig. 1, there is a connected narrow path from the origin (0, 0) to (0.6, 0.55), consisting of
two subpaths: one from (0, 0) to (0.6, 0) and the other from (0.6, 0) to (0.6, 0.55). There is a circle
with center at (0.6, 0.6) and radius 0.05. The reward gradually increases only along the path as the
position approaches the center of the circle and the maximum reward is 5. There is a penalty if the
joint action yields the position outside the path or the circle, and the penalty value increases as the
outside position is farther from the origin (0, 0). The agents start from the origin with initial action
pair a = (0, 0) and want to learn to reach the circle along the path. Even if this game is stateless,
exploration for action space is required to find the action (0.6, 0.6). One can think that one can find
the optimal joint action once the action near the circle is selected. However, the action starting with
(0,0) cannot jump to (0.6, 0.6) since we use function approximators for the policies and train them
based on stochastic gradient descent. The action should be trained to reach the circle along the two
subpaths. In the beginning, to go through the first subpath, a2 (i.e., y-axis movement) should not
fluctuate from 0 and a1 should be trained to increase upto 0.6. In this phase, if a2 explores too much,
the positive reward is rarely obtained. Then, a1 is not trained to increase upto 0.6 because of the
penalty. Once the joint action is trained to (0.6, 0), on the other hand, the necessity of exploration
is changed. In this phase, a1 should keep its action at 0.6, whereas a2 should be trained to increase
upto 0.55. As seen in this example, it is important to control the trade-off between exploitation and
exploration across multiple agents. In addition, we should update the trade-off over time because
the required trade-off can change during the learning process. As we will see in Section 4, a method
that retains the same or different-but-constant level of exploration across all agents fails to learn
in this continuous cooperative matrix game. Thus, we need a framework that can adaptively learn
appropriate levels of exploration for all agents over time, considering the time-varying multi-agent
exploration-exploitation trade-off.

3.2 ADAPTIVE ENTROPY-REGULARIZED MARL

We now propose our ADER framework enabling adaptive exploration capturing the multi-agent
exploration-exploitation trade-off. One can adopt the entropy constrained objective defined in (3) and
extend it to multi-agent systems. A simple extension is to maximize the team reward while keeping

4

Under review as a conference paper at ICLR 2023

the average entropy of each agent above the same target entropy. For the sake of convenience, we call
this scheme simple entropy-regularization for MARL (SER-MARL). However, SER-MARL cannot
handle the multi-agent exploration-exploitation trade-off because the amounts of exploration for all
agents are the same. One can also consider different but fixed target entropies for multiple agents.
However, this case cannot handle the time-varying behavior of multi-agent exploitation-exploration
trade-off, discussed in the previous subsection with Fig. 1. Thus, to incorporate the multi-agent
exploration-exploitation trade-off, we consider the following optimization problem:

max
π

Eπ

[∞∑
t=0

γtrt

]
s.t. E(st,at)∼π

[
− log(πi

t(a
i
t|τ it))

]
≥ Hi, ∀i ∈ N and

N∑
j=1

Hj = H0, (7)

where π = (π1, · · · , πN), Hi is the target entropy of Agent i, andH0 is the total sum of all target
entropies. The key point here is that we fix the target entropy sum asH0 but eachHi is adaptive and
learned. The total entropy budgetH0 is shared by all agents. When some agents’ target entropy values
are high for more exploration, the target entropy values of other agents should be low, leading to
more exploitation, due to the fixed total entropy budget. Thus, the exploitation-exploration trade-off
across agents (i.e., agent dimension) can be captured. The main challenge is how to learn individual
target entropy valuesH1, · · · ,HN over time (i.e., time dimension) as the learning progresses.

We postpone the presentation of our method of learning the individual target entropy values to Section
3.4. Here, we consider how to solve the problem (7) whenH1, · · · ,HN are determined. In order to
solve the problem (7), one can simply extend the method in (Haarnoja et al., 2018b) to the MARL
case. That is, one can first consider a finite-horizon case with terminal time step T , apply approximate
dynamic programming and the Lagrange multiplier method, obtain the update formula at time step t,
and then relax to the infinite-horizon case by introducing the discount factor, as in (Haarnoja et al.,
2018b). For this, the joint soft Q-function QJT (st, τt,at) can be defined as

QJT (st, τt,at) := rt + Eτt+1∼π

[∞∑
l=t+1

γl−t(rl +

N∑
i=1

αiH(πi(·|τ il)))

]
, (8)

and then this joint soft Q-function is estimated based on the following Bellman
backup operator: T πQJT (τt,at) := rt + γEτt+1

[V (st+1, τt+1)], where VJT (st, τt) =

Eat∼π

[
QJT (st, τt,at)−

∑N
i=1 α

i log π(ait|τ it)
]
. However, optimizing the objective (7) based on

the joint soft Q-function in (8) and the corresponding Bellman operator T π has several limitations.
First, the estimation of the joint soft Q-function can be unstable due to the changing {αi}Ni=1 in
(8) as the determined target entropy values are updated over time. Second, we cannot apply value
factorization to return and entropy separately because the joint soft Q-function defined in (8) estimates
only the sum of return and entropy. For a single agent, the contribution to the global reward may
be different from that to the total entropy. Thus, learning to decompose the entropy can prevent the
mixing network from learning to decompose the global reward. Furthermore, due to the inseparability
of reward and entropy, it is difficult to pinpoint each agent’s contribution sensitivity to the global
reward itself, which is used for assessing the necessity and benefit of more exploration.

3.3 DISENTANGLED EXPLORATION AND EXPLOITATION

To address the aforementioned problems and facilitate the acquisition of a metric for the degree
of required exploration for each agent in MARL, we disentangle the return from the entropy by
decomposing the joint soft Q-function into two types of Q-functions: One for reward and the other
for entropy. That is, the joint soft Q-function is decomposed as QJT (τt,at) = QR

JT (τt,at) +∑N
i=1 α

iQH,i
JT (τt,at), where QR

JT (τt,at) and QH,i
JT (τt,at) are the joint action value function for

reward and the joint action value function for the entropy of Agent i’s policy, respectively, given by

QR
JT (st, τt,at) = rt + Eτt+1∼π

[∞∑
l=t+1

γl−trl

]
and (9)

QH,i
JT (st, τt,at) = Eτt+1∼π

[∞∑
l=t+1

γl−tH(πi(·|τ it))

]
, i ∈ N . (10)

5

Under review as a conference paper at ICLR 2023

The action value functions QR
JT (st, τt,at) and QH,i

JT (st, τt,at) can be estimated based on their
corresponding Bellman backup operators, defined by

T π
RQR

JT (st, τt,at) := rt + γE
[
V R
JT (st, τt+1)

]
, T π

H,iQ
H,i
JT (st, τt,at) := γE

[
V H,i
JT (st, τt+1)

]
(11)

where V R
JT (st, τt) = Eat

[
QR

JT (st, τt,at)
]

and V H,i
JT (st, τt) = Eat

[
QH,i

JT (st, τt,at)

− αi log π(ait|τ it)
]

are the joint value functions regarding reward and entropy, respectively.

Proposition 1 The disentangled Bellman operators T π
R and T π

H,i are contractions.

Proof: See Appendix A.

Now we apply value decomposition using a mixing network (Rashid et al., 2018) to represent
each of the disentangled joint action-value and value functions as a mixture of individual value
functions. For instance, the joint value function for reward V R

JT (s, τ) is decomposed as V R
JT (s, τ) =

fV,R
mix(s, V

R
1 (τ1), · · · , V R

N (τN)), where V R
i (τ i) is the individual value function of Agent i and fV,R

mix
is the mixing network for the joint value function for reward. Similarly, we apply value decomposition
and mixing networks to QR

JT (τt,at) and QH,i
JT (τt,at), i ∈ N .

Based on the disentangled joint soft Q-functions, the optimal policy and the temperature parameters
can be obtained as functions ofH1, · · · ,HN by using a similar technique to that in (Haarnoja et al.,
2018b) based on dynamic programming and Lagrange multiplier. That is, we first consider the finite-
horizon case and apply dynamic programming with backward recursion: maxπt:T

E
[∑T

i=t ri

]
=

max
πt

(
E[rt] + max

πt+1:T

(
E[

T∑
i=t+1

ri],
))

s.t. E(st,at)∼πt

[
− log(πi

t(a
i
t|τ i

t))
]
≥ Hi, ∀t, i. (12)

We can obtain the optimal policy and the temperature parameters by recursively solving the dual
problem from the last time step T by using the technique of Lagrange multiplier. At time step t, the
optimal policy is obtained for given temperature parameters, and the optimal temperature parameters
are computed based on the obtained optimal policy as follows:

π∗
t = argmax

πt

Eat∼πt

QR∗
JT (st, τt,at)︸ ︷︷ ︸

(a)

+

N∑
i=1

αi
t (Q

H∗,i
JT (st, τt,at)− logπt(a

i
t|τ it))︸ ︷︷ ︸

(b)

 (13)

αi∗
t = argmin

αi
t

Eat∼π∗
t

[
−αi

t logπ
∗
t (a

i
t|τ it)− αi

tHi

]
, ∀i ∈ N . (14)

In the infinite-horizon case, (13) and (14) provide the update formulae at time step t, and the optimal
policy is replaced with the current approximate multi-agent maximum-entropy solution, which can
be obtained by extending SAC to MARL. Note that maximizing the term (a) in (13) corresponds to
the ultimate goal of MARL, i.e., the expected return. On the other hand, maximizing the term (b) in
(13) corresponds to enhancing exploration of Agent i.

3.4 LEARNING INDIVIDUAL TARGET ENTROPY VALUES

In the formulation (7), the amount of exploration for Agent i is controlled by the target entropyHi

under the sum constraint
∑N

j=1Hj = H0. In this subsection, we describe how to determine the target
entropy for each agent over time. First, we represent the target entropy of Agent i asHi = βi ×H0

with
∑N

i=1 βi = 1 to satisfy the entropy sum constraint. Then, we need to learn βi over time t.
Considering the fact that the ultimate goal is to maximize the return and this is captured by the value
function of return V R

JT by disentanglement, we adopt the partial derivative ∂V R
JT /∂H(πi

t) at time
t to assess the benefit of increasing the target entropy Hi of Agent i for more exploration at time
t. Note that ∂V R

JT /∂H(πi
t) denotes the change in the joint pure-return value w.r.t. the differential

increase in Agent i’s policy action entropy. Suppose that ∂V R
JT /∂H(πi

t) > ∂V R
JT /∂H(π

j
t) for two

agents i and j. Then, if we update two policies πi
t and πj

t to two new policies so that the entropy of
each of the two policies is increased by the same amount ∆H, then Agent i contributes more to the

6

Under review as a conference paper at ICLR 2023

pure return than Agent j. Then, under the total entropy sum constraint, the targe entropy of Agent i
should be assigned higher than that of Agent j for higher return. Furthermore, when this quantity
for a certain agent is largely negative, increasing the target entropy for this agent can decrease the
joint (return) value significantly, which implies that exploration of this agent can hinder other agents’
exploitation. Therefore, we allocate higher (or lower) target entropy to agents whose ∂V R

JT /∂H(πi
t)

is larger (or smaller) than that of other agents. With the proposed metric, in the case of H0 ≥ 0,
we set the coefficients βi, i = 1, · · · , N for determining the individual target entropy values Hi,
i = 1, · · · , N as follows: β =

[
β1, · · · , βi, · · · , βN

]
=

Softmax

[
E
[∂V R

JT (s, τ)

∂H(π1
t (·|τ1))

]
, · · · ,E

[∂V R
JT (s, τ)

∂H(πi
t(·|τ i))

]
, · · · ,E

[∂V R
JT (s, τ)

∂H(πN
t (·|τN))

]]
. (15)

The relative required level of exploration across agents can change as the learning process and this is
captured in these partial derivatives. We compute the partial derivative for (15) in continuous and
discrete action cases as follows:

∂V R
JT (s, τ)

∂H(πi
t(·|τ i))

=

∂V R

JT (s,τ)
∂ log σi(τ i) , Gaussian policy for continuous action
∂V R

JT (s,τ)

∂V R
i (τ i)

× ∂V R
i (τ i)

∂H(πi
t)

, Categorical policy for discrete action
, (16)

where σi is the standard deviation of Agent i’s Gaussian policy. In the case of Gaussian policy for
continuous action, the partial derivative ∂V R

JT /∂H(πi) is obtained as the partial derivative w.r.t. the
log of the standard deviation of Gaussian policy based on the fact that the entropy of Gaussian random
variable with variance σ2

i is log(
√
2πeσi). This can be done by adopting the reparameterization trick.

On the other hand, it is difficult to directly obtain the partial derivative in the discrete-action case
based on the categorical policy. For this, we use the chain rule to compute the partial derivative
∂V R

JT /∂H(πi
t) as shown in (16), where we numerically compute ∂V R

i (τ i)

∂H(πi
t)
≈ ∆V R

i (τ i)

∆H(πi
t)

. For numerical
computation, we first update the policy in the direction of maximizing entropy and then compute the
changes of V R

i (τ i) andH(πi
t) to obtain the approximation. That is, the approximation is given by

∆V R
i (τ i)

∆H(πi
t)

=
V R
i (τ i;π′i

t)−V R
i (τ i;πi

t)

H(π′i
t)−H(πi

t)
by updating πi

t to π′i
t in direction of maximizingH(πi

t). A detailed
explanation of computation of the metric is provided in Appendix B.1.

During the training phase, we continuously compute (15) from the samples in the replay buffer and
set the target entropy values. Instead of using the computed values directly, we apply exponential
moving average (EMA) filtering for smoothing. The exponential moving average filter prevents the
target entropy from changing abruptly. More concretely, if the partial derivative ∂V R

JT /∂H(πi
t) has

a large variance over the samples in the replay buffer, the computed metric can fluctuate whenever
the transitions are sampled. This causes instability in learning, and thus the EMA filter can prevent
the instability by smoothing the value. The output of EMA filter βEMA =

[
βEMA
1 , · · · , βEMA

N

]
is

computed recursively as
βEMA ← (1− ξ)βEMA + ξβ (17)

where β is given in (15) and ξ ∈ [0, 1]. Thus, the target entropy is given byHi = βEMA
i ×H0.

Finally, the procedure of ADER is composed of the policy evaluation based on the Bellman operators
and Proposition 1, the policy update for policy and temperature parameters in (13) and (14), and the
target entropy update in (15) and (17). The detailed implementation is provided in Appendix B.

4 EXPERIMENTS

In this section, we provide numerical results and ablation studies. We first present the result on
the continuous matrix game described in Sec. 3.1 and then results including sparse StarCraft II
micromanagement (SMAC) tasks (Samvelyan et al., 2019).

Continuous Cooperative Matrix Game As mentioned in Sec.3.1, the goal of this environment
is to learn two actions a1 and a2 so that the position (a1, a2) starting from (0, 0) to reach the target
circle along a narrow path, as shown in Fig. 1. The maximum reward 5 is obtained if the position
reaches the center of the circle. We compare ADER with four baselines. One is SER-MARL with
the same target entropy for all agents. The second is SER-MARL with different-but-constant target
entropy values for two agents (SER-DCE). Here, we set a higher target entropy for a1 than a2. The

7

Under review as a conference paper at ICLR 2023

(a) Averaged test return (b) Target entropy

Figure 2: (a) The performance of ADER and the baselines on the considered matrix game (The
performance of the baseline marked with a yellow box is enlarged and displayed, and the black dotted
line denotes the time when the position reaches the junction of the two subpaths) and (b) The learned
target entropy values during the training.

third is Reversed ADER, which reversely uses the proposed metric −∂V R
JT /∂H(πi

t) for the level of
required exploration. The fourth is FOP, which is an entropy-regularized MARL algorithm.

Fig. 2(a) shows the performance of ADER and the baselines averaged over 5 random seeds. It is
seen that the considered baselines fail to learn to reach the target circle, whereas ADER successfully
learns to reach the circle. Here, the different-but-constant target entropy values of SER-DCE are
fixed as (H1,H2) = (−0.7,−1.3), which are the maximum entropy values in ADER. It is observed
that SER-DCE performs slightly better than SER-MARL but cannot learn the task with time-varying
multi-agent exploration-exploitation trade-off. Fig. 2(b) shows the target entropy valuesH1 andH2

for a1 and a2, respectively, which are learned with the proposed metric during training, and shows
how ADER learns to reach the target circle based on adaptive exploration. The black dotted lines
in Figs. 2(a) and (b) denote the time when the position reaches the junction of the two subpaths.
Before the dotted line (phase 1), ADER learns so that the target entropy of a1 increases whereas the
target entropy of a2 decreases. So, Agent 1 and Agent 2 are trained so as to focus on exploration
and exploitation, respectively. After the black dotted line (phase 2), the learning behaviors of
target entropy values of a1 and a2 are reversed so that Agent 1 now does exploitation and Agent 2
does exploration. That is, the trade-off of exploitation and exploration is changed across the two
agents. In the considered game, ADER successfully learns the time-varying trade-off of multi-agent
exploration-exploitation by learning appropriate target entropies for all agents.

(a) HalfCheetah(6× 1) (b) H-PP

Figure 3: Comparison of ADER with SER-MARL and
FACMAC on multi-agent HalfCheetah and H-PP

Continuous Action Tasks We evalu-
ated ADER on two complex continuous
action tasks: multi-agent HalfCheetah
(Peng et al., 2021) and heterogeneous
predator-prey (H-PP). The multi-agent
HalfCheetah divides the body into dis-
joint sub-graphs and each sub-graph cor-
responds to an agent. We used 6 ×
1-HalfCheetah, which consists of six
agents with one action dimension. Next,
the H-PP consists of three agents, where
the maximum speeds of an agent and
other agents are different. In both envi-
ronments, each agent has a different role
to achieve the common goal and thus the multi-agent exploration-exploitation tradeoff should be
considered. Here, we used two baselines: SER-MARL and FACMAC Peng et al. (2021). In Fig.
3 showing the performances of ADER and the baselines averaged over 9 random seeds, ADER
outperforms the considered baselines.

Starcraft II We also evaluated ADER on the StarcraftII micromanagement benchmark (SMAC)
environment (Samvelyan et al., 2019). To make the problem more difficult, we modified the SMAC
environment to be sparse. The considered sparse reward setting consisted of a dead reward and
time-penalty reward. The dead reward was given only when an ally or an enemy died. Unlike the
original reward in SMAC which gives the hit-point damage dealt as a reward, multiple agents did not

8

Under review as a conference paper at ICLR 2023

(a) MMM2 (b) 8m vs 9m (c) 1c3s5z (c) 3m

Figure 4: Average test win rate on the SMAC maps. More results are provided in Appendix D.
receive a reward for damaging the enemy immediately in our sparse reward setting. We compared
ADER with six state-of-the-art baselines: DOP (Wang et al., 2020b), FACMAC (Peng et al., 2021),
FOP (Zhang et al., 2021), LICA (Zhou et al., 2020), QMIX (Rashid et al., 2018), VDAC(Su et al.,
2021) and MAPPO (Yu et al., 2021). For evaluation, we conducted experiments on the different
SMAC maps with 5 different random seeds. Fig. 4 shows the performance of ADER and the
considered seven baselines on the modified SMAC environment. It is seen that ADER significantly
outperforms other baselines in terms of training speed and final performance. Especially in the
hard tasks with imbalance between allies and enemies such as MMM2, and 8m vs 9m, it is difficult
to obtain a reward due to the simultaneous exploration of multiple agents. Thus, consideration of
multi-agent exploration-exploitation trade-off is required to solve the task, and it seems that ADER
effectively achieves this goal.

We additionally provide several experiments on the original SMAC tasks and Google Research
Football (GRF) task in Appendix D.

(a) MMM2 (b) 8m vs 9m

Figure 5: Ablation study: Disentangled exploration (DE),
EMA filter (ξ = 0), SER-MARL (fixed target entropy) and
the monotonic constraint (MC)

Ablation Study We provide an anal-
ysis of learning target entropy in the
continuous cooperative matrix game.
Through the analysis, we can see how
the changing target entropy affects
the learning as seen in Fig. 2. In
addition, we conducted an ablation
study on the key factors of ADER in
the SMAC environment. First, we
compared ADER with SER-MARL.
As in the continuous action tasks,
Fig. 5 shows that ADER outperforms
SER-MARL. From the result, it is
seen that consideration of the multi-
agent exploration-exploitation trade-
off yields better performance. Sec-
ond, we compared ADER with and without the EMA filter. As seen in Fig. 5, it seems that the EMA
filter enhances the stability of ADER. Third, we conducted an experiment to access the effectiveness
of disentangling exploration and exploitation. We implemented ADER based on one critic which
estimates the sum of return and entropy. As seen in Fig. 5, using two types of value functions
yields better performance. Lastly, we compare ADER with and without the monotonic constraint
to show the necessity of the monotonic constraint. It is seen that enforcing the constraint improves
performance. We provided the training details for all considered environments and further ablation
studies in Appendix C and D, respectively.

5 CONCLUSION

We have proposed the ADER framework for MARL to handle multi-agent exploration-exploitation
trade-off. The proposed method is based on entropy regularization with learning proper target entropy
values across agents over time by using a newly-proposed metric to measure the relative benefit of
more exploration for each agent. Numerical results on various tasks including the sparse SMAC
environment show that ADER can properly handle time-varying multi-agent exploration-exploitation
trade-off effectively and outperforms other state-of-the-art baselines. Furthermore, we expect the key
ideas of ADER can be applied to other exploration methods for MARL such as intrinsic motivation.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In International Conference on Learning
Representations, 2019.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Lucas Beyer, Damien Vincent, Olivier Teboul, Sylvain Gelly, Matthieu Geist, and Olivier Pietquin.
Mulex: Disentangling exploitation from exploration in deep rl. arXiv preprint arXiv:1907.00868,
2019.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement
learning. Advances in neural information processing systems, 17, 2004.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian
Osband, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, et al. Noisy networks for
exploration. In International Conference on Learning Representations, 2018.

Tarun Gupta, Anuj Mahajan, Bei Peng, Wendelin Böhmer, and Shimon Whiteson. Uneven: Universal
value exploration for multi-agent reinforcement learning. In International Conference on Machine
Learning, pp. 3930–3941. PMLR, 2021.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Seungyul Han and Youngchul Sung. A max-min entropy framework for reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

Todd Hester, Michael Quinlan, and Peter Stone. Rtmba: A real-time model-based reinforcement
learning architecture for robot control. In 2012 IEEE International Conference on Robotics and
Automation, pp. 85–90. IEEE, 2012.

Woojun Kim, Whiyoung Jung, Myungsik Cho, and Youngchul Sung. A maximum mutual information
framework for multi-agent reinforcement learning. arXiv preprint arXiv:2006.02732, 2020.

Iou-Jen Liu, Unnat Jain, Raymond A Yeh, and Alexander Schwing. Cooperative exploration for
multi-agent deep reinforcement learning. In International Conference on Machine Learning, pp.
6826–6836. PMLR, 2021a.

Iou-Jen Liu, Unnat Jain, Raymond A Yeh, and Alexander Schwing. Cooperative exploration for
multi-agent deep reinforcement learning. In International Conference on Machine Learning, pp.
6826–6836. PMLR, 2021b.

10

Under review as a conference paper at ICLR 2023

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in Neural Information Processing Systems, 32, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs. Springer,
2016.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value functions
for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pp. 2721–2730. PMLR,
2017.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34, 2021.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: monotonic value function factorisation for deep multi-agent
reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 5887–5896. PMLR, 2019.

Jianyu Su, Stephen Adams, and Peter A Beling. Value-decomposition multi-agent actor-critics. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 11352–11360, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2020a.

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent exploration.
In International Conference on Learning Representations, 2019.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-policy multi-
agent decomposed policy gradients. In International Conference on Learning Representations,
2020b.

Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. Intellilight: A reinforcement learning
approach for intelligent traffic light control. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2496–2505, 2018.

Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang, and Dapeng Oliver Wu.
Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks. IEEE
Transactions on Vehicular Technology, 69(8):8243–8256, 2020.

11

Under review as a conference paper at ICLR 2023

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 12491–12500. PMLR, 2021.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang
Gao, and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven
exploration. Advances in Neural Information Processing Systems, 34:3757–3769, 2021.

Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. Learning implicit credit
assignment for cooperative multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 33:11853–11864, 2020.

12

Under review as a conference paper at ICLR 2023

A APPENDIX A: PROOFS

Proposition 2 The decomposed soft Bellman operators T π
R and T π

H,i are contractions.

Proof: The action value functions QR
JT (τt,at) and QH,i

JT (τt,at) can be estimated based on their
corresponding Bellman backup operators, defined by

T π
RQR

JT (st, τt,at) := rt + γE
[
V R
JT (st+1, τt+1)

]
, where (18)

V R
JT (st, τt) = E

[
QR

JT (st, τt,at)
]

T π
H,iQ

H,i
JT (st, τt,at) := γE

[
V H,i
JT (st+1, τt+1)

]
, where (19)

V H,i
JT (st, τt) = E

[
QH,i

JT (st, τt,at)− αi log π(ait|τ it)
]
.

Here, V R
JT (st, τt) and V H,i

JT (st, τt) are the joint value functions regarding reward and entropy,
respectively.

First, let us consider the decomposed Bellman operator regarding reward, T π
R . For the sake of

simplicity, we abbreviate (QR
JT , Q

H,i
JT , V R

JT , V
H,i
JT) as (QR, QH,i, V R, V H,i). From (18), we have

T π
RQR(st, τt,at) = rt + γEst+1,τt+1,at+1

[
QR(st+1, τt+1,at+1)

]
. (20)

Then, we have

∥T π
R (q1t)− T π

R (q2t)∥∞
= ∥(rt + γ

∑
st+1, τt+1

at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · q1t+1)

− (rt + γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · q2t+1)∥∞

= ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q1t+1 − q2t+1))∥∞

≤ ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞∥q1t+1 − q2t+1∥∞

≤ γ∥q1t+1 − q2t+1∥∞

for q1t =
[
QR

1 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

and q2t =
[
QR

2 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

since

∥
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞ ≤ 1. Thus, the operator T π
R is a γ-

contraction.

Next, let us consider the decomposed Bellman operator regarding entropy, T π
H,i. From (19), we have

T π
H,iQ

H,i(st, τt,at) = γE
[
QH,i(st+1, τt+1,at+1)− αi log π(ait+1|τ it+1))

]
. (21)

13

Under review as a conference paper at ICLR 2023

Then, we have

∥T π
H,i(q

1
t)− T π

H,i(q
2
t)∥∞

= ∥(γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q1t+1 − αi log π(ait+1|τ it+1))

− (γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q2t+1 − αi log π(ait+1|τ it+1))∥∞

= ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q1t+1 − q2t+1))∥∞

≤ ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞∥q1t+1 − q2t+1∥∞

≤ γ∥q1t+1 − q2t+1∥∞

for q1t =
[
QR

1 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

and q2t =
[
QR

2 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

since

∥
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞ ≤ 1. Thus, the operator T π
H,i is a γ-

contraction.

14

Under review as a conference paper at ICLR 2023

B APPENDIX B: DETAILED IMPLEMENTATION

Here, we describe the implementation of ADER for discrete action tasks based on SAC-discrete
(Christodoulou, 2019). The learning process consists of the update of both temperature parameters
and target entropies and the approximation of multi-agent maximum entropy solution, which consists
of the update of the joint policy and the critics. To do this, we first approximate the policies {πi

ϕi
}Ni=1,

the joint action value functions QR
JT,θR

and QH,i
JT,θH,i

by using deep neural networks with parameters,
{ϕi}Ni=1, θR and {θH,i}Ni=1.

First, the joint policy is updated based on Eq. (12) and the loss function is given by

L(ϕ) = E(st,τt)∼D,{ai
t∼πi(·|τ i

t)}N
i=1

[
N∑
i=1

αi(log πi
ϕi
(ait|τ it)−QH,i

JT,θH,i
(st, τt,at))

−QR
JT,θR(st, τt,at)

]
, (B.1)

where ϕ = {ϕi}Ni=1 is the parameter for the joint policy. Next, the joint action value functions are
trained based on the disentangled Bellman operators defined in Eq. (10) and the loss functions are
given by

L(θR) = E(st,τt,at,st+1,τt+1)∼D

[
1

2
(QR

JT,θR(st, τt,at)− (rt + γV R
JT,θ̄R

(st+1, τt+1)))
2

]
(B.2)

L(θH,i) = E(st,τt,at,st+1,τt+1)∼D

[
1

2
(QH,i

JT,θi
(st, τt,at)− γV H,i

JT,θ̄H,i
(st+1, τt+1)))

2

]
(B.3)

where V R
JT,θ̄R

and V H,i

JT,θ̄H,i
are defined as follows:

V R
JT,θ̄R

(st, τt) = E
[
QR

JT,θ̄R
(st, τt,at)

]
(B.4)

V H,i

JT,θ̄H,i
(st, τt) = E

[
QH,i

JT,θ̄H,i
(st, τt,at)− αi log π(ait|τ it)

]
. (B.5)

Note that θ̄R and θ̄H,i are obtained based on the EMA of the parameters of the joint action-value
functions. Although the definitions of the state value functions are given by (B.4) and (B.5), we do not
use this definition to compute the state value functions. This is because the marginalization over joint
action becomes complex as the number of agents increases. For the practical computation of V R

JT and
V H,i
JT , we do the following for reduced complexity. We first marginalize the individual Q-function

based on individual action to get V R
i . Then, we feed V R

1 , · · · , V R
N of all agents to the mixing network

fV,R
mix to obtain the joint state value function as V R

JT (s, τ) = fV,R
mix(s, V

R
1 (τ1), · · · , V R

N (τN)). Here,
fV,R
mix is learned such that fV,R

mix follows the definition by the TD loss eq. (B.2) and the Bellman
equation. In addition, we share the mixing network for QH,i

JT for all i ∈ N and inject the one-hot
vector which denotes the agent index i to handle the scalability.

We update the temperature parameters based on Eq. (13) and the loss function is given by

L(αi) = Eτt∼D,{ai
t∼πi(·|τ i

t)}N
i=1

[
−αi logπt(a

i
t|τ it)− αiHi

]
, ∀i ∈ N . (B.6)

Finally, we update the target entropy of each agent. For H0 ≥ 0, we set the coefficients βi for
determining the individual target entropyHi as β =

[
β1, · · · , βi, · · · , βN

]
=

Softmax

[
E
[∂V R

JT (s, τ)

∂H(π1
t (·|τ1))

]
, · · · ,E

[∂V R
JT (s, τ)

∂H(πi
t(·|τ i))

]
, · · · ,E

[∂V R
JT (s, τ)

∂H(πN
t (·|τN))

]]
, (B.7)

where the computation of ∂V R
JT (s,τ)

∂H(πi
t(·|τ i))

is explained in Section B.1.

15

Under review as a conference paper at ICLR 2023

Note that we change the sign of the elements in Eq. (B.7) ifH0 < 0 to satisfy the core idea of ADER,
which assigns a high target entropy to the agent whose benefit to the joint value is small.

In addition, before the softmax layer, we normalize the elements in Eq. (B.7). Based on the
coefficients, the target entropy is given byHi = βEMA

i ×H0 where βEMA
i is computed recursively

as

βEMA ← (1− ξ)βEMA + ξβ (B.8)

B.1 COMPUTATION OF THE METRIC
∂V R

JT (s,τ)

∂H(πi
t(·|τ i))

We adopted an actor-critic structure for our algorithm. Hence, for each agent we have a separate actor,
i.e., policy in both continuous-action and discrete-action cases, as seen in Figures 6 and 7, which show
the overall structure for continuous-action and discrete-action cases, respectively. The computation
of the partial derivative ∂V R

JT (s,τ)

∂H(πi
t(·|τ i))

in Eq. (B.7) depends on the overall structure, especially on the
structure of the individual critic network.

First, consider the continuous-action case. In this case, we used a Gaussian policy for each agent.
Then, the policy neural network of Agent i with trainable parameter θi takes trajectory τ it as input
and generates the mean µi and the log variance log σi as output, as shown in Figure 6. Based on these
outputs and the reparameterization trick, the action of Agent i is generated as ai = µi+exp(log σi)Zi,
where Zi is Gaussian-distributed with zero mean and identity covariance matrix, i.e., Zi ∼ N(0, I).
The action ai and trajectory τ i are applied as input to both return and entropy critic networks for
Agent i, as seen in Figure 6. Now, focus on the return critic network of Agent i, which is relevant to
the computation of our metric. The return critic of Agent i generates the local Q-value QR

i (τ
i, ai).

All local Q-values QR
1 (τ

1, a1), · · · , QR
N (τN , aN) from all agents are applied as input to the mixing

network for global return value QR
JT , as seen in Figure 6. Due to the connected tensor structure in

Figure 6, at the time of learning, the gradient of QR
JT with respect to log σi can be computed by deep

learning libraries such as Pytorch. Note that log σi is simply a scaled version of the Gaussian policy
entropy. So, we can just obtain this value ∂QR

JT /∂ log σi from deep learning libraries. Furthermore,
V R
JT can be obtained by sampling multiple ai’s from the same policy πi

t, computing the corresponding
multiple Q-values and taking the average over the multiple ai samples. However, we simplify this
step and just use ∂QR

JT /∂ log σi as our estimate for the metric ∂V R
JT (s,τ)

∂H(πi
t(·|τ i))

. Indeed, many algorithms
use single-sample average for obtaining expectations for algorithm simplicity.

Second, consider the discrete-action case. In this case, we again use an actor-critic structure for
our algorithm. The structure of the critic network of Agent i in the discrete-action case is different
from that in the continuous-action case. Whereas the critic network takes the trajectory τ i and the
action ai as input, and generates QR

i (τ
i, ai) in the continuous-action case, the critic network typically

uses the DQN structure (Mnih et al. 2015), which takes the trajectory τ i as input and generates
all QR

i (τ
i, ai1), · · · , QR

i (τ
i, ai|A|) as output in the discrete-action case. In the discrete-action case,

action is over a finite action set A = {a1, · · · , a|A|}, and the policy is described by a categorical

distribution pi =
[
pi1, · · · , pi|A|

]
over A for each state (or trajectory). Hence, our actor, i.e, policy πi

for Agent i is a deep neural network which takes the observation τ i as input and generates probability
vector pi =

[
pi1, · · · , pi|A|

]
as output. Here, let us denote the policy deep neural network parameter

by θi and denote the policy πi
t by πi

θi , showing the current parameter explicitly. Then, using the

output pi =
[
pi1, · · · , pi|A|

]
of the policy network and the output QR

i (τ
i, ai1), · · · , QR

i (τ
i, ai|A|) of

the critic network, we compute the local return value as

V R
i (τ i) =

|A|∑
j=1

pij(τ
i)QR

i (τ
i, aij). (22)

Then, all local return values V R
1 (τ1), · · · , V R

N (τN) are fed to the mixing network for global return
value V R

JT , as seen in Figure 7.

16

Under review as a conference paper at ICLR 2023

In this discrete-action case, the policy entropy is given byH(πi
θi(·|τ i)) = −

∑N
j=1 p

i
j log p

i
j . On the

contrary to the continuous-action case in which the policy entropy log σi is an explicit node value
in the overall structure and hence the output V R

JT gradient with respect to the node log σi is directly
available, in the discrete-action case there is no node corresponding to the value H(πi

θi(·|τ i)) =

−
∑N

j=1 p
i
j log p

i
j . Hence, the gradient ∂V R

JT

∂H(πi
θi

)
is not readily available from the architecture. Note

that we only have nodes for pi1, · · · , pi|A| in the architecture, but the gradient of V R
JT with respect to

pij is not ∂V R
JT

∂H(πi
θi

)
. Furthermore, it is not easy to compute ∂V R

JT

∂H(πi
θi

)
from ∂V R

JT

∂pi
j

, j = 1, · · · , |A| with∑
j p

i
j = 1 for general cardinality |A|.

To circumvent this difficulty and compute the metric ∂V R
JT

∂H(πi
θi

)
, we exploit the policy network parameter

θi and numerical computation. When the current policy network parameter is θi, we have the
corresponding policy network output pi1, · · · , pi|A|. Then, consider the temporary scalar objective
functionH(πi

θi) for the policy network. We can compute the gradient ofH(πi
θi) with respect to the

policy parameter θi. Let us denote this gradient by
∂H(πi

θi
)

∂θi , which is the direction of θi for maximum

policy entropy increase. Then, we update the policy parameter as θ̃i = θi + δ
∂H(πi

θi
)

∂θi , where δ is
a positive stepsize. Then, for the updated policy πi

θ̃i
, we compute the corresponding pi1, · · · , pi|A|.

Using these updated probability values, we compute the local value V R
i by using eq. (22). Using the

values before and after the update, we compute ∆V R
i (τ i)

∆H(πi) =
V R
i (τ i;πi

θ̃i
)−V R

i (τ i;πi
θi

)

H(πi
θ̃i

)−H(πi
θi

)
.

Now, the metric ∂V R
JT

∂H(πi
θi

)
can be computed based on the chain rule. That is, we have ∂V R

JT

∂H(πi
θi

)
=

∂V R
JT (s,τ)

∂V R
i (τ i)

× ∂V R
i (τ i)

∂H(πi
θi

)
. Here, the first term ∂V R

JT (s,τ)

∂V R
i (τ i)

is available from deep learning libraries since

V R
JT and V R

i are nodes of the learning architecture. The second term ∂V R
i (τ i)

∂H(πi
θi

)
can be approximated

by ∆V R
i (τ i)

∆H(πi) in the above.

Note that the policy update θ̃i = θi + δ
∂H(πi

θi
)

∂θi is only for computation of the metric. It is not done
for the actual learning update.

B.2 OVERALL ARCHITECTURE AND ALGORITHM PSEUDOCODE

We summarize the proposed algorithm in Algorithm 1 and illustrate the overall architecture of the
proposed ADER in Figures 6 and 7.

Algorithm 1 ADaptive Entropy-Regularization for multi-agent reinforcement learning (ADER)
Initialize parameters {ϕi}Ni=1, θR, {θH,i}Ni=1, θ̄R, {θ̄H,i}Ni=1
Generate a trajectory τ by interacting with the environment by using the joint policy π and store τ
in the replay memory
for episode = 1, 2, · · · do

Generate a trajectory τ by using the joint policy π and store τ in the replay memory D
for each gradient step do

Sample a minibatch from D
Update {ϕi}Ni=1 by minimizing the loss function Eq. (B.1)
Update θR, {θH,i}Ni=1 by minimizing the loss functions Eq. (B.2) and Eq. (B.3)
Update αi by minimizing the loss function Eq. (B.6)
Update {Hi}Ni=1 by computing Eq. (B.7) and Eq. (B.8)
Update θ̄R and {θ̄H,i}Ni=1 by EMA based on θR and {θH,i}Ni=1

end for
end for

17

Under review as a conference paper at ICLR 2023

Figure 6: Overall architecture of ADER in continuous action cases

Figure 7: Overall architecture of ADER in discrete action cases

18

Under review as a conference paper at ICLR 2023

APPENDIX C: TRAINING DETAILS

We compute the joint value function as V R
JT (s, τ) = fV,R

mix(s, V
R
1 (τ1), · · · , V R

N (τN)). To compute
this, as similar in (Zhang et al., 2021), we first obtain the local value functions as V R

i (τ i) =
Eai [QR(τ i, ai)] and then input the obtained local value functions into the mixing network. For
discrete action environments, we share the mixing network for both V R

JT and QR
JT , and thus the

mixing network is trained to minimize the TD error of QR
JT . It works well as the reviewer can see

in the experimental results. For continuous action environments, we use two mixing networks for
V R
JT and QR

JT which are trained separately as in SAC (Haarnoja et al., 2018a). In addition, we need
N mixing networks for QH,i

JT . To handle the scalability, we share the mixing network for QH,i
JT for

all i ∈ N and inject the one-hot vector which denotes the agent index i as QMIX shares the local
Q-functions with one parameterized neural network.

(a) 6× 1-HalfCheetah (b) H-PP

Figure 8: Considered continuous action tasks

C1. Environment Details

Multi-agent HalfCheetah We considered the multi-agent HalfCheetah introduced in (Peng et al.,
2021). As illustrated in Fig. 8 (a), the multi-agent HalfCheetah divides the body into disjoint
sub-graphs and each sub-graph corresponds to an agent. We used 6× 1-HalfCheetah, which consists
of six agents with one action dimension. We set the maximum graph distance k = 1, where k denotes
the distance each agent can observe. We set the maximum episode length as Tmax = 1000.

Heterogeneous Predator-Prey (H-PP) We modified the continuous predator-prey environment
considered in (Peng et al., 2021) to be heterogeneous. As illustrated in Fig. 8 (b), the considered
heterogeneous predator-prey consists of three predator agents, where the maximum speeds of an
agent (v1max = 1.0) and other agents (v2max = 0.75) are different, three preys with the maximum
speed (v3max = 1.25) is faster than all predators and the landmarks. The preys move away from
the nearest predator implemented in (Peng et al., 2021) and thus the predators should be trained to
pick one prey and catch the prey together. Each agent observes the relative positions of the other
predators and the landmarks within view range and the relative positions and velocities of the prey
within view range. The reward +10 is given when one of the predators collides with the prey. We set
the maximum episode length as Tmax = 50.

Starcraft II We evaluated ADER on the StarcraftII micromanagement benchmark (SMAC)
environment (Samvelyan et al., 2019). To make the problem more difficult, we modified the SMAC
environment to be sparse. The considered sparse reward setting consists of a death reward and
time-penalty reward. The time-penalty reward is −0.1 and the death reward is given +10 and −1
when one enemy dies and one ally dies, respectively. Additionally, the dead reward is given +200 if
all enemies die.

C2. Training Details and Hyperparameters

We implemented ADER based on (Samvelyan et al., 2019; Peng et al., 2021; Zhang et al., 2021) and
conducted the experiments on a server with Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz and 8

19

Under review as a conference paper at ICLR 2023

Nvidia Titan xp GPUs. Each experiment took about 12 to 24 hours. We used the implementations of
the considered baselines provided by the authors.

Multi-agent HalfCheetah In the multi-agent halfcheetah environment, the architecture of the
policies and critics for ADER follows (Peng et al., 2021). We use an MLP with 2 hidden layers which
have 400 and 300 hidden units and ReLU activation functions. The final layer uses tanh activation
function to bound the action as in (Haarnoja et al., 2018a). We also use the reparameterization trick
for the policy as in (Haarnoja et al., 2018a). The replay buffer stores up to 106 transitions and 100
transitions are uniformly sampled for training. As in (Haarnoja et al., 2018b), we set the sum of target
entropy as

H0 = N × (−dim(A)) = 6× (−1) = −6,
where N is the number of agents. We set the hyperparameter for EMA filter as ξ = 0.9 and initialize
the temperature parameters as αi

init = e−2 for all i ∈ N .

Heterogeneous Predator-Prey In the heterogeneous predator-prey environment, the architecture
of the policies and critics for ADER follows (Peng et al., 2021). To parameterize the policy, we use
a deep neural network which consists of a fully-connected layer, GRU and a fully-connected layer
which have 64 dimensional hidden units. The final layer uses tanh activation function to bound the
action. Next, for the critic network, we use a MLP with 2 hidden layers which have 64 hidden units
and ReLU activation function. The replay buffer stores up to 5000 episodes and 32 episodes are
uniformly sampled for training. As in (Haarnoja et al., 2018b), we set the sum of target entropy as

H0 = N × (−dim(A)) = 3× (−2) = −6.

We set the hyperparameter for EMA filter as ξ = 0.9 and initialize the temperature parameters as
αi
init = e−2 for all i ∈ N .

Starcraft II For parameterization of the policy we use a deep neural network which consists of
a fully-connected layer, GRU and a fully-connected layer which have 64 dimensional hidden units.
For the critic networks we use a MLP with 2 hidden layers which have 64 hidden units and ReLU
activation function. The replay buffer stores up to 5000 episodes and 32 episodes are uniformly
sampled for training. For the considered maps in SMAC, we use different hyperparameters. We set
the sum of target entropy based on the maximum entropy, which can be achieved if the policy is
uniform distribution, as

H0 = N ×H∗ × kratio = N × log(dim(A))× kratio.

The values of kratio, ξ, and initial temperature parameter for each map are summarized Table 1.

Table 1: Hyperparameters for the considered SMAC environment

MAP kratio ξ αi
init

1c3s5z 0.05 0.9 e−3

3m 0.1 0.9 e−2

3s5z 0.05 0.9 e−3

3s vs 3z 0.1 0.9 e−3

MMM2 0.1 0.9 e−2.5

8m vs 9m 0.1 0.9 e−3

In all the considered environments, we apply the value factorization technique proposed in (Rashid
et al., 2018). The architecture of the mixing network for ADER, which follows (Rashid et al., 2018),
takes the output of individual critics as input and outputs the joint action value function. The weights
of the mixing network are produced by the hypernetwork which takes the global state as input. The
hypernetwork consists of a MLP with a single hidden layer and an ELU activation function. Due to
the ELU activation function, the weights of the mixing network are non-negative and this achieves the
monotonic constraint in (Rashid et al., 2018). We expect that ADER can use other value factorization
technique to yield better performance.

20

Under review as a conference paper at ICLR 2023

APPENDIX D: FURTHER EXPERIMENTS

Experiments on the original SMAC environments

We here provide the experiments on the original SMAC environments. We compared ADER with
three baselines including FACMAC (Peng et al., 2021), FOP (Zhang et al., 2021) and QMIX (Rashid
et al., 2018). For all the considered maps, ADER outperforms the baselines, as shown in Fig. 9.
Thus, the proposed adaptive entropy-regularization method performs well in both original and sparse
SMAC environments.

(a) MMM2 (b) 8m vs 9m (c) 3s5z

Figure 9: Average test win rate on the original SMAC maps.

Experiments on google research football environment

We evaluated ADER on the google research football (GRF) environment, which is known as hard
exploration tasks. We consider one scenario in GRF named Academy 3 vs 1 with keeper. In this
environment, the agents receive a reward only when they succeed in scoring, which requires hard
exploration. Thus, it is difficult to obtain the reward if all agents focus on exploration simultaneously.

We compared ADER with four baselines: QMIX, FOP, FACMAC, and SER-MARL. Fig. 10 shows
the performance of ADER and the baselines, and the y-axis in Fig. B.2 denotes the median winning
rate over 7 random seed. It is seen in Fig. 10 that ADER outperforms the baselines significantly.
Since ADER handles multi-agent exploration-exploitation trade-off across multiple agents and over
time, ADER performs better than SER-MARL, which keeps the same level of exploration across
agents.

Experiments on the modified SMAC environments

Fig. 11 shows the performance of ADER and the considered seven baselines on the modified SMAC
environment. It is seen that ADER outperforms all the considered baselines. Especially, on the hard
tasks shown in Fig. 11, ADER significantly outperforms other baselines in terms of training speed
and final performance. This is because those hard maps require high-quality adaptive exploration
across agents over time. In the maps 3s vs 3z, the stalkers (ally) should attack a zealot (enemy) many
times and thus the considered reward is rarely obtained. In addition, since the stalker is a ranged
attacker whereas the zealot is a melee attacker, the stalker should be trained to attack the zealot at a
distance while avoiding the zealot. For this reason, if all stalkers focus on exploration simultaneously,
they hardly remove the zealot, which leads to failure in solving the task. Similarly, in the hard tasks
with imbalance between allies and enemies such as MMM2, and 8m vs 9m, it is difficult to obtain a
reward due to the simultaneous exploration of multiple agents. Thus, consideration of multi-agent
exploration-exploitation trade-off is required to solve the task, and it seems that ADER effectively
achieves this goal.

21

Under review as a conference paper at ICLR 2023

(a) Academy 3 vs 1 with keeper

Figure 10: Median test winning rate on Academy 3 vs 1 with keeper

(a) 3s vs 3z (b) 1c3s5z (c) MMM2

(d) 8m vs 9m (e) 3m (f) 3s5z

Figure 11: Average test win rate on the sparse SMAC maps.

APPENDIX E: FURTHER RELATED WORKS

For effective exploration in single-agent RL, several approaches such as maximum entropy/entropy
regularization (Haarnoja et al., 2017; 2018a), intrinsic motivation (Chentanez et al., 2004; Badia
et al., 2019; Burda et al., 2018), parameter noise (Plappert et al., 2018; Fortunato et al., 2018) and
count-based exploration (Ostrovski et al., 2017; Bellemare et al., 2016) have been considered. Also
in MARL, exploration has been actively studied in various ways. MAVEN introduced a latent
variable and maximized the mutual information between the latent variable and the trajectories
to solve the poor exploration of QMIX caused by the representational constraint (Mahajan et al.,
2019). Wang et al. (2019) proposes a coordinated exploration strategy by considering the interaction
between agents. Liu et al. (2021b) proposes an efficient coordinated exploration method based

22

Under review as a conference paper at ICLR 2023

on restricted space selection to encourage multiple agents to explore worthy state space. Zheng
et al. (2021) extends the intrinsic motivation-based exploration method to MARL and utilizes the
episodic memory which stores highly rewarded episodes to boost learning. Gupta et al. (2021)
promotes joint exploration by learning different tasks simultaneously based on multi-agent universal
successor features to address the problem of relative overgeneralization. The aforementioned methods
successfully improve exploration in MARL. However, to the best of our knowledge, none of the
works address the multi-agent exploration-exploitation tradeoff, which is the main motivation of this
paper.

23

Under review as a conference paper at ICLR 2023

APPENDIX F: LIMITATION

In this paper, we only considered a fully cooperative setting where multiple agents share the global
reward and showed that the proposed method successfully addresses the multi-agent exploration-
exploitation tradeoff in such setting. However, the metric to measure the benefit of exploration can
differ in other MARL settings such as mixed cooperative-competitive settings. Thus, we believe
finding the metric in other MARL settings can be a good research direction.

24

	Introduction
	Background
	Methodology
	Motivation
	Adaptive Entropy-Regularized MARL
	Disentangled Exploration and Exploitation
	Learning Individual Target Entropy Values

	Experiments
	Conclusion
	Appendix A: Proofs
	Appendix B: Detailed Implementation
	Computation of the metric VJTR(s,)H(ti(|i))
	Overall Architecture and Algorithm Pseudocode

