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Abstract
Training deep learning models with differential
privacy (DP) results in a degradation of perfor-
mance. The training dynamics of models with
DP show a significant difference from standard
training, whereas understanding the geometric
properties of private learning remains largely un-
explored. In this paper, we investigate sharp-
ness, a key factor in achieving better general-
ization, in private learning. We show that flat
minima can help reduce the negative effects of
per-example gradient clipping and the addition
of Gaussian noise. We then verify the effective-
ness of Sharpness-Aware Minimization (SAM)
for seeking flat minima in private learning. How-
ever, we also discover that SAM is detrimental to
the privacy budget and computational time due
to its two-step optimization. Thus, we propose a
new sharpness-aware training method that miti-
gates the privacy-optimization trade-off. Our ex-
perimental results demonstrate that the proposed
method improves the performance of deep learn-
ing models with DP from both scratch and fine-
tuning. Code is available at https://github.
com/jinseongP/DPSAT.

1. Introduction
Deep learning models are known to have a risk of privacy
leakage (Zhu et al., 2019). To protect the training data from
potential data exposure, differential privacy (DP) (Dwork,
2006) provides a mathematical guarantee against adver-
saries. Nevertheless, training deep learning models with
differential privacy (DP training) can result in a degrada-
tion of prediction performance compared to models without
differential privacy (non-DP training) (Dwork et al., 2014;
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Figure 1. Illustration of flat and sharp minima. The flat minimum
is robust to the sharp one given the same size of perturbation in
DP training.

Abadi et al., 2016; Park et al., 2023).

DP-SGD (Abadi et al., 2016) is the most popular algorithm
for ensuring privacy in deep learning. The primary factors
of accuracy drop in DP-SGD are known as per-example
gradient clipping and the addition of Gaussian noise. To
mitigate these effects and improve the performance of DP-
SGD, many algorithmic solutions concentrate on finding
the proper settings for private learning, i.e., different ar-
chitectures (Tramer & Boneh, 2021; Cheng et al., 2022),
loss functions (Shamsabadi & Papernot, 2023), activation
functions (Papernot et al., 2021), and clipping functions
(Andrew et al., 2021; Bu et al., 2021). However, achieving
the ideal performance under private learning still remains
an open question.

In this paper, we aim to answer “how can we find a better
optimum in DP training?” Recently, in deep learning soci-
ety, it is well known that finding flat minima is a key factor
for improving generalization performance (Keskar et al.,
2017; Foret et al., 2020). Figure 1 illustrates the importance
of flat minimum for DP training. It shows that flat minimum
exhibits robustness to the random perturbations, a funda-
mental idea of protecting data in DP methods. Furthermore,
we show that the flatness of the loss landscape can reduce
the negative influences of clipping and noise addition.
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Subsequently, we explore the effectiveness of optimization
strategies for finding flat minima in private learning, partic-
ularly Sharpness-Aware Minimization (SAM) (Foret et al.,
2020). SAM, the state-of-the-art optimization method in
various domains (Bahri et al., 2021; Qu et al., 2022), effi-
ciently finds flat minima by solving the min-max objective
in two steps. Despite this, we point out that the two-step op-
timization of SAM may be detrimental to the privacy budget
and computational time. Based on these observations, we
propose a new sharpness-aware training without additional
privacy and computational overheads, which successfully
mitigates the privacy-optimization trade-off.

Our main contributions are summarized as follows:

• We demonstrate that finding flat minima can reduce
the detrimental effects of clipping and noise addition
in private learning.

• We show the effectiveness of SAM to seek flat minima
and present its drawbacks in private learning. To the
best of our knowledge, this is the first attempt to study
sharpness-aware training in private learning.

• We propose Differentially Private Sharpness-Aware
Training (DP-SAT) which makes use of sharpness-
aware training without additional privacy costs, achiev-
ing both generalization and time efficiency.

This paper is structured as follows: Section 2 introduces
related works on DP and flat minima. Section 3 investigates
how flatness helps private learning. Section 4.1 adapts SAM
to DP and evaluates the problems caused by the two-step up-
dates of SAM. Section 4.2 introduces DP-SAT, a new while
sharpness-aware training method for DP. Section 5 empiri-
cally demonstrates the effectiveness of DP-SAT across vari-
ous datasets and tasks. Section 6 demonstrates limitations
and future works, and Section 7 concludes the paper.

2. Background and Related Work
2.1. Differentially Private Deep Learning

Differential privacy (DP) (Dwork et al., 2014) provides a
formal mathematical framework to guarantee the privacy of
training data. It is defined as follows:

Definition 2.1. (Differential privacy) A randomized mech-
anismM : D → R with domain D and range R satisfies
(ε, δ)-DP, if for two adjacent inputs d, d′ ∈ D and for any
set of possible outputs S ⊆ R it holds that

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ. (1)

The parameter ε ≥ 0 represents the privacy budget with the
broken probability δ ≥ 0. A smaller value of ε implies a

strong privacy guarantee of mechanismM. In the context
of deep learning, DP-SGD (Abadi et al., 2016) calculates the
per-sample gradient ∇ℓi(w), where ℓi is the per-data loss
function of the individual data sample xi and w is the model
parameter. After that, it clips each per-sample gradient to a
fixed L2-norm and then adds Gaussian noise to the average
of clipped gradients. In summary, the model weights wt are
updated as wt+1 = wt − ηgt at step t, where the modified
gradients gt for DP-SGD is calculated within mini-batch It
as follows:

ḡt =
1

|It|
∑
i∈It

clip(∇ℓi(wt), C), (2)

gt = ḡt +N (0, C2σ2I), (3)

where clip(u, C) projects u to the L2-ball with radius C
and vector norm ∥ · ∥ indicates the L2-norm ∥ · ∥2. The
noise level σ is determined by the privacy budget (ε, δ) as
follows:

Proposition 2.2. (Abadi et al. (2016)). There exist constant
c1 and c2 so that given total steps T and sampling probabil-
ity q, for any ε < c1q

2T , DP-SGD (3) guarantee (ε, δ)-DP,
for any δ > 0 if we choose

σ ≥ c2
q
√
T log(1/δ)

ε
. (4)

As gradient clipping limits the sensitivity of average gra-
dients, DP-SGD can impede the model from updating to-
wards the dominant gradient direction (Papernot et al., 2021).
Moreover, the addition of noise to guarantee the privacy of
training data can interrupt the convergence of the model
weights to the optimum (Yu et al., 2021a). Note that using
larger clipping values increases alignment with the origi-
nal gradients, but also increases the variance at the same
time. The additional definitions and properties of DP are
summarized in Appendix A.

2.2. Flat Minima and Sharpness-Aware Minimization

Sharp and flat minima Understanding the geometric
properties of the loss landscape is a central topic for op-
timization in deep learning. Generally, the Hessian matrix
of loss function H = Hw := ∇2ℓ(w) and its sharpness,
which is defined as its spectral norm ∥H∥2 (or its top eigen-
value λmax), can explain the training dynamics of gradient
descent (Cohen et al., 2021). In other words, the loss land-
scape in the vicinity of a flat minimum, which has small
eigenvalues of the Hessian, exhibits slow variation within
a neighborhood of w. Conversely, near a sharp minimum
with large eigenvalues, the loss function is vulnerable to
small noises (Li et al., 2018; Keskar et al., 2017; Dinh et al.,
2017), even adversarial perturbations (Wu et al., 2020; Lee
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et al., 2021; Kim et al., 2023c). To find flatter minima,
various optimization techniques have been proposed, such
as stochastic weight averaging (Izmailov et al., 2018) and
gradient regularizer (Barrett & Dherin, 2020).

Sharpness-aware training Recently, Foret et al. (2020)
proposed Sharpness-Aware Minimization (SAM), which
is the state-of-the-art optimization methodology in various
domains. SAM minimizes the worst-case perturbations
within a radius ρ in the vicinity of the parameter space as
follows:

min
w

max
∥δ∗∥≤ρ

ℓ(w + δ∗). (5)

As it is difficult to identify the optimal direction δ∗, SAM
approximates the perturbation δ with a first-order Taylor
expansion. Subsequently, SAM updates the model weights
in two steps, described as follows:

wp
t = wt + ρδt = wt + ρ

∇ℓ(wt)

∥∇ℓ(wt)∥
, (6)

wt+1 = wt − η∇ℓ(wp
t ). (7)

We initially calculate the perturbed weight wp
t in the ascent

step (6), and then update the model weights towards the
gradient of perturbed loss ∇ℓ(wp

t ) in the descent step (7).
Foret et al. (2020) defined the difference ℓ(wp

t )− ℓ(wt) as
estimated sharpness which should be minimized to find flat
minima. Note that variants of SAM have been proposed
recently to boost the generalization performance (Kwon
et al., 2021; Zhuang et al., 2021; Kim et al., 2023a;b) and
reduce the computation of two-step optimization (Du et al.,
2022a;b; Park et al., 2022).

2.3. Loss Landscape of Private Learning

Recent studies have investigated the unique loss landscape
and training dynamics of DP-SGD in comparison to SGD.
Bu et al. (2021) analyzed the convergence of DP training
in terms of different clipping methods and noise addition.
Wang et al. (2021) first highlighted the problem of DP-SGD
being stuck in local minima due to the training instability.
The authors suggested that averaging the gradients of neigh-
borhoods in the parameter space can achieve a smoother
loss landscape and improved performance, yet this comes
with a significant computational cost. Instead of averaging,
Shamsabadi & Papernot (2023) proposed that loss functions
with smaller norm can reduce the impact of clipping and
thus create a smoother loss function.

3. Flat Minima Help Private Learning
In this section, we first prove that achieving flatness can
be beneficial to DP training. Recently, discovering the re-
lationship between the loss function, gradient norm, and
flat minima has become an important topic to analyze in
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Figure 2. Training loss (left) and test accuracy (right) of DP-SGD
with ε ∈ {1, 2, 3, 8}, SGD only with clipping (C = 0.1) without
noise addition (SGD+clip), and SGD on CIFAR-10.

deep learning optimization (Zhao et al., 2022; Zhang et al.,
2023). The interaction between these factors significantly
influences generalization performance in various domains
(Barrett & Dherin, 2020; Wu et al., 2020). Thus, we start by
investigating the learning dynamics of DP-SGD, as stated
in (Bagdasaryan et al., 2019; Wang et al., 2021). Figure 2
illustrates the training loss and test accuracy of DP-SGD
with various privacy budgets ε, SGD only with clipping
(SGD+clip), and standard SGD. The training loss of DP-
SGD cannot converge to zero due to the effects of clipping
and noise addition. This leads to instability of training and
corresponding lower performance. To mitigate this phe-
nomenon, we investigate the vulnerability of DP training to
clipping and noise addition in terms of sharpness.

3.1. Flat Minima Mitigate the Effect of Clipping

The difference between SGD and SGD+clip in Figure 2
indicates that clipping itself has negative effects in training.
It means that reducing the gradient norm can improve per-
formance by avoiding clipping (Papernot et al., 2021). To
this end, we argue that a flat minimum exhibits additional
advantages in DP training, i.e., reducing the negative im-
pact of clipping by bounding the gradient norm near a local
optimum.

Theorem 3.1. (Flat minimum mitigates the effect of clip-
ping) The difference between gradients before and after
clipping can be bounded by the sharpness as

∥∇ℓi(w)− clip(∇ℓi(w), C)∥
=1(∥∇ℓi(w)∥ > C) · (∥∇ℓi(w)∥ − C)

≤1(∥Hw∗∥2∆w > C) · (∥Hw∗∥2∆w − C),

near a local minimum w∗, where ∥Hw∗∥2 is the sharpness
at w∗. ∆w = ∥w − w∗∥ and 1 denotes an indicator
function.

We defer the proof to Appendix B.1. As the gradient norm
is upper bounded by the sharpness, a lower proportion of
gradients is to be clipped within a flat minimum. Empiri-
cally, we measure the gradient norm of each data sample
∇ℓi(wt) trained with DP-SGD on the MNIST dataset in
Figure 3. The proportion of data samples being clipped
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Figure 3. Distribution of individual gradient norm ∥∇ℓi∥ for all i at epoch 1 (early), 10, and 40 (end). We enlarge the values between 0
and 1 for clarifying the distribution of small gradients. The blue chart indicates the sum of all counts larger than 10. The red line indicates
the gradient clipping value C. The proportion of being clipped is high at the early stage and decreases constantly.
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Figure 4. (dashed line) Sharpness ∥H∥2 and (solid line) the differ-
ence of gradients after updating without noise ∆ on toy example
of Figure 1. The dashed and solid lines in the same color show a
positive correlation during the training. Small ∥H∥2 in flat loss
surface (red) bounds the gradient difference ∆ compared to the
sharp one (blue).

P (∥∇ℓi(w)∥ > C) is high in the early stage of training,
indicating that weights are updated in a significantly differ-
ent direction due to clipping. Even though the proportion
P (∥∇ℓi(w)∥ > C) diminishes as training proceeds, some
individual gradients are still clipped. As these clipped gradi-
ents act as the primary direction in SGD, it is detrimental to
finding an effective direction in DP-SGD. By uncovering a
flatter loss landscape, we can reduce the amount of clipped
individual gradients in DP-SGD during training.

3.2. Flat Minima Reduce the Bias of Noise

To push further, we investigate the relationship between
sharpness and noise addition. Motivated by (Shamsabadi
& Papernot, 2023), the following theorem illustrates that
flat minima can reduce the error caused by adding Gaussian
noise to the clipped gradient in Equation (3).

Theorem 3.2. (Flat minimum reduces the bias of noise
addition) The difference of gradients between updated with-
out noise ḡt and with noise gt is affected by the sharpness
as

∥∇ℓ(wt − ηḡt)−∇ℓ(wt − ηgt)∥ ≤ ηmax
H∈H

(∥H∥2) · ∥µ∥,

where µ ∼ N (0, C2σ2I) and H is a set of Hessian matrices
H along the line of µ from wt − ηḡt to wt − ηgt.

We defer the proof to Appendix B.2. Theorem 3.2 suggests
that the sharpness ∥H∥2 can regulate the impact of Gaussian
noise in the training, even with the same learning rate η,
clipping value C, and noise level σ.

We now empirically validate Theorem 3.2. Revisit Figure 1
illustrating a toy example of a two-dimensional parameter
space that comprises one sharp and one flat minimum, sug-
gested in (Wang et al., 2021). Both the sharp and flat mini-
mum have a loss value of 0. Please refer to Appendix C.3 for
the details. In Figure 4, we measure the sharpness ∥H∥2 and
the gradient difference between updating with and without
noise ∆t := ∥∇ℓ(wt − ηḡt)−∇ℓ(wt − ηgt)∥ as training
proceeds by gradient descents. To clearly show the effect of
noise addition, we select initial points that are equidistant
from each minimum and add the same level of noise in each
step.

The results show that a positive correlation exists between
the sharpness ∥H∥2 (dashed line) and the gradient differ-
ence ∆ (solid line) during all training epochs, regardless
of whether flat (red colored) or sharp (blue colored). More
importantly, a flat minimum (red colored) has a lower value
of the sharpness ∥H∥2 (dashed line) and thus the gradient
difference ∆ (solid line), compared to the sharp one (blue
colored).

4. Discovering Flat Minima in Private
Learning

In the previous section, we show the importance of sharp-
ness in private learning. To seek flat minima, we first demon-
strate the effectiveness of SAM in DP training. However, at
the same time, we also emphasize the drawbacks of SAM
for private learning in terms of privacy budget and computa-
tional time. To address these limitations, we propose a new
DP-friendly sharpness-aware training algorithm.
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4.1. Challenges of SAM in Private Learning

We introduce the concept of SAM for DP-SGD to achieve
flat minima in DP training. One of the main advantages of
SAM is the ease of implementation, as it can be applied
to various optimizers and architectures by modifying the
gradient descent of SGD to a two-step optimization. Thus,
we can easily formulate SAM for DP training, referred to as
DP-SAM, as follows:

wp
t = wt + ρ

gt
∥gt∥

, (8)

gp
t =

1

|It|
∑
i∈It

clip(∇ℓi(wp
t ), C) +N (0, C2σ2I), (9)

where wt+1 = wt−ηgp
t and ρ is the radius in the parameter

space. In Figure 5, we use the techniques of (Li et al., 2018)
to visualize the effectiveness of SAM on the loss landscape
for non-DP (left) and DP training (right). Specifically, we
perturb a converged minimum to two randomly sampled
Gaussian directions and calculate all the losses in grids. The
results demonstrate that DP-SAM is more effective than DP-
SGD in uncovering flat minima in private learning, which
is consistent with the results of standard training with SGD
and SAM.
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Figure 5. Visualization of loss landscapes.

Nevertheless, we argue that DP-SAM may not be suitable
for private learning, despite its ability to discover flat min-
ima. For further details of Equations 8 and 9, we should
consider that SAM is a two-step optimization that employs
the data samples within the same mini-batch twice. There-
fore, we should inject noise into the gradients of the current
weight gt and the perturbed weight gp

t to make both ascent
and descent steps private. This might have two drawbacks,
i.e., increased privacy cost and computational burden.

Increased privacy cost Because every query to training
data increases the privacy budget, we need to consider the
privacy budget of the two-step optimization in Equations
(8) and (9). We now demonstrate the privacy guarantee of
DP-SAM.

Theorem 4.1. (Privacy guarantee) DP-SAM requires
(2ε, 2δ)-differential privacy, whereas DP-SGD is (ε, δ)-
differential privacy.

Proof. (Stated informally) For DP-SAM, let M1(d) be
the ascent step to calculate wp

t in Equation (8) and
M2(d,M1(d)) be the descent step to calculate gp

t in Equa-
tion (9), ∀d ∈ D. According to Proposition 2.2,M1(d) and
M2(d) satisfy (ε, δ)-DP by clipping individual gradients
and injecting noise with σ. Then, by the general composi-
tion, DP-SAM requires the addition of two privacy budgets,
resulting in (2ε, 2δ)-DP. The detailed mathematical proof
can be found in Appendix B.3.

Note that the utilization of the moments accountant of Propo-
sition 2.2 (Abadi et al., 2016) or the advanced composition
theorem (Dwork et al., 2014) is not feasible for DP-SAM, as
these theorems require the random selection of data, known
as a k-fold composition experiment.

To ensure the same level of privacy as DP-SGD, DP-SAM

must satisfy either of the following conditions: 2
√

log δ
log 2δ

(≈ 2.06 when δ = 10−5) times the noise level σ or 1
4
log 2δ
log δ

(≈ 0.24 when δ = 10−5) times the number of the training
iterations compared to DP-SGD. In this paper, we choose to
reduce the training time, which usually yields better perfor-
mance than increasing the noise levels.

Computational overhead The primary weakness of SAM
is its computation overhead for implementing two-step opti-
mization (Du et al., 2022b). Furthermore, the computational
burden of DP-SAM may impede the use of sharpness-aware
training methods because DP training already has a large
computational burden (Li et al., 2022).

Briefly, when given m data samples with d-dimensional
features, a model size of w, DP-SGD requires O(mdw)
for one forward and backward step. However, DP-SAM
requires the doubled computations of O(mdw) because it
requires two times of gradient computations. Note that
clipping operation for DP training is generally O(mw) and
storing and recovering weights or individual gradients needs
O(w) computation.

4.2. DP-SAT: Differentially Private Sharpness-Aware
Training

As aforementioned, DP-SAM yields a privacy-optimization
trade-off, which results in a decrease in classification per-
formance while attaining flat minima. The primary problem
of DP-SAM is that it requires twice of privacy budget com-
pared to DP-SGD. To maintain the privacy budget consump-
tion of DP-SGD in each iteration, we should abstain from
accessing the training data multiple times in a mini-batch.
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Figure 6. Illustration of DP-SGD and DP-SAT at step t. For ease of understanding, we set the learning rate η = 1.

Algorithm 1 DP-SAT
Input: Initial parameter w0, learning rate η, radius ρ, clip-

ping threshold C, variance σ2 from Proposition 2.2,
and small τ to prevent zero division.

Output: Final parameter wT .
Initialize: gp

0 = 0
for t = 1, 2, . . . , T do

Construct a random mini-batch It
if DP-SGD then

gt =
1

|It|
∑

i∈It
clip(∇ℓi(wt), C) +N (0, C2σ2I)

wt+1 = wt − ηgt
if DP-SAT then

δt = ρgp
t−1/(∥g

p
t−1∥+τ) // Post-processing

gp
t = // Sharpness-aware training

1
|It|

∑
i∈It

clip(∇ℓi(wt+δt), C)+N (0, C2σ2I)

wt+1 = wt − ηgp
t

end

To achieve this goal, we make use of post-processing
(Dwork et al., 2014). Because post-processing guarantees
that prior differentially private outputs do not impact the pri-
vacy budget, the use of the perturbed gradients is permitted
in the earlier steps gp

1 , . . . , g
p
t−1 without any cost.

Based on this motivation, we present a new method that
re-use the perturbed gradient of the previous step t− 1 to
alter the ascent direction of DP-SAM at the current step t.
To be specific, its ascent step can be formulated as follows:

wp
t = wt + ρ

gp
t−1

∥gp
t−1∥

. (10)

We call this approach Differentially Private Sharpness-
Aware Training (DP-SAT). The detailed training procedure
of DP-SAT is explained in Algorithm 1 and Figure 6.

Now, we prove that DP-SAT satisfies (ε, δ)-DP, which con-
sumes the same privacy budget as DP-SGD.
Theorem 4.2. (Privacy guarantee) DP-SAT in Algorithm 1
can guarantee (ε, δ)-differential privacy.

Table 1. Comparison of sharpness of minima, privacy budget, and
computation cost of DP-SGD (Abadi et al., 2016), DP-SAM, and
DP-SAT. The privacy budget is estimated by assuming DP-SGD is
(ε, δ)-DP. Computational cost is calculated w.r.t. DP-SGD (1×).

Methods Minima Privacy budget Computational cost
DP-SGD Sharp (ε, δ)-DP 1×
DP-SAM Flat (2ε, 2δ)-DP 2× (doubled)
DP-SAT Flat (ε, δ)-DP 1×

Proof. (Stated informally) It is sufficient to mention that wp
t

at step t is a result of the post-processing of gp
t−1. Then, DP-

SAT in Algorithm 1 guarantees (ε, δ)-DP under σ satisfying
Proposition 2.2, because it only accesses the training data
within the current batch It once, which is the same as DP-
SGD. The detailed mathematical proof can be found in
Appendix B.4.

Moreover, the ascent step of DP-SAT in Equation (10)
does not require additional forward and backward propaga-
tion, which requires O(mdw), because it uses the previous
weight vector to calculate wp

t , requiring the marginal com-
putation of O(w). In Table 1, we summarize the comparison
of sharpness, privacy budgets, and computational costs of
DP-SGD, DP-SAM, and DP-SAT.

Higher gradient similarities in DP training The utiliza-
tion of previous gradients in DP training is facilitated by
employing a small clipping value C and a larger batch size,
distinguishing it from standard training. This choice leads
to increased gradient similarities between the current and
previous steps. Nevertheless, the process of finding an ap-
propriate ascent step still poses challenges (Andriushchenko
& Flammarion, 2022). A comprehensive explanation is
provided in Appendix F.

Momentum variants Recent studies have examined the
potential benefits of using momentum variants to enhance
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Table 2. Classification accuracy of DP-SGD, DP-SAM, and DP-SAT on the MNIST, FashionMNIST, CIFAR-10, and SVHN datasets. We
also report the Error Reduction Rate (ERR) when trained with DP-SAT, in comparison to DP-SGD. We bold the highest average accuracy.

Datasets Model Privacy budget ε
(δ = 10−5)

Optimizers ERR
(%)DP-SGD DP-SAM DP-SAT

MNIST

GNResNet-10
(#Params: 4.90M)

ε = 1 95.15±0.17 92.50±0.44 96.00±0.21 17.53%
ε = 2 96.68±0.27 94.52±0.47 97.35±0.14 20.18%
ε = 3 97.30±0.14 95.62±0.29 97.83±0.10 19.63%

DPNAS-MNIST
(#Params: 0.21M)

ε = 1 97.77±0.13 97.21±0.31 97.96±0.08 8.52%
ε = 2 98.60±0.06 97.94±0.20 98.71±0.09 7.86%
ε = 3 98.70±0.12 98.11±0.33 98.93±0.02 17.69%

FashionMNIST

GNResNet-10
(#Params: 4.90M)

ε = 1 80.57±0.25 76.73±0.30 81.33±0.45 3.91%
ε = 2 82.71±0.35 79.65±0.53 84.53±0.41 10.53%
ε = 3 84.55±0.17 80.68±0.39 85.91±0.22 8.80%

DPNAS-MNIST
(#Params: 0.21M)

ε = 1 84.62±0.19 82.13±0.39 85.92±0.35 8.45%
ε = 2 86.99±0.57 84.21±0.42 87.75±0.24 5.84%
ε = 3 87.97±0.17 84.58±0.56 88.60±0.04 5.24%

CIFAR-10

CNN-Tanh with SELU
(#Params: 0.55M)

ε = 1 45.24±0.42 44.30±1.16 45.78±0.48 0.99%
ε = 2 56.90±0.33 51.32±0.34 58.35±0.55 3.36%
ε = 3 61.84±0.48 51.81±0.62 63.51±0.40 4.38%

DPNAS-CIFAR10
(#Params: 0.53M)

ε = 1 59.42±0.38 54.00±0.84 60.13±0.34 1.75%
ε = 2 66.30±0.27 60.38±0.46 67.23±0.12 2.76%
ε = 3 68.43±0.43 61.51±0.39 69.86±0.49 4.53%

SVHN DPNAS-CIFAR10
(#Params: 0.53M)

ε = 1 82.25±0.15 80.64±0.34 83.09±0.54 4.73%
ε = 2 86.85±0.33 85.06±0.26 87.68±0.13 6.31%
ε = 3 88.18±0.23 86.24±0.22 88.74±0.18 4.74%

generalization and determine the optimal ascent step for
SAM (Du et al., 2022a; Park et al., 2023). Similarly, DP-
SAT enables the utilization of all the previous step’s priva-
tized gradients g1, . . . , gt−1, similar to the aforementioned
momentum-based approaches. Our empirical investigation
confirms that using the previous gradient alone is sufficient
to achieve meaningful performance enhancements, similar
to the momentum approach. We believe that the introduc-
tion of noise in the DP training process may impede the
effective utilization of momentum. We refer the readers to
Appendix G.1 for detailed experiments.

5. Experiments
5.1. Experimental Setup

For the empirical results trained from scratch, we evalu-
ate the performance of our method on three commonly
used benchmarks for differentially private deep learning:
MNIST, FashionMNIST, CIFAR-10, and SVHN. For ar-
chitecture, we select various architectures: GNResNet-10
(Group Norm ResNet-10) and DPNASNet-MNIST (Cheng
et al., 2022) for MNIST and FashionMNIST CNN-Tanh
(Papernot et al., 2021) with SELU and DPNASNet-CIFAR
(Cheng et al., 2022) for CIFAR-10, and also DPNASNet-
CIFAR for SVHN. Particularly, DPNASNet architectures
are state-of-the-art architectures with DP-SGD from scratch.

Due to the serious accuracy drop for private learning from

scratch, recent studies explore the use of fine-tuning and
transfer learning in natural language processing (Yu et al.,
2021b; 2022; Li et al., 2022) and computer vision (Bu et al.,
2022). For fine-tuning, we evaluate various pre-trained Vi-
sion Transformers (ViT), such as ViT (Dosovitskiy et al.,
2020), DeiT (Touvron et al., 2021), and CrossViT (Chen
et al., 2021), with a wide range of model parameters us-
ing mixed ghost clipping proposed in (Bu et al., 2022) for
CIFAR-10 and CIFAR-100.

The training data for each dataset was partitioned into train-
ing and test sets with a ratio of 0.8:0.2, and the test accuracy
was averaged over 5 different random seeds for each dataset.
All experiments are conducted using the PyTorch-based li-
braries (Kim, 2020; Yousefpour et al., 2021) with Python
on four NVIDIA GeForce RTX 3090 GPUs. Please refer to
Appendix C for more details of experimental settings.

5.2. Classification Performance

We conducted a performance comparison of DP-SGD, DP-
SAM, and DP-SAT as presented in Table 2. The proposed
DP-SAT exhibits superior classification performance com-
pared to DP-SGD in all scenarios, including both small
and large models. Specifically, DP-SAT enhances perfor-
mance under DP-friendly architectures with fewer parame-
ters, including state-of-the-art models such as DPNASNet
architectures and CNN-Tanh, achieving an (ERR) of 5.81%
on average in these scenarios. Moreover, the performance
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Figure 7. Difference of accuracy for DP-SAM and DP-SAT w.r.t DP-SGD. DPNAS architectures are used. ε = ∞ indicates non-DP
settings.

Table 3. Fine-tuning accuracy of DP-SGD and DP-SAT on the CIFAR-10 and CIFAR-100 datasets with various pre-trained models. We
also report the Error Reduction Rate (ERR) when trained with DP-SAT, in comparison to DP-SGD. The bold indicates results within the
standard deviation of the highest mean score.

Privacy
Budget ε

(δ = 10−5)

Datasets CIFAR-10 CIFAR-100

Model #Params Optimizers ERR
(%)

Optimizers ERR
(%)DP-SGD DP-SAT DP-SGD DP-SAT

ε = 0.5
CrossViT 18 240 42.6M 93.63±0.14 93.90±0.23 4.24% 66.15±0.42 66.97±0.49 2.42%

ViT small patch16 224 85.8M 89.94±0.19 90.21±0.20 2.68% 37.37±1.13 39.81±1.59 3.9%
DeiT base patch16 224 85.8M 92.21±0.24 92.15±0.15 -0.77% 49.25±1.03 50.03±0.59 1.54%

ε = 2

CrossViT tiny 240 6.7M 88.34±0.25 88.76±0.28 3.60% 59.58±0.31 59.75±0.40 0.42%
CrossViT small 240 26.3M 93.89±0.18 94.15±0.28 4.26% 71.14±0.38 71.38±0.23 0.83%

CrossViT 18 240 42.6M 95.32±0.12 95.31±0.13 -0.21% 74.29±0.17 74.52±0.19 0.89%
ViT small patch16 224 85.8M 92.22±0.46 92.50±0.27 3.60% 65.89±0.72 67.27±0.67 4.05%
DeiT base patch16 224 85.8M 94.29±0.18 94.44±0.25 2.63% 69.20±0.49 69.69±0.76 1.59%

improvements are particularly pronounced in large models,
such as GNResNet-10, with an ERR of 13.43% on aver-
age. As large models with complicated architectures are
known to face challenges in generalizing well in DP set-
tings due to their susceptibility to perturbations (Tramer &
Boneh, 2021), the identification of flat minima becomes no-
tably advantageous. Meanwhile, due to the aforementioned
privacy consumption, DP-SAM shows lower classification
performance than DP-SGD.

To visualize the difference between optimization meth-
ods, we plot the accuracy difference with respect to DP-
SGD in Figure 7. We tested on various privacy budgets
ε ∈ {1, 2, 3, 5, 8}, including the non-DP (ε = ∞) setting.
Consistent with prior results, DP-SAT shows the best perfor-
mance among methods. Interestingly, as the privacy budget
ε increases, gradually approaching the non-DP settings, the
gap between DP-SAT and DP-SAM diminishes. Thus, it is
clear that DP-SAT fully utilizes the positive effects of flat-
ness in DP models by evaluating a broad range of privacy
budgets ε.

For ablation studies, we conduct a range of experiments,
including a sensitivity analysis on the parameter ρ, a com-
parison of various base optimizers, and investigations into
other relevant factors. We further argue that the accuracy

improvement achieved by DP-SAT is not solely reliant on
the enlarged hyperparameter search space. The detailed
results and analysis can be found in Appendix G.

5.3. Fine-tuning Performance

We now show that the idea of sharpness-aware training is
effective in fine-tuning for private models. As the ViT mod-
els have well-generalizing latent space, they show higher
fine-tuning accuracy than other CNN models. We tested DP-
SGD and DP-SAM for various pre-trained ViT models on
ε = 0.5 and 2, as shown in Table 3. The experimental results
show that DP-SAT outperforms DP-SGD in the majority
of fine-tuning cases. Note that the difference in fine-tuning
experiments is marginal compared to from-scratch training
because of the relatively small training epoch of only 5
epochs.

5.4. Sharpness Analysis

We measure the Eigenspectrum of the Hessian matrix H of
the trained models with DP-SGD and DP-SAT on CIFAR-
10 in Figure 8. In DP-SAT, the probability of eigenvalues
p(λ) is shifted towards the left, which indicates DP-SAT
finds flatter minima compared to DP-SGD. In addition, both
the sharpness λmax = 130.26 and the ratio of eigenval-
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Figure 9. Results of linear interpolations w(α) = (1−α)w+αw′

(for α ∈ [−0.5, 1.5]) between DP-SGD (▲) and DP-SAT (⋆).

ues λmax/λ5 = 1.49, which are the popular measures to
estimate flat minima, are smaller than those of DP-SGD.

Furthermore, we adopt the idea of (Chen et al., 2022) to ex-
plain the success of DP-SAT, which can be explained by the
similarities between training and test losses. Higher levels
of similarity lead to a smaller generalization gap in perfor-
mance under flatter local minima. This is a distinct factor
contributing to the success of SAM that is separate from the
impact of gradient norm. We interpolate the loss surface of
models trained using both DP-SGD and DP-SAT in Figure 9.
Our results are consistent with well-generalizing settings
and demonstrate that: (1) DP training exhibits higher levels
of similarity between training and test losses; (2) DP-SAT
produces a flatter loss landscape and lower errors in both
training and test settings; and (3) the shape of the functions
is strongly correlated with generalization performance.

5.5. Computational Efficiency

We empirically show that DP-SAT does not need an addi-
tional computational burden for sharpness-aware training
in Table 4. The training speed of DP-SGD and DP-SAT
is almost the same in all datasets. On the other hand, DP-
SAM requires further training times to calculate the ascent
direction at every step t. Note that the training speed ratio
compared to DP-SGD is twice in non-DP training, but it
shows lesser results such as 164.9% or 181.9% because
DP training itself needs additional computation, such as
individual gradient accumulation and memory access.

Table 4. Training speed (images/sec) on the MNIST, FashionM-
NIST, and CIFAR-10 (higher is faster). The numbers in parenthe-
ses (·) indicate the training speed ratio w.r.t. DP-SGD (lower is
faster).

MNIST FashionMNIST CIFAR-10
DP-SGD 5,776 6,020 3,233
DP-SAM 3,503 (164.9%) 3,712 (162.2%) 1,777 (181.9%)
DP-SAT 5,777 (100.0%) 6,022 (100.0%) 3,188 (101.4%)

6. Limitations and Future Work
As the relationship between flat minima and generalization
performance is still being actively researched, we hope that
further work will be built on our work to explore the advan-
tages of flatness under DP training schemes. First, there is
a distinct line of work that attempts to achieve flatness, re-
ferred to as weight averaging, which has been actively com-
pared and combined with SAM in recent studies (Kaddour
et al., 2022). At present, it appears that weight averaging
has difficulty in improving the performance of DP models
(Panda et al., 2022); however, we believe that suitable vari-
ants of weight averaging may be beneficial for DP training
methods from our benchmark results. Second, research into
gradient norm regularization under DP schemes could be a
beneficial direction. Lastly, we will further investigate the
recently proposed variants of SAM in DP training.

7. Conclusion
In this paper, we investigated the geometric properties of
private learning, specifically sharpness. We showed that
seeking flat minima can mitigate the negative effects of clip-
ping and noise addition during training. However, we also
identified that the two-step optimization of SAM may have
negative impacts on privacy budget and computational time.
To address this issue, we proposed a new sharpness-aware
training method that can improve performance without ad-
ditional privacy or computational burden. We believe that
this work will contribute to the understanding of sharpness
and optimization in deep learning with differential privacy.
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A. Composition Theorems
We present the basic composition theorems of (ε, δ)-DP algorithms.

General composition theorem (Dwork et al., 2014)
Definition A.1. (General composition theorem for (ε, δ)-DP algorithms) LetM1 : d 7→ M1(d) ∈ R1 be an (ε, δ)-DP
function, and for k ≥ 2 and sj ∈ Rj ,∀j ∈ {1, . . . , k − 1},Mk : (d, s1, . . . , sk−1) 7→ Mk(d) ∈ Rk be (ε, δ)-DP, given
the previous outputs s1, . . . , sk−1 ∈ ⊗k−1

j=1Rj . Then, for all neighboring d, d′ and all S ⊂ ⊗k
j=1Rj ,

Pr[(M1, . . . ,Mk)(d) ∈ S] ≤ ekεPr[(M1, . . . ,Mk)(d
′) ∈ S] + kδ. (11)

Note that Equation (11) does not require any assumption of d, which can be used in DP-SAM.

Advanced composition theorem (Dwork et al., 2014) From now on, we need strong assumptions on d, i.e., k-fold
composition experiment, which is the repeated use of differentially private algorithms on different (random sampled) data
that may nevertheless contain information of one individual. By assumption on d on each step, the concrete sequences of
mechanisms can guarantee a tighter privacy budget than Equation (11).

Definition A.2. (Advanced composition theorem for (ε, δ)-DP algorithms) For all ε, δ, δ′ ≥ 0, the sequence of k-fold
(ε, δ)-DP mechanisms satisfies (ε′, kδ + δ′)-DP, where ε′ =

√
2k ln(1/δ′)ε+ kε(eε − 1).

Moments accountant (Abadi et al., 2016) (restated) Equation (3) illustrates the weight update at step t as follows:

gt =
1

|It|
∑
i∈It

clip(∇ℓi(wt), C) +N (0, C2σ2),

wt+1 = wt − ηgt,

where clip(u, C) projects u to the L2-ball with radius C. Abadi et al. (2016) proved that there exist constant c1 and c2 so
that given total steps T and sampling probability q, for any ε < c1q

2T , Equation (3) guarantee (ε, δ)-DP, for any δ > 0 if
we choose

σ ≥ c2
q
√
T log(1/δ)

ε
. (12)

The composition of moments can reduce the accumulated privacy budget to (O(qε
√
T ), δ)-DP. Detailed proof can be found

in Appendix B of (Abadi et al., 2016).

Post-processing Post-processing guarantees to use the previous differentially private outputs.

Definition A.3. (Post-processing (Dwork et al., 2014)) If a mechanismM : X → R1 is (ε, δ)-DP, for any randomized
mapping h : R1 → R2, h ◦M : X → R2 is at least (ε, δ)-DP.

B. Proofs
B.1. Proof of Theorem 3.1

Proof. With the first-order Taylor expansion of the gradients∇ℓi(w) for w near a local minimum,1

∥∇ℓi(w)∥ ≈ ∥∇ℓi(w∗) +HT
w∗(w −w∗)∥

≤∥∇ℓi(w∗)∥+ ∥HT
w∗(w −w∗)∥

=∥HT
w∗(w −w∗)∥

( ∵ at local minimum w∗, ∥∇ℓi(w∗)∥ = 0)

≤∥Hw∗∥2 · ∥w −w∗∥.
1The second-order Taylor expansion of the loss function (and correspondingly, the first-order Taylor expansion of the gradient) is

commonly employed to analyze properties in the vicinity of critical points in deep learning optimization (Zhao et al., 2022; Xie et al.,
2022).
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Let us define the clip operation as follows:

clip(∇ℓi(w), C) = ∇ℓi(w) · 1

max(1, ∥∇ℓi(w)∥
C )

.

Then,

∥∇ℓi(w)−clip(∇ℓi(w), C)∥

=

{
∥∇ℓi(w)∥ − C if ∥∇ℓi(w)∥ > C,
0 otherwise.

=1(∥∇ℓi(w)∥ > C) · (∥∇ℓi(w)∥ − C)

≤1(∥Hw∗∥2 · ∥w −w∗∥ > C) · (∥Hw∗∥2 · ∥w −w∗∥ − C)

=1(∥Hw∗∥2∆w > C) · (∥Hw∗∥2∆w − C).

where ∆w = ∥w −w∗∥ and 1 denotes an indicator function.

B.2. Proof of Theorem 3.2

We modify the proof of (Wang et al., 2021; Shamsabadi & Papernot, 2023), which indicates the effect of smoothness in
terms of β-smoothness, to illustrate how the sharpness affects the Gaussian noise addition during training.

Proof. Let Hw := ∇2ℓ(w).

∥∇ℓ(wt − ηḡt)−∇ℓ(wt − ηgt)∥ = η∥(
∫ 1

0

H(wt−ηgt)+zµµdz)∥

(∵ (wt − ηḡt)− (wt − ηgt) = ηµ)

≤ η

∫ 1

0

∥H(wt−ηgt)+zµµ∥dz

≤ ηmax
H∈H

(∥H∥2) · ∥µ∥

where µ ∼ N (0, C2σ2I) and H is a set of Hessian matrices H along the line of µ from wt − ηḡt to wt − ηgt.

B.3. Proof of Theorem 4.1

Given (ε, δ) privacy budget of DP-SGD, let each privacy budget for the t-th step is (εt, δt), which represents the additional
privacy budget for calculating gt. Then, it is enough to show that the t-th update of DP-SAM is (2εt, 2δt)-DP.

The t-th update of DP-SAM can be decomposed by two mechanisms:

(ascent step) wp
t :=M∞(wt, d) = wt + ρ

gt
∥gt∥

∈ R1,t+1

(descent step) wt+1 :=M∈(w
p
t , wt, d) = wt − ηgp

t ∈ R2,t+1

where d ∈ D and gp
t defined by Equation (9). Note that the input of each mechanism is differentially private except for input

data d. Calculating each gt and gp
t consumes the privacy budget of (εt, δt) same as DP-SGD. Therefore, the additional cost

of each mechanism is (εt, δt). Then, by the general composition theorem,

M2 : (wp
t , wt, d) 7→ M2(w

p
t , wt, d) ∈ R2,t+1

be (2εt, 2δt) -DP for any d ∈ D, wt ∈ R2,t, and wp
t ∈ R1,t+1. Therefore, the privacy budget of DP-SAM is (2ε, 2δ).
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B.4. Proof of Theorem 4.2

Let us consider the same setting as the proof of Theorem 4.1 (presented in Appendix B.3). Then, it is enough to show that
the t-th update of DP-SAT is (εt, δt)-DP.

The t-th update of DP-SAT can be decomposed by two mechanisms:

(ascent step) wp
t :=M∞([wt], [w

p
t−1]) = wt + ρ

gp
t−1

∥gp
t−1∥

∈ R1,t+1

(descent step) wt+1 :=M∈([w
p
t ], [wt], d) = wt − ηgp

t ∈ R2,t+1

where d ∈ D , [wt] = {w1, · · · , wt} ∈ ⊗t
j=1R2,j and [wp

t ] = {wp
1 , · · · , w

p
t } ∈ ⊗t

j=1R1,j+1 and gp
t defined by

Equation (9). We used [wt] or [wp
t ] instead of wt or wp

t to clearly indicate the accumulation of noise. For example,M2

requires the same input as Theorem 4.1; (wp
t , wt, d).

Then, since M∈([w
p
t−1], [wt−1], ·) : D → R2,t is (εt−1, δt−1)-DP mechanism and M∞(·, [wt−1], [w

p
t−1]) : R2,t →

R1,t+1 is a randomized mapping, the ascent step requires no additional privacy budget by post-processing. Moreover, the
descent step requires the same privacy budget as DP-SGD, the total additional privacy budget of t-th update is (εt, δt)-DP,
the same as DP-SGD. Therefore, the privacy budget of DP-SAT is (ε, δ).

C. Experimental settings
C.1. Classification

We use SGD as a base optimizer with a momentum of 0.9 and a learning rate of 2.0, without any learning rate decay, as
mentioned in (Cheng et al., 2022). We conducted a hyperparameter search on ρ = {0.005, 0.01, 0.02, 0.03, 0.05, 0.1}, and
the privacy broken probability δ = 10−5 in DP training.

Table 5. Hyperparameters for training on MNIST, FashionMNIST, CIFAR-10, and SVHN.
Dataset MNIST FashionMNIST CIFAR-10 SVHN
Architecture GNResNet-10 DPNAS-MNIST GNResNet-10 DPNAS-MNIST CNN-Tanh with SELU DPNAS-CIFAR10 DPNAS-CIFAR10
Optimizer SGD SGD SGD SGD SGD SGD SGD
Epoch 40 40 40 40 30 30 30
Batch size 2048 2048 2048 2048 2048 2048 2048
Learning rate η 2 2 2 2 2 2 2
Momentum β 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Max grad norm C 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Radius
ρ

ε = 1 0.03 0.03 0.03 0.05 0.02 0.01 0.05
ε = 2 0.03 0.03 0.03 0.03 0.1 0.01 0.05
ε = 3 0.03 0.03 0.03 0.02 0.05 0.01 0.03

Note that the best radius ρ can be varied according to the randomized noise addition of each random seed due to the
instability of DP training. For a detailed explanation of DPNAS architectures in (Cheng et al., 2022), please refer to their
official GitHub code from https://github.com/TheSunWillRise/DPNAS.

C.2. Fine-tuning

We use Adam as a base optimizer with a learning rate of 0.002. We trained the model for 5 epochs with a batch size of
1000 and a mini-batch size of 100. Here, we use a hyperparameter search on a wide range of radius than the classification
ρ = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}, as we use a smaller learning rate. We use the mixed ghost clipping (Bu et al.,
2022) and their official GitHub code from https://github.com/woodyx218/private_vision.

Table 6. Radius ρ for fine-tuning on ε = 0.5.
CrossViT 18 240 ViT small patch16 224 DeiT base patch16 224

CIFAR-10 0.05 0.1 0.1
CIFAR-100 0.05 0.2 0.2
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Table 7. Radius ρ for fine-tuning on ε = 2.
CrossViT tiny 240 CrossViT small 240 CrossViT 18 240 ViT small patch16 224 DeiT base patch16 224

CIFAR-10 0.05 1 0.5 0.001 0.05
CIFAR-100 0.001 0.001 0.01 0.001 0.05

C.3. Toy Example of Figure 1

Figure 4 illustrates the simple mixture of flat and sharp minima to investigate the effect of sharpness. Following (Wang et al.,
2021), we generate the example as follows:

min
w

[
Fc1(w) · ϕ(w, c1)

ϕ(w, c1) + ϕ(w, c2)
+ Fc2(w) · ϕ(w, c2)

ϕ(w, c1) + ϕ(w, c2)

]
where c1, c2 ∈ R2 are two fixed centers for flat and sharp minima, respectively. We used c1 = [2.5, 2.5] and c2 = [7.5, 7.5].

ϕ(w, c) = e−∥w−c∥, Fc1
(w) = Sigmoid

(
∥w−c1∥

5 − 5
∥w−c1∥

)
, and Fc2

(w) = Sigmoid
(

5∥w−c1∥
5 − 5

5∥w−c1∥

)
.

D. Illustration of DP-SGD, DP-SAM, and DP-SAT
We illustrate the training methods of DP-SGD, DP-SAM, and DP-SAT in Figure 10.
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Figure 10. Illustration of DP-SGD, DP-SAM, and DP-SAT.

We further compare the loss landscapes of DP-SGD, DP-SAM, and DP-SAT in the same way of Figure 5.
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Figure 11. Visualization of the loss landscapes of DP-SGD, DP-SAM, and DP-SAT.
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E. Why Ascent Step should be privatized in DP-SAM?
For clear understanding, here we denote the non-private parameter as θ̄ with bar and private parameter θ̂ with a hat. To
satisfy the condition of Moments accountant for DP-SGD, each of the previous weights should be private as θ̂t−1. In each
step, the differential privacy of θt is guranteed by a differentially private mechanismM , i.e., θ̂t =M(θ̂t−1;x), where x
is training data samples.

Consider the simple two-step mechanism M(θ̂;x) = M2(M1(θ̂;x), θ̂;x). We argue that M(θ̂;x) is differentially
private whenM2,M1 are private by the composition theorem w.r.t. training data x.

By contradiction, let onlyM2 is private w.r.t x,M(θ̂;x) =M2(θ̄
′, θ̂;x), where the output ofM1 is not private θ̄′ . Thus,

we cannot use the post-processing or calculate the sensitivity ofM2 because θ̄′ possesses information of x. This means
that adding noise only toM2 cannot guarantee the complete privacy level. Thus, we should consider the privacy budget
consumed byM1 w.r.t. x.

F. Why Previous Gradient can be used in DP-SAT?
This section demonstrates that DP-SAT can take advantage of sharpness-aware training even when the ascent direction
is derived from different batch samples. The primary motivation is that gradient-based optimization occurs in a low-
dimensional subspace of top eigenvalues (Sagun et al., 2018; Papyan, 2019). According to Figure 8, we can see that the
Eigenspectrum of DP is separable into two divisions, analogous to non-DP training. The principal subspace consists of a
number of classes outliers (about 10 in CIFAR-10) with large eigenvalues, separated from a continuous bulk centered on
zero. Exploiting the principal subspace, it is more advantageous to utilize the previous perturbed gradients g1, . . . , gt−1 as
an ascent direction than random directions. Note that Jang et al. (2022) and Lee et al. (2022) have proposed methods to
implicitly regularize the sharpness through the use of Hessian approximation, yielding experimental results similar to SAM.

The utilization of clipping and large batch size, two properties of DP training, cause the gradients from different batch samples
to be alike. The clipping operation affects the training dynamics as mentioned in Section 3 and DP training usually uses
larger batch sizes to decrease the level of injected noise σ (Tramer & Boneh, 2021). To check the cosine similarities, we now
investigate how the clipping value C and batch sizes affect cosine similarities of ascent steps δ̄t =

∑
i∈It

clip(∇ℓi(wt), C),
before adding noise. The cosine similarities of current ascent direction δ̄t and previous ascent direction δ̄t−1 for the total
training procedure are illustrated in Figure 12. We fixed the batch size of 2048 for experiments on C and fixed C = 0.1 for
experiments on batch size. In general, the larger batch size and the smaller clipping value result in higher cosine similarities
of δ̄t and δ̄t−1. Furthermore, all the cosine similarities drastically rise at the early epochs, which are coherent periods for
the sudden drop of train loss in Figure 2.
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Figure 12. Cosine similarity of the current ascent direction δ̄t and previous ascent direction δ̄t−1 before adding noise. Small clipping
values C and large batch sizes lead to similar gradient directions. The curves are smoothed for better visualization and the x-axis is
denoted in percentage because training with smaller batch size has more training steps.

We then take the average cosine similarities of Figure 12 in Table 8. In real experimental settings, batch size of 2048 and
C = 0.1, cosine similarity of 0.26 indicates a high level of alignment, given the high dimensionality of deep learning models.
These results are in contrast to zero alignments in the case of C =∞ or a batch size of 32. Note that Andriushchenko &
Flammarion (2022) revealed that accurately solving the internal maximization problem has analogous effects to enlarging
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the radius ρ due to the nonlinearity of the weights space. This might be a reason that the ascent direction can be selected
without computing the ascent direction within the same mini-batch.

Table 8. Average cosine similarities of ascent steps at the current and previous steps during all training steps in Figure 12.

C ∞ 1 0.5 0.1
Et[cos(δ̄t, δ̄t−1)] - 0.03 0.20 0.26

Batch size 32 128 512 2048
Et[cos(δ̄t, δ̄t−1)] 0.03 0.10 0.23 0.26

G. Ablation study
G.1. Momentum variants

Applying the concept of momentum in SAM is widely used to enhance the performance of SAM (Du et al., 2022a; Qu et al.,
2022). We also suggest DP-SAT-Momentum, which uses the idea of momentum to calculate the ascent direction in DP-SAT.
First of all, the momentum updates at t step as follows:

vt ← γvt−1 + gt. (13)

Then, the accumulated momentum can be written as:

vt =

t−1∑
τ=1

γτgt−τ . (14)

Then, we can set the ascent direction using all the perturbed gradient information from step 1, . . . , t− 1 as follows:

δMomentum
t = ρ

vt

∥vt∥
= ρ

γgt−1 + γ2gt−2 + · · ·+ γt−1g1
∥γgt−1 + γ2gt−2 + · · ·+ γt−1g1∥

. (15)

As we use base optimizers with momentum (which will be discussed in the next subsection), we set the momentum γ
the same as the momentum of the base optimizer for convenience. This method is also free from additional privacy costs
because all the previous perturbed gradients are guaranteed by post-processing.

The experimental results of DP-SAT-Momentum are in Table 9. Empirically, we should use the radius ρ for DP-SAT-
Momentum as 10 times larger than that of DP-SAT. Both optimization methods show similar experimental effects. We
believe this phenomenon is that the gradient similarities induced in DP training aforementioned in Appendix F are sufficient
to approximate the ascent step, different from non-DP training (Du et al., 2022a; Qu et al., 2022).

Table 9. Performance of DP-SAT and DP-SAT-Momentum on MNIST, FashionMNIST, and CIFAR-10.

Datasets Model Privacy budget ε
(δ = 10−5)

Optimizers
DP-SAT DP-SAT-Momentum

MNIST DPNAS-MNIST
(#Params: 0.21M)

ε = 1 97.96±0.08 98.00±0.13
ε = 2 98.71±0.09 98.83±0.11
ε = 3 98.93±0.02 98.91±0.11

FashionMNIST DPNAS-MNIST
(#Params: 0.21M)

ε = 1 85.92±0.35 85.47±0.42
ε = 2 87.75±0.24 87.55±0.18
ε = 3 88.60±0.04 88.56±0.30

CIFAR-10 DPNAS-CIFAR10
(#Params: 0.53M)

ε = 1 60.13±0.34 60.10±0.46
ε = 2 67.23±0.12 67.24±0.21
ε = 3 69.86±0.49 69.63±0.10

G.2. Without tuning the radius ρ

We provide a baseline for experiments that do not involve tuning the radius ρ in Table 10, particularly with regard to Table 2.
To address this, we set ρ = 0.03 for the MNIST and FashionMNIST datasets and ρ = 0.01 for the DPNAS-CIFAR10 in all
experiments presented in Table 2. The other settings except for the radius ρ are the same.
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Table 10. Classification accuracy of DP-SGD, and DP-SAT on the MNIST, FashionMNIST, and CIFAR-10 datasets with fixing ρ = 0.03
(except for DPNAS-CIFAR10 architecture with ρ = 0.01). We bold the highest average accuracy.

Datasets Model ε ρ DP-SGD DP-SAT

MNIST

GNResnet-10
1 0.03 95.15±0.17 96.00±0.21
2 0.03 96.68±0.27 97.35±0.14
3 0.03 97.30±0.14 97.83±0.10

DPNAS-MNIST
1 0.03 97.77±0.13 97.96±0.08
2 0.03 98.60±0.06 98.71±0.09
3 0.03 98.70±0.12 98.93±0.02

FashionMNIST

GNResnet-10
1 0.03 80.57±0.25 81.33±0.45
2 0.03 82.71±0.35 84.53±0.41
3 0.03 84.55±0.17 85.91±0.22

DPNAS-MNIST
1 0.03 84.62±0.19 85.52±0.28
2 0.03 86.99±0.57 87.72±0.28
3 0.03 87.97±0.17 88.38±0.23

CIFAR-10

CNN-Tanh with SELU
1 0.03 45.24±0.42 45.45±0.36
2 0.03 56.90±0.33 57.34±0.59
3 0.03 61.84±0.48 62.64±0.45

DPNAS-CIFAR10
1 0.01 59.42±0.38 60.13±0.34
2 0.01 66.30±0.27 67.23±0.12
3 0.01 68.43±0.43 69.86±0.49

SVHN DPNAS-CIFAR10
1 0.03 82.25±0.15 82.95±0.28
2 0.03 86.85±0.33 87.49±0.15
3 0.03 88.18±0.23 88.74±0.18

G.3. Different base optimizers

The experimental results of using other optimizers, such as SGD without momentum and Adam are in Table 11. For Adam,
we select the learning rate of 0.0002. The difference is marginal between SGD with a momentum of 0.9 and Adam, showing
better performance than SGD without momentum. In all cases, DP-SAT can achieve better performance regardless of base
optimizers.

Table 11. Classification accuracies for DP-SGD, DP-Adam, and DP-SAT on the MNIST, FashionMNIST, and CIFAR-10 datasets. β
indicates momentum. The bold indicates results within the standard deviation of the highest mean score.

Datasets Privacy budget ε
(δ = 10−5)

Optimizer
DP-SGD
(β = 0.0)

DP-SGD
(β = 0.9) DP-Adam

DP-SAT
(SGD, β = 0.9)

DP-SAT
(Adam)

MNIST
ε = 1 97.62±0.13 97.77±0.13 97.96±0.15 97.96±0.08 98.30±0.12
ε = 2 97.65±0.22 98.60±0.06 98.54±0.10 98.71±0.09 98.65±0.10
ε = 3 97.70±0.23 98.70±0.12 98.68±0.07 98.93±0.02 98.85±0.09

FashionMNIST
ε = 1 80.80±0.24 84.62±0.19 84.85±0.34 85.92±0.35 85.27±0.34
ε = 2 81.55±0.52 86.99±0.57 87.17±0.21 87.75±0.24 87.26±0.28
ε = 3 82.03±0.19 87.97±0.17 87.84±0.38 88.60±0.04 88.26±0.40

CIFAR-10
ε = 1 56.15±0.74 59.42±0.38 61.75±0.60 60.13±0.34 62.52±0.61
ε = 2 56.59±0.79 66.30±0.27 66.68±0.39 67.23±0.12 67.26±0.36
ε = 3 56.87±0.73 68.43±0.43 68.86±0.39 69.86±0.49 69.48±0.38

G.4. Effect of radius ρ

We compare the performance of DP-SAT under different ρ. We illustrate the results of various ρ on CIFAR-10 in Figure 13.
It shows the importance of finding an appropriate radius in parameter space, where too small or big radius cannot improve
the performance. Furthermore, because of the instability of DP training, the accuracy has a high variance and shows some
fluctuation in the tendency.
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Figure 13. Sensitivity analysis of ρ in DP-SAT on CIFAR-10 dataset.

G.5. Performance of (2ε, 2δ) DP-SAM

Table 12 shows the performance of DP-SGD and DP-SAM with ε = {1, 2, 3} of DPNAS-CIFAR models on CIFAR-10.
The experimental settings are the same in Section 5. DP-SAM shows worse accuracy than DP-SGD due to its extensive
privacy consumption on each iteration. If we consider (2ε, 2δ) DP-SAM †, which can guarantee the same training steps T
as DP-SGD, then sharpness-aware training achieves better performance in DP training. This indicates that sharpness-aware
training can improve performance if we can choose the direction of the ascent step without privacy consumption.

Table 12. Performance of DP-SGD and DP-SAM on CIFAR-10. DP-SAM shows an accuracy drop because of the doubled privacy budget.
The last column (2ε, 2δ) DP-SAM† indicates the possible improvements of sharpness-aware training.

Privacy budget ε
(δ = 10−5)

Methods
DP-SGD DP-SAM (2ε, 2δ) DP-SAM †

ε = 1 59.42±0.38 45.15±0.63 60.18±0.52
ε = 2 66.30±0.27 58.85±0.70 66.74±0.37
ε = 3 68.43±0.43 63.59±0.25 69.58±0.27

Training epochs 30 7.07 30

G.6. Convergence analysis

We illustrate the convergence of training loss and corresponding test accuracy of DP-SGD and DP-SAT on CIFAR-10 and
MNIST in Figures 14 and 15. The convergence speed is a little bit slower than DP-SGD but it can reach lower training loss,
which is a similar phenomenon of SGD and SAM as depicted in (Kaddour et al., 2022).
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Figure 14. Training loss and Test accuracy of DP-SGD and DP-SAT by varying ε on CIFAR-10.

G.7. Accuracy plot of Figure 7

We illustrate the accuracy plot of Figure 7 in Figure 16.
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Figure 15. Training loss and Test accuracy of DP-SGD and DP-SAT by varying ε on MNIST.
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Figure 16. Accuracy for DP-SAM and DP-SAT w.r.t DP-SGD. ε = ∞ indicates non-DP settings.
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