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ABSTRACT

Motivated by applications in online bidding and sleeping bandits, we examine the
problem of contextual bandits with cross learning, where the learner observes the
loss associated with the action across all possible contexts, not just the current
round’s context. Our focus is on a setting where losses are chosen adversarially,
and contexts are sampled i.i.d. from a specific distribution. This problem was
first studied by Balseiro et al. (2019), who proposed an algorithm that achieves
near-optimal regret under the assumption that the context distribution is known
in advance. However, this assumption is often unrealistic. To address this issue,
Schneider & Zimmert (2023) recently proposed a new algorithm that achieves
nearly optimal expected regret. It is well-known that expected regret can be sig-
nificantly weaker than high-probability bounds. In this paper, we present a novel,
in-depth analysis of their algorithm and demonstrate that it actually achieves near-
optimal regret with high probability. There are steps in the original analysis by
Schneider & Zimmert (2023) that lead only to an expected bound by nature. In
our analysis, we introduce several new insights. Specifically, we make extensive
use of the weak dependency structure between different epochs, which was over-
looked in previous analyses. Additionally, standard martingale inequalities are not
directly applicable, so we refine martingale inequalities to complete our analysis.

1 INTRODUCTION

In the contextual bandits problem, a learner repeatedly observes a context, chooses an action, and
incurs a loss specific to that action. The goal of the learner is to minimize the cumulative loss over
the time horizon. The contextual bandits problem is a fundamental problem in online learning hav-
ing broad applications in fields like online advertising, personalized recommendations, and clinical
trials (Li et al., 2010; Kale et al., 2010; Villar et al., 2015).

We consider the cross-learning contextual bandits problem. In this setting, the learner not only
observes the loss for the current action under the current context, but also observes the loss for the
current action under all other contexts. This problem models many interesting scenarios. One such
example is the problem of learning to bid in first-price auctions. In this problem the context is the
bidder’s private value for the item, while the action is the bid. The cross-learning structure comes
from the fact that the bidder can deduce the utility of the bid under all contexts (i.e., the utility
of the bid under different private valuations for the item). Other examples include multi-armed
bandits with exogenous costs, dynamic pricing with variable costs, and learning to play in Bayesian
games (Balseiro et al., 2019).

Technically, the most interesting setting for the cross-learning contextual bandits problem is when
the losses are chosen adversarially but the contexts are i.i.d. samples from an unknown distribution
ν. Recently, Schneider & Zimmert (2023) gave an algorithm achieving nearly optimal Õ(

√
KT )

expected regret in this scenario.

Schneider & Zimmert (2023) designed a sophisticated algorithm that operates over multiple epochs
to achieve near-optimal regret. A key technique in their analysis is to sidestep high-probability
bounds and instead focus on bounding the expected summation to improve their results. As a con-
sequence, their analysis only provides a bound that holds in expectation. It is not immediately clear
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whether this is due to limitations in the analysis or if the algorithm is inherently suboptimal. In any
case, if we aim for a high-probability bound, fundamentally new insights are required.

In this paper, we show that the algorithm indeed achieves nearly optimal Õ(
√
KT ) regret with

high-probability. The key contribution of our paper is the following theorem.

Theorem 1 (Informal). The algorithm in Schneider & Zimmert (2023) yields a regret bound of order
Õ(
√
KT ) with high probability for any policy π.

In this section we only give the informal version of Theorem 1. The formal version can be found in
Section 4.

1.1 TECHNICAL OVERVIEW

Our theorem is built on a new and more in-depth analysis of the algorithm in Schneider & Zimmert
(2023). This new analysis introduces several new insights. In particular, we exploit the weak depen-
dency structure between different epochs, which was overlooked in previous work. One difficulty of
doing so is that standard martingale inequalities are not directly applicable, so we refine martingale
inequalities to complete our analysis.

To prepare the readers for our new analysis, we first briefly introduce the algorithm in Schneider
& Zimmert (2023). The algorithm in Schneider & Zimmert (2023) is an EXP3-type algorithm.
The key novelty in their algorithm is the construction of the loss estimates ℓ̂ used in the FTRL
subroutine. Due to some technical problems we detail later, the algorithm decomposes the time
horizon into epochs of equal length. In each epoch e, the algorithm first estimates the probability1

fe(a) of observing the reward of each arm a in epoch e by an estimator f̂e(a), which is constructed
exclusively from samples in epoch e − 1. Note that thanks to the cross-learning structure, the
probability of observing the reward of each arm a is independent of the contexts. The algorithm
then constructs the loss estimates as an importance-weighted estimator with 1

f̂e(a)
as the importance

weight.

Schneider & Zimmert (2023) showed that the performance of the algorithm depends on how well
the empirical importance weight 1

f̂e(a)
concentrates around the expected importance weight 1

fe(a)
.

Since the estimator f̂e(a) is constructed exclusively from samples in a single epoch rather than the
entire time horizon, the concentration | 1

fe(a)
− 1

f̂e(a)
| is not tight enough. To achieve the desired

Õ(
√
KT ) regret under a not tight enough concentration, Schneider & Zimmert (2023) bounds only

the expected bias of importance estimator E[ 1
fe(a)

− 1

f̂e(a)
] rather than providing a high-probability

bias bound. Bounding only the expected bias gives a small enough bound, however, they can achieve
a bound only on the expected regret from a bound on the expected bias.

We overcome this difficulty and show that their algorithm actually achieves a high-probability
bound. Our key observation is that different epochs in their algorithm are only weakly dependent
on each other. Thus, the bias 1

f̂e(a)
− 1

fe(a)
for each epoch e is also only weakly dependent on

each other. Therefore, although we cannot establish a small enough bound for the bias of a single
epoch 1

fe(a)
− 1

f̂e(a)
, we can give a small enough bound for the cumulative bias across all epochs∑

e
1

fe(a)
− 1

f̂e(a)
. We then use the bound on the cumulative bias to bound the cumulative regret.

In addition to utilizing the weak dependency structure between different epochs, we also address
two further technical difficulties to establish our result. The first difficulty is that the existing regret
decomposition is too crude to yield a high-probability bound. Schneider & Zimmert (2023) establish
an Õ(

√
KT ) expected regret by decomposing the regret into different parts and bounding each part

separately. Although their decomposition gives an Õ(
√
KT ) expected regret bound, it is too crude

to derive a tight high-probability regret bound, even after utilizing the weak dependency structure.
We carefully rearrange the regret decomposition to address this difficulty.

1For technical reasons, in the actual algorithm, the value fe(a) actually represents the probability of ob-
serving the reward of each arm a in epoch e+2. For ease of understanding, here we instead let it represent the
probability of observing the reward of each arm a in each epoch e.
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Secondly, we cannot simply apply standard martingale concentration inequalities to
∑

e
1

fe(a)
−

1

f̂e(a)
to bound its deviation. The main problem is that the random variable 1

fe(a)
− 1

f̂e(a)
is not

almost surely bounded by a constant, which makes standard martingale concentration inequalities
inapplicable. We introduce a surrogate sequence of random variables as a bridge to address this
problem. We bound the sum over the surrogate sequence, and show that the sum over the real
sequence is equal to the surrogate sequence with high probability.

1.2 RELATED WORKS

The cross-learning contextual bandits problem was first proposed in Balseiro et al. (2019). They
achieve the nearly optimal Õ(

√
KT ) regret under two scenarios: (1) when both losses and contexts

are stochastic, and (2) when losses are adversarial and contexts are stochastic with a known distri-
bution. When losses are adversarial and contexts are stochastic with an unknown distribution, they
only achieve the suboptimal Õ(K1/3T 2/3) regret. More recently, Schneider & Zimmert (2023) gave
a new algorithm that achieves the nearly optimal Õ(

√
KT ) regret in expectation under adversarial

losses and stochastic contexts with an unknown distribution.

An important application of the cross-learning contextual bandits problem, which is also the primary
motivation for proposing this problem in Balseiro et al. (2019), is to solve the problem of learning to
bid in first-price auctions. In this problem the context is the bidder’s private value for the item, while
the action is the bid. The cross learning structure comes from the fact that the bidder can deduce the
utility of the bid under all contexts (i.e., the utility of the bid under different private valuations for
the item).

Balseiro et al. (2019) used the cross-learning contextual bandits problem to model the bidding prob-
lem and obtained an O(T 3/4) regret bound for bidders with an unknown value distribution partic-
ipating in adversarial first-price auctions, where the only feedback is whether the bidder wins the
auction. Later, many works studied different settings of the bidding in first price auctions problem.
For example, Han et al. (2020b) considered the problem with censored feedback, where each bidder
observes the winning bid. Han et al. (2020a) considered the scenario when the value is also adver-
sarial. Ai et al. (2022); Wang et al. (2023) considered the problem under budget constraints. In all
these scenarios, the cross learning structure between different values is an essential component of
the analysis.

Another interesting application of the cross-learning contextual bandits problem is the sleeping ban-
dits problem (Kleinberg et al., 2010; Neu & Valko, 2014; Kale et al., 2016; Saha et al., 2020). In
this problem, a certain set of arms is unavailable in each round. The sleeping bandits problem is mo-
tivated by instances like some items might go out of stock in retail stores or on a certain day some
websites could be down. When losses are adversarial and availabilities are stochastic, previous work
either requires exponential computing time (Kleinberg et al., 2010; Neu & Valko, 2014) or results in
suboptimal regret (Kale et al., 2016; Saha et al., 2020). The first computationally efficient algorithm
with optimal regret Õ(

√
KT ) is proposed in Schneider & Zimmert (2023) by modeling the problem

as a cross-learning contextual bandit.

We also note that handling unknown context distributions is a common and challenging problem
across various contextual bandit problems. For example, in the adversarial linear contextual bandits
problem (Neu & Olkhovskaya, 2020), the linear MDP problem (Dai et al., 2023), and the oracle-
based adversarial contextual bandits problem (Syrgkanis et al., 2016), existing algorithms often
rely on knowledge of the context distribution. Removing the reliance on knowledge of the context
distribution is typically non-trivial (Liu et al., 2023; Dai et al., 2023).

Recently, Hanna et al. (2023) proposed a method for stochastic linear contextual bandits that maps
a multi-context problem to a single-context problem. Unfortunately, their approach cannot be di-
rectly applied to our problem for two reasons. First, their method is designed for stochastic bandits,
whereas we deal with adversarial bandits. Second, their approach is limited to linear contextual
bandits. Whether it can be adapted, with certain modifications, to address our problem remains an
intriguing question.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 PROBLEM STATAMENT

We study a contextual K-armed bandit problem over T rounds, with contexts belonging to the set
[C]. At the beginning of the problem, an oblivious adversary selects a sequence of losses ℓt,c(k) ∈
[0, 1] for every round t ∈ [T ], every context c ∈ [C], and every arm k ∈ [K]. In each round t,
we begin by sampling a context ct ∼ ν i.i.d. from an unknown distribution ν over [C], and we
reveal this context to the learner. Based on this context, the learner selects an arm at ∈ [K] to play.
The adversary then reveals the function ℓt,c(at), and the learner suffers loss ℓt,ct (at). Notably, the
learner observes the loss for every context c ∈ [C], but only for the arm at they actually played.

We aim to design learning algorithms that minimize regret. Fix a policy π : [C] → [K]. With a
slight abuse of notation, we also denote πc = ek ∈ ∆([K]) for each c ∈ [C]. The (unexpected)
regret with respect to policy π is

Reg(π) =

T∑
t=1

ℓt,ct(at)− ℓt,ct(πct).

We aim to upper bound this quantity (for an arbitrary policy π).

Schneider & Zimmert (2023) designed an algorithm that achieves an expected regret bound of
E [Reg(π)] ≤ Õ(

√
KT ) for any policy π. We will show that the algorithm in Schneider & Zimmert

(2023) actually provides a high-probability regret bound.

3 THE ALGORITHM IN SCHNEIDER AND ZIMMERT (2023)

In this section, we briefly recap the intuition behind the algorithm proposed in Schneider & Zimmert
(2023) and redescribe the algorithm formally to prepare the readers for our new analysis.

3.1 INTUITION BEHIND SCHNEIDER AND ZIMMERT (2023)

The algorithm proposed in Schneider & Zimmert (2023) is an EXP3-type algorithm. Similar to the
well-known EXP3 algorithm, at each round t, the algorithm generates a distribution using an FTRL
subroutine

pt,c = argmin
p∈∆([K])

〈
p,

t−1∑
s=1

ℓ̂s,c

〉
− 1

η
F (p)

for each context c, where F (p) =
∑K

i=1 pi log(pi) is the unnormalized negative entropy, η is a
learning rate, and ℓ̂ are loss estimates to be defined later. The algorithm then essentially samples the
action at to be played in round t from distribution pt,ct .

The key novelty in Schneider & Zimmert (2023) lies in the construction of the loss estimates ℓ̂. An
intuitive construction is defined as follows:

ℓ̃t,c(a) =
ℓt,c(a)

Ec∼ν [pt,c(a)]
1(at = a).

That is, it uses the classic importance-weighted estimator with Ec∼ν [pt,c(a)] as the importance2.
A straightforward analysis shows that this estimator yields a regret bound of Õ(

√
KT ). How-

ever, the denominator term Ec∼ν [pt,c(a)] is uncomputable because we do not know the distribution
of contexts ν. One may attempt to circumvent this issue by replacing the expected importance
Ec∼ν [pt,c(a)] with the empirical importance 1

t

∑t
s=1 pt,cs(a). It is not hard to see that whether

we achieve the desired Õ(
√
KT ) regret depends on how well the empirical importance weight

1
1
t

∑t
s=1 pt,cs (a)

concentrates around the expected importance weight 1
Ec∼ν [pt,c(a)]

. However, the em-

pirical importance weight 1
1
t

∑t
s=1 pt,cs (a)

may not concentrate well around the expected importance

2In this paper we call terms like 1
Ec∼ν [pt,c(a)]

as the importance weight and call terms like Ec∼ν [pt,c(a)] as
the importance.
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weight 1
Ec∼ν [pt,c(a)]

. This is because the probability vector pt,c is not independent of the previous
contexts cs, which makes standard concentration inequalities inapplicable.

To address this difficulty, Schneider & Zimmert (2023) divides the time horizon into epochs of equal
length L. At the end of each epoch e, the algorithm stores the FTRL distribution at the current time
t = eL in a new distribution se; that is, it takes se,c(a) = pt,c(a) for each context c and each arm
a. The algorithm further decouples the distribution played by the algorithm and the distribution
used to estimate the loss vector. For each time t in epoch e + 2, the algorithm observes the loss
ℓt,c(a) for each arm a and context c with probability fe(a) ≜ Ec∼ν [se,c(a)/2]. The algorithm then
estimates the expected importance fe(a) using an empirical importance f̂e(a) constructing solely
from contexts in epoch e + 1. Finally, the algorithm constructs ℓ̂t,c(a) as an importance-weighted
estimator with f̂e(a) serving as the importance.

The advantage of their construction is that the empirical importance weight 1

f̂e(a)
concentrates

around the expected importance weight 1
fe(a)

now. This concentration ensures that the loss estimates

ℓ̂t,c(a) are good estimates of the true losses ℓt,c(a). And this concentration is achieved because the
algorithm constructs the estimator using only samples from epoch e + 1, which are independent of
the estimand.

3.2 A FORMAL DESCRIPTION OF THE ALGORITHM IN SCHNEIDER AND ZIMMERT (2023)

In this subsection we describe the algorithm in Schneider & Zimmert (2023) formally for the sake of
completeness. Readers familiar with Schneider & Zimmert (2023) can skip this subsection safely.

In each round t, the algorithm generates a distribution from an FTRL subroutine:

pt,c = argmin
p∈∆([K])

〈
p,

t−1∑
s=1

ℓ̂s,c

〉
− 1

η
F (p)

for each context c, where F (p) =
∑K

i=1 pi log(pi) is the unnormalized negative entropy, η is the
learning rate, and ℓ̂ are loss estimates to be defined later. The algorithm will not sample the action
at played in round t directly from pt but from a distribution qt to be defined later.

To construct loss estimates ℓ̂, the algorithm divides the time horizon into epochs of equal length L.
We let Te to denote the set of rounds in the e-th epoch. At the end of each epoch, the algorithm
takes a single snapshot of the underlying FTRL distribution pt for each context and arm. That is, the
algorithm takes

se+2,c(a) = peL,c(a), where s1,c(a) = s2,c(a) =

{
1

|Ac| if a ∈ Ac

0 otherwise.

For each round t ∈ Te, the algorithm observes the loss function of arm a with probability fe(a) =
Ec∼ν [se,c(a)/2]. This is guaranteed by the following rejection sampling procedure: we first play
an arm according to the distribution

qt,ct =

{
pt,ct if ∀a ∈ [K] : pt,ct(a) ≥ se,ct(a)/2

se,ct otherwise.
After playing arm a according to qt,ct , the learner samples a Bernoulli random variable St with
probability se,ct (a)

2qt,ct (a)
. If St = 0, the learner ignores the feedback from this round; otherwise, they

use this loss.

The only remaining unspecified part is how to construct the loss estimates. We group all timesteps
into consecutive pairs of two. In each pair of consecutive timesteps, we sample from the same
distribution and randomly use one to calculate a loss estimate and the other to estimate the sampling
frequency. To be precise, let T f

e denote the timesteps selected for estimating the sampling frequency
and T ℓ

e denote the timesteps used to estimate the losses. Then we define

f̂e(a) =
1∣∣∣T f
e−1

∣∣∣
∑

t∈T f
e−1

se,ct(a)

2

5
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which is an unbiased estimator of fe(a). The loss estimators are defined as follows:

ℓ̂t,c(a) =
2ℓt,c(a)

f̂e(a) +
3
2γ

1
(
At = a ∧ St ∧ t ∈ T ℓ

e

)
where γ is a confidence parameter to be specified later.

The algorithm is summarized in Algorithm 1. Furthermore, Schneider & Zimmert (2023) showed
that the algorithm achieves an expected regret bound of Õ(

√
KT ).

Algorithm 1 The algorithm for the cross-learning problem in Schneider & Zimmert (2023)
Input: Parameters η, γ > 0 and L < T .
f̂2 ← 0
for t = 1, . . . , L do

Observe ct
Play At ∼ s1,ct
f̂2 ← f̂2 +

s2,ct
2L

for e = 2, . . . , T/L do
f̂e+1 ← 0
for t = (e− 1)L+ 1, t = (e− 1)L+ 3, . . . , eL− 1 do

Set pt,c = argminx∈∆([K])

(〈
x,
∑t−1

s=1 ℓ̂s(c)
〉
− η−1F (x)

)
for t′ = t, t+ 1 do

Observe ct′
if pt,ct′ (a) ≥ se,ct′ (a)/2 for all a ∈ [K] then

Set qt′,ct′ = pt,ct′

else
Set qt′,ct′ = se,ct′

Play At′ ∼ qt′,ct′
Observe ℓt′,At′

tf , tℓ ← RandPerm(t, t+ 1)

f̂e+1 ← f̂e+1 +
se+1,ctf

2(L/2)

Sample St ∼ B
(

se,ctℓ
(Atℓ

)

2qt,ctℓ
(Atℓ

)

)
Set ℓ̂tℓ,c(a) =

2ℓtℓ,c(a)

f̂e(a)+
3
2γ

I (At = a, St = 1)

se+2 ← pt

4 MAIN RESULT AND ANALYSIS

The main result of our paper is the following theorem.

Theorem 1 (Formal). For any δ ∈ (0, 1), Algorithm 1 with parameters choice ι = 2 log(8KT 1
δ ),

L =
√

ιKT
log(K) = Θ̃(

√
KT log 1

δ ), γ = 16ι
L = Θ̃(

√
log(1/δ)

KT ), and η = γ
2(2Lγ+ι) =

Θ̃(1/
√
KT log(1/δ)) yields a regret bound of

Reg(π) = Õ

(√
KT log

1

δ

)

with probability at least 1− δ for any policy π.

In what follows, we briefly overview our proof of Theorem 1. The full proof can be found in the
appendix.
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4.1 REGRET DECOMPOSITION

Denote the set of all timesteps used to estimate the frequency as T f and denote the set of
all timesteps used to estimate the losses as T ℓ. For each t ∈ Te, we define ℓ̃t,c(a) =
2ℓt,c(a)
fe(a)+γ 1

(
At = a ∧ St ∧ t ∈ T ℓ

e

)
. We decompose regret Reg(π) =

∑T
t=1 ℓt,ct(at) − ℓt,ct(πct)

as follows:

Reg(π) =

T∑
t=1

(ℓt,ct(at)− ℓt,ct(πct))− 2
∑
t∈T ℓ

(ℓt,ct(at)− ℓt,ct(πct))︸ ︷︷ ︸
bias1

+2
∑
t∈T ℓ

(
ℓt,ct(at)− ℓt,ct(πct)−

∑
c

Pr(c)⟨pt,c − πc, ℓt,c⟩

)
︸ ︷︷ ︸

bias2

+2
∑
t∈T ℓ

∑
c

Pr(c)⟨pt,c − πc, ℓ̂t,c⟩︸ ︷︷ ︸
ftrl

+2
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓt,c − ℓ̃t,c

〉
︸ ︷︷ ︸

bias3

+2
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c

〉
︸ ︷︷ ︸

bias4

+2
∑
t∈T ℓ

∑
c

Pr(c)
〈
πc, ℓ̂t,c − ℓt,c

〉
︸ ︷︷ ︸

bias5

.

In our decomposition, the bias1 term refers to the bias introduced by replacing the regret over the
entire time horizon with that over T ℓ, and the bias2 term refers to the bias introduced by replacing
regret with its linearization. Both of these terms are not hard to bound using standard concentration
inequalities. Furthermore, the ftrl and bias3 terms are standard in the analysis of high-probability
bounds for bandit algorithms. These two terms are not hard to bound using techniqes from EXP3-
IX (Neu, 2015; Schneider & Zimmert, 2023). The bias4 and bias5 terms correspond to the bias
introduced by constructing the importance estimator f̂e(a). These two terms are the terms of interest
to bound.

Our decomposition is different from the decomposition in Schneider & Zimmert (2023). This dif-
ference is essential for deriving a high-probability bound. The key difference lies in the bias5 term
here. This term saves a

∑
t∈T ℓ

∑
c Pr(c)

〈
πc, ℓ̃t,c − ℓt,c

〉
term from the bias2 term in the decom-

position given by Schneider & Zimmert (2023), which is crucial for deriving a high-probability
bound.

4.2 IDENTIFYING A PROTOTYPICAL TERM

The terms of interest to bound are bias4 and bias5. These two terms can be bounded using similar
methods. Here we take the bias5 term as a prototypical term and give a sketch of its analysis.
Details can be found in the appendix.

To bound bias5, we define a filtration {Ht}t such that the σ-algebra Ht for each time step t is
generated by all randomness before time t. Next, we decompose bias5 as∑

t∈T ℓ

∑
c

Pr(c)
〈
πc, ℓ̂t,c − ℓt,c

〉
=
∑
t∈T ℓ

∑
c

Pr(c)
(
ℓ̂t,c(πc)− ℓt,c(πc)

)
=
∑
t∈T ℓ

∑
c

Pr(c)
(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
+
∑
t∈T ℓ

∑
c

Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
.
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In this decomposition, the two terms correspond to different components of the bias of the
estimator ℓ̂t,c. The first term

∑
t∈T ℓ

∑
c Pr(c)

(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
corresponds

to the bias introduced by constructing the importance estimator f̂e(a). The second term∑
t∈T ℓ

∑
c Pr(c)

(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
corresponds to the bias introduced from the ran-

domness in sampling at from qt. Once again, the analyses of these two terms follow the same
principle. We take the first term∑

t∈T ℓ

∑
c

Pr(c)
(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
as a prototypical term and give a sketch of its analysis for the sake of simplicity. Details can be
found in the appendix.

4.3 ANALYSIS OF THE PROTOTYPICAL TERM

To bound the term
∑

t∈T ℓ

∑
c Pr(c)

(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
, we will use the key observa-

tion mentioned at Section 1.1: different epochs in Algorithm 1 are only weakly dependent on each
other. To use this observation rigorously, we introduce an important technical tool. With a slight
abuse of notation, we define a filtration {He}e, in which for each epoch e, the σ-algebraHe is gener-
ated by all randomness in epochs 1, . . . , e−1 and the randomness in T ℓ

e . That is, the σ-algebraHe is
generated precisely by the context ct, the random seed used in sampling at ∼ qt,ct , and the random

seed used in sampling St ∼ B
(

se,ct (at)

2qt,ct (at)

)
for t ≤ (e − 1)L and t ∈ T ℓ

e . Note that for each epoch

e, the σ-algebra He excludes the randomness in T f
e . This exclusion is crucial for characterizing the

weak dependence structure between epochs.

Given this filtration, we consider the cumulative bias in each epoch. For each epoch e, we define a
random variable

Bias5e ≜
∑
t∈T ℓ

e

∑
c

Pr(c)
(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
.

Then the prototypical term
∑

t∈T ℓ

∑
c Pr(c)

(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
is exactly∑

e Bias5e. Our key observation is that, not only

E

∑
t∈T ℓ

∑
c

Pr(c)
(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

) ≤ 0

as shown in Schneider & Zimmert (2023), but also∑
e

E [Bias5e |He] ∼ −
∑
e

γ

fe(πc) + γ
.

This key observation improves the inequality in Schneider & Zimmert (2023) in two ways. Firstly,
our bound holds for conditional expectations across epochs, which opens the door to applying mar-
tingale concentration inequalities across epochs. Secondly, our new decomposition improves the
upper bound from 0 to −

∑
e

γ
fe(πc)+γ . This improvement is essential for deriving a high probabil-

ity bound.

Given the new bound
∑

e E [Bias5e |He] ∼ −
∑

e
γ

fe(πc)+γ , we only need to bound the deviation∑
e Bias5e−E [Bias5e |He] to get an upper bound on

∑
e Bias5e. However, we cannot directly ap-

ply standard martingale concentration inequalities to
∑

e Bias5e−E [Bias5e |He]. This is because
we need to assume that the random variable |Bias5e | ≤ 2L almost surely to get a tight enough
concentration bound when applying standard martingale concentration inequalities. However, this
is not the case. The random variable Bias5e exceeds the constant 2L with a small but positive
probability. This unboundness prevents us from getting a tight enough concentration bound when
applying standard martingale concentration inequalities.
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To overcome this problem, we consider the indicator function

Fe ≜ 1

(
∀a,
∣∣∣f̂e(a)− fe(a)

∣∣∣ ≤ 2max

{√
fe(a)ι

L
,
ι

L

})
defined in Schneider & Zimmert (2023). We show that we also have

∑
e E [Bias5e Fe|He] ∼

−
∑

e
γ

fe(πc)+γ and that the random variable |Bias5e Fe| ≤ 2L almost surely. Thus, we can
use standard martingale concentration inequalities to get a tight enough concentration bound
on
∑

e Bias5e Fe − E [Bias5e Fe|He] and further bound
∑

e Bias5e Fe. Finally, we have that∑
e Bias5e Fe =

∑
e Bias5e with high probability. Thus, a high probability bound on

∑
e Bias5e Fe

transfers to a high probability bound on
∑

e Bias5e.

5 CONCLUSIONS

We reanalyze the algorithm proposed by Schneider & Zimmert (2023) and show that it actually
achieves near-optimal regret with high probability for the cross-learning contextual bandits problem
when the losses are chosen adversarially but the contexts are i.i.d. sampled from an unknown dis-
tribution. Our key technique is utilizing the weak dependency structure between different epochs
for an algorithm executing over multiple epochs. It is of interest to investigate that whether this
techniques is applicable for deriving high probability bounds for algorithms executing over multiple
epochs in other problems.
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A USEFUL LEMMAS

Lemma 1 (Freedman’s Inequality). Fix any λ > 0 and δ ∈ (0, 1). Let Xt be a random process
with respect to a filtration Ft such that µt = E [Xt | Ft−1] and Vt = E

[
X2

t | Ft−1

]
, and satisfying

λXt ≤ 1. Then, with probability at least 1− δ, we have for all t,

t∑
s=1

Xs − µs ≤ λ

t∑
s=1

Vs +
log(1/δ)

λ
.
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The next lemma is about the following family of indicator functions.
Definition 1. For each epoch e, we define the following two indicator functions:

Fe ≜ 1

(
∀a,
∣∣∣f̂e(a)− fe(a)

∣∣∣ ≤ 2max

{√
fe(a)ι

L
,
ι

L

})
and

Le ≜ 1

(
max

c∈[C],a∈[K]

∑
t∈Te

ℓ̃t,c(a) ≤ L+
ι

γ

)
.

We further define the following indicator function:

G =

T/L∏
e=1

FeLe.

Lemma 2 (Lemma 6 and Lemma 7, Schneider & Zimmert (2023)). For any epoch e, the event Fe

holds with probability at least 1 − 2K exp(−ι), and the event Le holds with probability at least
1−K exp(−ι). Furthermore, the event G holds with probability at least 1− 3K(T/L) exp(−ι).
Lemma 3 (Lemma 8, Schneider & Zimmert (2023) ). Let γ ≥ 4ι

L , then under event Fe, we have
that

1

2
≤ fe(a) + γ

f̂e(a) +
3
2γ
≤ 2.

The next lemma is about the following auxiliary probability vector.
Definition 2. For each epoch e and each time step t ∈ Te, we define

p̃t,c ≜ argmin
p∈∆([K])

〈
p,

e−1∑
e′=1

∑
s∈Te′

ℓ̂sc +
∑

t′∈Te,t′<t

ℓ̃t′c

〉
− η−1F (p)

where F (p) =
∑K

i=1 pi log(pi) is the unnormalized negative entropy.

It is easy to see that p̃t,c ∝ se+1,c ◦ exp
(
−η
∑

t′∈Te,t′<t ℓ̃t′c

)
.

Lemma 4 (Lemma 9, Schneider & Zimmert (2023) ). If γ ≥ 4ι
L and η ≤ log(2)

5L , then under event
G, we have for all t ∈ Te, a ∈ [K], c ∈ [C] simultaneously

2se,c(a) ≥ pt,c(a) ≥ se,c(a)/2 and 2se,c(a) ≥ p̃t,c(a) ≥ se,c(a)/2 .

This implies that

Ec∼ν [pt,c(a)] ≤ 4fe(a) and Ec∼ν [p̃t,c(a)] ≤ 4fe(a) .

In addition, this implies that qt = pt for all t ∈ Te.

Definition 3. We define pt(a) ≜ Ec∼ν [pt,c(a)] and p̃t(a) ≜ Ec∼ν [p̃t,c(a)] for each time step t and
each arm a.
Lemma 5 (Lemma 10, Schneider & Zimmert (2023) ). If γ ≥ 16ι

L and exp(−ι) ≤ γ
8K , then

− γ

fe(a)
≤ E

[
fe (a)− f̂e (a)− 1

2γ

f̂e (a) +
3
2γ

Fe

∣∣∣He−1

]
≤ 0.

Lemma 6. For any η ≤ γ
2(2Lγ+ι) , γ ≥

16ι
L , ι ≥ log(8K/γ), we have∑

t∈T ℓ

∑
c

Pr(c)
〈
pt,c − p̃t,c, ℓ̃t,c − ℓ̂t,c

〉
G ≤ 98KTι

L
+

γ2LKT

ι
.

Proof. The proof of Lemma 6 is contained in the analysis of the bias3 term in Schneider & Zimmert
(2023).
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Lemma 7. Decomposing all time steps into consecutive pairs, specifically, decomposing
{1, 2, . . . , T} into {(1, 2), (3, 4), (5, 6), . . . , (t − 1, t), . . . , (T − 1, T )}. Constructing a surrogate

loss sequence {ℓ̃s}
T
2
s=1 such that for each surrogate time step s the loss vector ℓ̃s is uniformly sam-

pled from the pair of true loss vector (ℓ2s−1, ℓ2s). Denote the time step sampled from the pair
(2s − 1, 2s) as sℓ. For any constant δ ∈ (0, 1) and any bandit algorithm such that in each pair of
time steps (t− 1, t), the algorithm takes actions at−1 and at from the same distribution pt−1 = pt,
we have

T∑
t=1

(ℓt,ct(at)− ℓt,ct(πct)) ≤ 2

T
2∑

s=1

(
ℓ̃s,csℓ (asℓ)− ℓ̃s,csℓ (πcsℓ

)
)
+ 2

√
T log(

1

δ
)

with probability at least 1− δ.

Proof of lemma 7. Consider the sequence of random variable {Ys}
T
2
s=1 such that

Ys =ℓ2s−1,c2s−1(a2s−1)− ℓ2s−1,c2s−1(πc2s−1)

+ ℓ2s,c2s(a2s)− ℓ2s,c2s(πc2s)

− 2
(
ℓ̃s,csℓ (asℓ)− ℓ̃s,csℓ (πcsℓ

)
)
.

Consider the filtration {H̃s}
T
2
s=1 such that for each s the σ-field H̃s is generated by the randomness

within ct and at for t ≤ 2s and the randomness within sampling from pair (2τ − 1, 2τ) for each

τ ≤ s. It is easy to see that the sequence{Ys}
T
2
s=1 forms a martingale difference sequence adapted

to the filtration {H̃s}
T
2
s=1. Moreover, it is also easy to see that |Ys| ≤ 2. Using Azuma-Hoeffding’s

inequality, for any constant δ ∈ (0, 1), we have
T
2∑

s=1

Ys ≤ 2

√
T log(

1

δ
)

with probability at least 1− δ. This completes the proof of the lemma.

B DETAILED PROOF OF THEOREM 1

B.1 DECOMPOSITION

As we mentioned in Section 4, we decompose the regret as

Reg(π) =

T∑
t=1

ℓt,ct(at)− ℓt,ct(πct)− 2
∑
t∈T ℓ

ℓt,ct(at)− ℓt,ct(πct)︸ ︷︷ ︸
bias1

+2
∑
t∈T ℓ

(
ℓt,ct(at)− ℓt,ct(πct)−

∑
c

Pr(c)⟨pt,c − πc, ℓt,c⟩

)
︸ ︷︷ ︸

bias2

+2
∑
t∈T ℓ

∑
c

Pr(c)⟨pt,c − πc, ℓ̂t,c⟩︸ ︷︷ ︸
ftrl

+2
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓt,c − ℓ̃t,c

〉
︸ ︷︷ ︸

bias3

+2
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c

〉
︸ ︷︷ ︸

bias4

+2
∑
t∈T ℓ

∑
c

Pr(c)
〈
πc, ℓ̂t,c − ℓt,c

〉
︸ ︷︷ ︸

bias5

.

We bound these terms one by one.

The bias1, bias2, ftrl, and bias3 terms are not hard to bound. The terms of interest to bound are
bias4 ans bias5. We first bound these two terms. In these two terms, the bias5 term is the one
easier to bound. We first bound bias5 to provide some intuition for our readers.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B.2 UPPER BOUNDING bias5

We first bound the fifth term
∑

t∈T ℓ

∑
c Pr(c)

〈
πc, ℓ̂t,c − ℓt,c

〉
. We decompose the fifth term into

two components: ∑
t∈T ℓ

∑
c

Pr(c)
〈
πc, ℓ̂t,c − ℓt,c

〉
=
∑
t∈T ℓ

∑
c

Pr(c)
(
ℓ̂t,c(πc)− ℓt,c(πc)

)
=
∑
t∈T ℓ

∑
c

Pr(c)
(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
+
∑
t∈T ℓ

∑
c

Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
.

We bound these two components separately.

For each epoch e, we define a random variable

Bias5e ≜
∑
t∈T ℓ

e

∑
c

Pr(c)
(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
.

We rewrite the term
∑

t∈T ℓ

∑
c Pr(c)

(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
as
∑T/L

e=1 Bias5e. Recall our
key observation: different epochs are only weakly dependent on each other. We bound the summa-
tion over epochs

∑T/L
e=1 Bias5e by leveraging the weak dependence structure between {Bias5e}e.

The sequence of random variables {Bias5e}e has the following properties:

1. For each epoch e, the random variable Bias5e is measurable under σ-algebraHe.

2. For each epoch e, we have3

E
[
Bias5e ·Fe

∣∣He−1

]
=
∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,c(πc)E

[(
fe(πc)

f̂e(πc) +
3
2γ
− 1

)
Fe

∣∣He−1

]
.

We further have

E

[(
fe(πc)

f̂e(πc) +
3
2γ
− 1

)
Fe

∣∣He−1

]

=E

[(
fe(πc)

f̂e(πc) +
3
2γ
− fe(πc)

fe(πc) + γ
+

fe(πc)

fe(πc) + γ
− 1

)
Fe

∣∣He−1

]

=E

 fe(πc)

fe(πc) + γ

(
fe(πc)− f̂e(πc)− 1

2γ
)

f̂e(πc) +
3
2γ

Fe

∣∣He−1

− γ

fe(πc) + γ
E
[
Fe

∣∣He−1

]
≤− γ

fe(πc) + γ
E
[
Fe

∣∣He−1

]
(Lemma 5)

≤− γ

fe(πc) + γ
(1− 2K exp(−ι)) . (Lemma 2)

3Readers familiar with Schneider & Zimmert (2023) may wonder why we do not directly consider
Bias5e G but consider Bias5e Fe instead. This is because there is a small flaw in the argument of
Schneider & Zimmert (2023). Schneider & Zimmert (2023) essentially argues that E[Bias5e G|He−1] =
E[Bias5e |He−1]E[G|He−1]. However, this equality may not hold since the indicator G depends on Bias5e
and these two terms are not conditionally independent given He−1. This is why we consider Bias5e Fe here
instead.
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Thus we have

E
[
Bias5e ·Fe

∣∣He−1

]
≤−

∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,c(πc)
γ

fe(πc) + γ
(1− 2K exp(−ι)) .

3. For each epoch e, we have

Bias5e Fe ≤
∑
c

Pr(c)
∑
t∈T ℓ

e

E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
Fe

=
∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,c(πc)
fe(πc)

f̂e(πc) +
3
2γ

Fe

≤
∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,c(πc)
2fe(πc)

fe(πc) + γ
(Lemma 3)

≤ 2L =
32ι

γ
.

4. For each epoch e, we have

E
[
(Bias5e Fe)

2
∣∣He−1

]
=E


∑

c

Pr(c)
∑
t∈T ℓ

e

ℓt,c(πc)
fe(πc)− f̂e(πc)− 3

2γ

f̂e(πc) +
3
2γ

Fe

2 ∣∣He−1


≤
∑
c

Pr(c)E


∑

t∈T ℓ
e

ℓt,c(πc)
fe(πc)− f̂e(πc)− 3

2γ

f̂e(πc) +
3
2γ

Fe

2 ∣∣He−1


=
∑
c

Pr(c)(
∑
t∈T ℓ

e

ℓt,c)
2E

(fe(πc)− f̂e(πc)− 3
2γ

f̂e(πc) +
3
2γ

Fe

)2 ∣∣He−1


≤ L

∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,cE

(fe(πc)− f̂e(πc)− 3
2γ

f̂e(πc) +
3
2γ

Fe

)2 ∣∣He−1


≤ 4L

∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,cE

(fe(πc)− f̂e(πc)− 3
2γ

fe(πc) + γ
Fe

)2 ∣∣He−1

 (Lemma 3)

≤
∑
c

Pr(c)
4L

(fe(πc) + γ)2

∑
t∈T ℓ

e

ℓt,c(πc)E

[(
fe(πc)− f̂e(πc)−

3

2
γ

)2 ∣∣He−1

]

=
∑
c

Pr(c)
4L

(fe(πc) + γ)2

∑
t∈T ℓ

e

ℓt,c(πc)

(
E
[(

fe(πc)− f̂e(πc)
)2 ∣∣He−1

]
+

9

4
γ2

)

≤
∑
c

Pr(c)
4L

(fe(πc) + γ)2

∑
t∈T ℓ

e

∑
t∈T ℓ

e

ℓt,c(πc)

(
fe(πc)

L
+

9

4
γ2

)

≤ 4
∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,c(πc)

(
1

fe(πc) + γ
+

9Lγ

4(fe(πc) +
3
2γ)

)

≤ 4
∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,c(πc)
36ι

fe(πc) + γ
.
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Given these properties, we use Freedman’s inequality to get that for any 0 < λ < γ
32ι , with proba-

bility at least 1− δ, we have∑
e

Bias5e Fe − E[Bias5e Fe

∣∣He−1] ≤ 4λ
∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,c(πc)
36ι

fe(πc) +
3
2γ

+
log(1/δ)

λ
.

We further have that event {
∑

e Bias5e Fe =
∑

e Bias5e} holds if event G holds. Combining these
two facts, we get that the inequality∑

e

Bias5e−E[Bias5e Fe

∣∣He−1] ≤ 4λ
∑
c

Pr(c)
∑
t∈T ℓ

e

ℓt,c(πc)
36ι

fe(πc) + γ
+

log(1/δ)

λ

holds with probability at least Pr(G)− δ.

We now bound the second component∑
t∈T ℓ

∑
c

Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
.

The second term
∑

t∈T ℓ

∑
c Pr(c)

(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
has the following properties:

1. The sequence of random variables
{∑

c Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])}
t∈T ℓ

forms a martingale difference sequence with respect to the tfiltration {Ht}t.

2. Each random variable
∑

c Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
satisfies∣∣∣∑c Pr(c)

(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])∣∣∣ ≤ 1
γ .

3. Each random variable
∑

c Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
satisfies

Var

[∑
c

Pr(c)ℓ̂t,c(πc)
∣∣Ht−1

]
≤
∑
c

Pr(c)Var
[
ℓ̂t,c(πc)

∣∣Ht−1

]
=
∑
c

Pr(c)
fe(πc)− f2

e (πc)(
f̂e(πc) +

3
2γ
)2 lt,c(πc)

2

≤
∑
c

Pr(c)
fe(πc)(

f̂e(πc) +
3
2γ
)2 lt,c(πc).

Applying Freedman’s inequality to the sequence of random variables{∑
c Pr(c)

(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])}
t∈T ℓ

, we get that for each δ ∈ (0, 1) and each

0 < λ < γ, with probability at least 1− δ, we have∑
t∈T ℓ

∑
c

Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
≤λ

∑
t∈T ℓ

∑
c

Pr(c)
fe(πc)(

f̂e(πc) +
3
2γ
)2 lt,c(πc) +

1

λ
log(

1

δ
).

By assuming that event G holds, we further get that with probability at least Pr(G)−δ, the following
inequality holds: ∑

t∈T ℓ

∑
c

Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
≤4λ

∑
t∈T ℓ

∑
c

Pr(c)
fe(πc)

(fe(πc) + γ)
2 lt,c(πc) +

1

λ
log(

1

δ
). (Lemma 3)
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Combining all previous inequalities, we get that for any 0 < λ1 < γ
32ι and 0 < λ2 < γ , the

following inequality holds with probability at least Pr(G)− 2δ:

∑
t∈T ℓ

∑
c

Pr(c)
〈
πc, ℓ̂t,c − ℓt,c

〉
=
∑
t∈T ℓ

∑
c

Pr(c)
(
E
[
ℓ̂t,c(πc)

∣∣Ht−1

]
− ℓt,c(πc)

)
+
∑
t∈T ℓ

∑
c

Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
=
∑
e

Bias5e−E[Bias5e Fe

∣∣He−1]

+
∑
e

E
[
Bias5e Fe

∣∣He−1

]
+
∑
t∈T ℓ

∑
c

Pr(c)
(
ℓ̂t,c(πc)− E

[
ℓ̂t,c(πc)

∣∣Ht−1

])
≤4λ1

∑
c

Pr(c)
∑
t∈T ℓ

ℓt,c(πc)
36ι

fe(πc) + γ
+

log(1/δ)

λ1

−
∑
c

Pr(c)
∑
t∈T ℓ

ℓt,c(πc)
γ

fe(πc) + γ
(1− 2K exp(−ι))

+ 4λ2

∑
t∈T ℓ

∑
c

Pr(c)
fe(πc)

(fe(πc) + γ)
2 lt,c(πc) +

1

λ2
log(

1

δ
).

Note that in the previous analysis, we combined two good events each happening with probability
at least Pr(G)− δ. The combined good event happens with probability Pr(G)− 2δ rather than the
vanilla union bound 1−2(1−Pr(G)+δ). This is because, in both events, the Pr(G) term comes from
assuming event G happens. Thus, in the combined event, we can simply assume event G happens
and count the corresponding bad event Gc only once. We will use this small trick repeatedly in the
following analysis.

We pick λ1 = γ
8·36ι and λ2 = γ

8 to get that the following inequality holds with probability at least
Pr(G)− 2δ:

∑
t∈T ℓ

∑
c

Pr(c)
〈
πc, ℓ̂t,c − ℓt,c

〉
≤4λ1

∑
c

Pr(c)
∑
t∈T ℓ

ℓt,c(πc)
36ι

fe(πc) + γ
+

log(1/δ)

λ1

−
∑
c

Pr(c)
∑
t∈T ℓ

ℓt,c(πc)
γ

fe(πc) + γ
(1− 2K exp(−ι))

+ 4λ2

∑
t∈T ℓ

∑
c

Pr(c)
fe(πc)

(fe(πc) + γ)
2 lt,c(πc) +

1

λ2
log(

1

δ
)

=(
8 · 36ι

γ
+

8

γ
) log(1/δ) +

∑
c

Pr(c)
∑
t∈T ℓ

ℓt,c(πc)
γ

fe(πc) + γ
2K exp(−ι)

≤(8 · 36ι
γ

+
8

γ
) log(1/δ) +KT exp(−ι).
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B.3 UPPER BOUNDING bias4

We then bound the forth term
∑

t∈T ℓ

∑
c Pr(c)

〈
pt,c, ℓ̃t,c − ℓ̂t,c

〉
. Similar to the previous analysis,

we decompose it as follows:∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c

〉
=
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
+
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
.

We bound these two components separately.

Similar to the previous anlaysis, we decompose the first component∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
as ∑

e

∑
t∈T ℓ

e

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
.

For each epoch e we define a random variable

Bias4e ≜
∑
t∈T ℓ

e

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
.

We need to bound
∑

e Bias4e.

We decompose
∑

e Bias4e as
∑

e Bias4FeLe +
∑

e Bias4e(1 − FeLe). As usual we have
that

∑
e Bias4e(1 − FeLe) = 0 whenever event G holds. Thus we can focus on bounding∑

e Bias4e FeLe. Firstly we bound∑
e

E
[
Bias4e FeLe

∣∣He−1

]
.

We have ∑
e

E
[
Bias4e FeLe

∣∣He−1

]
=
∑
e

E

∑
t∈T ℓ

e

∑
c

Pr(c)
〈
p̃t,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeLe

∣∣He−1


+
∑
e

E

∑
t∈T ℓ

e

∑
c

Pr(c)
〈
pt,c − p̃t,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeLe

∣∣He−1

 .

By Lemma 6, the latter term

∑
e

E

∑
t∈T ℓ

e

∑
c

Pr(c)
〈
pt,c − p̃t,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeLe

∣∣He−1


is bounded by 98KTι

L + γ2LKT
ι . Furthermore, condition on He−1, the indicator function Fe is ef-

fected only by randomness within time steps t ∈ T f
e , thus the indicator function Fe is conditional

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

independent with the probability vector p̃t,c. We have

∑
e

E

∑
t∈T ℓ

e

∑
c

Pr(c)
〈
p̃t,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
Fe

∣∣He−1


=
∑
e

∑
t∈T ℓ

e

∑
c

Pr(c)
〈
E
[
p̃t,c
∣∣He−1

]
,E
[
(ℓ̃t,c − ℓ̂t,c)Fe

∣∣He−1

]〉
≤
∑
e

∑
t∈T ℓ

e

∑
c

Pr(c)
∑
a

p̃t,c(a)γ

fe(a)
. (Lemma 5)

By Lemma 4, whenever event G holds, the ratio p̃t,c(a)
fe(a)

≤ 4. Thus we have

∑
e

E

∑
t∈T ℓ

e

∑
c

Pr(c)
〈
p̃t,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
Fe

∣∣He−1

 ≤ 4γKT

whenever event G holds.

We further have
∣∣∣〈p̃t,c,E [ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉∣∣∣ ≤ 1
γ . Thus we have

∑
e

E

∑
t∈T ℓ

e

∑
c

Pr(c)
〈
p̃t,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
Fe(Le − 1)

∣∣He−1


≤
∑
e

E

∑
t∈T ℓ

e

∑
c

Pr(c)
1

γ
Fe(Le − 1)

∣∣He−1


≤ 1

γ

∑
e

E

∑
t∈T ℓ

e

∑
c

Pr(c) |Le − 1|
∣∣He−1


≤K exp(−ι)T

γ
. (Lemma 2)

Thus we have

∑
e

E

∑
t∈T ℓ

e

∑
c

Pr(c)
〈
p̃t,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeLe

∣∣He−1


≤4γKT +

K exp(−ι)T
γ

whenever event G holds.

Thus we have∑
e

E
[
Bias4e FeLe

∣∣He−1

]
≤ 4KγT +

K exp(−ι)T
γ

+
98KTι

L
+

γ2LKT

ι

whenever event G holds.

We then only need to bound the concentration term∑
e

Bias4e FeLe − E
[
Bias4e FeLe

∣∣He−1

]
.

For each random variable Bias4e FeLe, we have
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Bias4e FeLe

=
∑
t∈T ℓ

e

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeLe

=
∑
t∈T ℓ

e

∑
c

Pr(c)
∑
a

pt,c(a)fe(a)ℓt,c(a)

(
1

fe(a) + γ
− 1

f̂e(a) +
3
2γ

)
FeLe

=
∑
t∈T ℓ

e

∑
c

Pr(c)
∑
a

p̃t,c(a)fe(a)ℓt,c(a)
f̂e(a)− fe(a) +

1
2γ

(fe(a) + γ)(f̂e(a) +
3
2γ)

FeLe.

Thus we have

|Bias4e FeLe|

≤

∣∣∣∣∣∣
∑
t∈T ℓ

e

∑
c

Pr(c)
∑
a

p̃t,c(a)fe(a)ℓt,c(a)
f̂e(a)− fe(a) +

1
2γ

(fe(a) + γ)(f̂e(a) +
3
2γ)

∣∣∣∣∣∣FeLe

≤
∑
t∈T ℓ

e

∑
a

p̃t(a)

∣∣∣∣∣ f̂e(a)− fe(a) +
1
2γ

f̂e(a) +
3
2γ

∣∣∣∣∣FeLe

≤8
∑
t∈T ℓ

e

∑
a

max

{√
fe(a)ι

L
,
ι

L

}

≤8L(
√

Kι

L
+

Kι

L
)

=8(
√
KLι+Kι).

Applying Azuma-Hoeffding’s inequality to∑
e

Bias4e FeLe − E
[
Bias4e FeLe

∣∣He−1

]
,

we get that for any δ > 0, with probability at least 1− δ, we have∑
e

Bias4e FeLe − E
[
Bias4e FeLe

∣∣He−1

]
≤8(
√
KLι+Kι)

√
2
T

L
log(

δ

2
)

=8

(√
2KTι log(

δ

2
) +

√
2
TK2

L
ι log(

δ

2
)

)
.

Thus we have ∑
e

Bias4e FeLe

≤4KγT +
K exp(−ι)T

γ
+

98KTι

L
+

γ2LKT

ι

+ 8

(√
2KTι log(

δ

2
) +

√
2
TK2

L
ι log(

δ

2
)

)
.

with probability at least Pr(G)− δ.
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We then bound the second term

∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
.

For each time step t ∈ T ℓ
e , we define an indicator function

Jt ≜ 1 (∀a, p̃t(a) ≤ 4fe(a)) .

By Lemma 4, event G implies Jt.

Similar to previous analysis, we decompose the first term as

∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
=
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeJt

+
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
(1− FeJt).

Since the auxiliary probability vector p̃t,c is determined at time t − 1, the indicator function Jt is
also determined at time t− 1. Furthermore, the indicator function Fe is determined at epoch e− 1.
Thus the product of indicator functions FeJt is measurable under filtrationHt−1. We have

E

[∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeJt

∣∣Ht−1

]

=FeJtE

[∑
c

Pr(c)
〈
pt,c, (ℓ̃t,c − ℓ̂t,c)− E

[
(ℓ̃t,c − ℓ̂t,c)

∣∣Ht−1

]〉 ∣∣Ht−1

]
=0.

Thus the sequence of random variables

{∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeJt

}
t∈T ℓ

forms a martingale difference sequence under the filtration {Ht}t.
We further have that the term

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeJt
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satisfies

∣∣∣∣∣∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉∣∣∣∣∣FeJt

≤

∣∣∣∣∣∑
c

Pr(c)
∑
a

pt,c(a)ℓt,c(a)

(
1(at = a)

fe(a) + γ
− fe(a)

fe(a) + γ

)∣∣∣∣∣FeJt

+

∣∣∣∣∣∑
c

Pr(c)
∑
a

pt,c(a)ℓt,c(a)

(
1(at = a)

f̂e(a) +
3
2γ
− fe(a)

f̂e(a) +
3
2γ

)∣∣∣∣∣FeJt

≤
∑
c

Pr(c)pt,c(at)
ℓt,c(at)

fe(at) + γ
FeJt

+
∑
c

Pr(c)
∑
a

pt,c(a)ℓt,c(a)
fe(a)

fe(a) + γ
FeJt

+
∑
c

Pr(c)pt,c(at)
ℓt,c(at)

f̂e(at) +
3
2γ

FeJt

+
∑
c

Pr(c)
∑
a

pt,c(a)ℓt,c(a)
fe(a)

f̂e(a) +
3
2γ

FeJt

≤

(
pt(at)

fe(at) + γ
+ 1 +

pt(at)

f̂e(at) +
3
2γ

+
∑
a

pt(a)
fe(a)

f̂e(a) +
3
2γ

)
FeJt

≤4 + 1 + 8 + 2 = 15. (Lemma 3)

Applying Azuma-Hoeffding’s inequality to the sequnece of random variables

{∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeJt

}
t∈T ℓ

,

we get that for any δ > 0, the inequality

∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
FeJt ≤ 15

√
T log(

1

δ
)

holds with probability at least 1− δ.

On the other hand, note that event G implies event FeJt, we get that

∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
(1− FeJt) = 0

whenever event G holds. Thus we get that for any δ > 0, inequality

∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
≤ 15

√
T log(

1

δ
)

holds with probability at least Pr(G)− 2δ.
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Combining previous results, we get that the following inequality holds with probability at least
Pr(G)− 2δ: ∑

t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c

〉
=
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
+
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓ̃t,c − ℓ̂t,c − E

[
ℓ̃t,c − ℓ̂t,c

∣∣Ht−1

]〉
≤4KγT +

K exp(−ι)T
γ

+
98KTι

L
+

γ2LKT

ι

+ 8

(√
2KTι log(

δ

2
) +

√
2
TK2

L
ι log(

δ

2
)

)

+ 15

√
T log(

1

δ
).

B.4 UPPER BOUNDING REMAINING TERMS

The remaining terms are the bias1, bias2, ftrl, and bias3 terms. These terms are not hard to bound
using techniques in standard EXP3-IX analysis (Neu, 2015). We write down these analyses in the
sake of completeness.

B.4.1 UPPER BOUNDING bias1

Applying Lemma 7 on the loss sequence used in calculating loss estimates, we get that

T∑
t=1

ℓt,ct(at)− ℓt,ct(πct)− 2
∑
t∈T ℓ

ℓt,ct(at)− ℓt,ct(πct) ≤ 2

√
T log(

1

δ
).

B.4.2 UPPER BOUNDING bias2

Here we bound the bias2 term∑
t∈T ℓ

(
ℓt,ct(at)− ℓt,ct(πct)−

∑
c

Pr(c)⟨pt,c − πc, ℓt,c⟩

)
.

Whenever event G holds, we have qt = pt. Thus we assume event G holds and replace the bias2
term by ∑

t∈T ℓ

(
ℓt,ct(at)− ℓt,ct(πct)−

∑
c

Pr(c)⟨qt,c − πc, ℓt,c⟩

)
.

The new term have the following properties:

• The sequence of random variables{
ℓt,ct(at)− ℓt,ct(πct)−

∑
c

Pr(c)⟨qt,c − πc, ℓt,c⟩

}
t∈T ℓ

adapts to the filtration {Ht}t∈T ℓ .
• The sequence of random variables satisfies

E

[
ℓt,ct(at)− ℓt,ct(πct)−

∑
c

Pr(c)⟨qt,c − πc, ℓt,c⟩
∣∣Ht−1

]
= 0.
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• Each random variable satisfies ℓt,ct(at)− ℓt,ct(πct)−
∑

c Pr(c)⟨qt,c − πc, ℓt,c⟩ ∈ [−2, 2].

By applying Azuma-Hoeffding inequality, we get that for any δ ∈ (0, 1), the following inequality
holds with probability at least 1− δ:∑

t∈T ℓ

(
ℓt,ct(at)− ℓt,ct(πct)−

∑
c

Pr(c)⟨qt,c − πc, ℓt,c⟩

)

≤2
√
T log(

1

δ
)

Thus the following inequality holds with probabiity at least Pr(G)− δ:∑
t∈T ℓ

(
ℓt,ct(at)− ℓt,ct(πct)−

∑
c

Pr(c)⟨pt,c − πc, ℓt,c⟩

)
≤ 2

√
T log(

1

δ
).

B.4.3 UPPER BOUNDING FTRL

Here we bound the ftrl term ∑
t∈T ℓ

∑
c

Pr(c)⟨pt,c − πc, ℓ̂t,c⟩.

By the standard analysis of FTRL algorithms, the ftrl term satisfies∑
t∈T ℓ

∑
c

Pr(c)⟨pt,c − πc, ℓ̂t,c⟩

≤
∑
c

Pr(c)

1

η
logK +

η

2

∑
t∈T ℓ

〈
pt,c, ℓ̂

2
t,c

〉 .

Here ℓ̂2t,c denotes the vector formed by squaring each component of ℓ̂t,c.

By Lemma 3, under event G, we have ℓ̂t,c ≤ 2ℓ̃t,c. Thus assuming event G holds, we can focus on
upper bounding ∑

c

Pr(c)

1

η
logK + 2η

∑
t∈T ℓ

〈
pt,c, ℓ̃

2
t,c

〉 .

It suffices to upper bound
∑

c Pr(c)
∑

t∈T ℓ

〈
pt,c, ℓ̃

2
t,c

〉
. We have∑

c

Pr(c)
∑
t∈T ℓ

〈
pt,c, ℓ̃

2
t,c

〉
=
∑
c

Pr(c)
∑
t∈T ℓ

pt,c(at)ℓ̃
2
t,c(at)

=
∑
c

Pr(c)
∑
t∈T ℓ

pt,c(at)
ℓ2t,c(at)

(fe(at) + γ)
2

≤
∑
t∈T ℓ

∑
c

Pr(c)pt,c(at)
1

(fe(at) + γ)
2

=
∑
t∈T ℓ

pt(at)

(fe(at) + γ)
2 .

By Lemma 4, under event G, we have∑
t∈T ℓ

pt(at)

(fe(at) + γ)
2 ≤ 2

∑
t∈T ℓ

1

fe(at) + γ
.

We then focus on upper bounding
∑

t∈T ℓ
1

fe(at)+γ .

We have
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• The sum of conditional expectations
∑

t∈T ℓ E
[

1
fe(at)+γ

∣∣Ht−1

]
≤ KT.

• Each term 1
fe(at)+γ ≤

1
γ .

• The sum of conditional quadratic expectations

∑
t∈T ℓ

E

[(
1

fe(at) + γ

)2 ∣∣Ht−1

]

=
∑
t∈T ℓ

∑
a

fe(a)

(fe(a) + γ)
2

≤
∑
t∈T ℓ

∑
a

1

fe(a) + γ
.

By Freedman’s inequality, we have that for any λ ∈ (0, γ] and any δ ∈ (0, 1), the following inequal-
ity holds with probability at least 1− δ:∑

t∈T ℓ

1

fe(at) + γ
≤ λ

∑
t∈T ℓ

∑
a

1

fe(a) + γ
+

1

λ
log(

1

δ
) +KT.

We pick λ = γ to get that ∑
t∈T ℓ

1

fe(at) + γ
≤ 2KT +

1

γ
log(

1

δ
)

with probability at least 1− δ.

Substituting this inequality back, we get that the folowing inequality holds with probability at least
Pr(G)− δ:

∑
c

Pr(c)

1

η
logK +

η

2

∑
t∈T ℓ

〈
pt,c, ℓ̂

2
t,c

〉
≤1

η
logK + 4η

∑
t∈T ℓ

1

fe(at) + γ

≤1

η
logK + 4η

(
2KT +

1

γ
log(

1

δ
)

)
.

B.4.4 UPPER BOUNDING bias3

Here we bound the bias3 term ∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓt,c − ℓ̃t,c

〉
.

We decompose it as ∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓt,c − ℓ̃t,c

〉
=
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓt,c − E

[
ℓ̃t,c
∣∣Ht−1

]〉
+
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
.
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The first component satisfies∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓt,c − E

[
ℓ̃t,c
∣∣Ht−1

]〉
=
∑
t∈T ℓ

∑
c

Pr(c)
∑
a

pt,c(a)ℓt,c(a)
γ

fe(a) + γ

≤
∑
t∈T ℓ

∑
a

pt(a)
γ

fe(a) + γ
.

Assuming event G holds, we have ∑
t∈T ℓ

∑
a

pt(a)
γ

fe(a) + γ

≤2
∑
t∈T ℓ

∑
a

γ ≤ 2KTγ. (Lemma 4)

We then bound the second component
∑

t∈T ℓ

∑
c Pr(c)

〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
. For each

time step t ∈ T ℓ, we define an indicator function

Lt ≜ 1 (∀a, pt(a) ≤ 4fe(a)) .

By Lemma 4, event G implies event Lt. Thus we have∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
=
∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
Lt.

under event G. We then assume event G holds and focus on upper bounding∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
Lt.

Since the probability vector pt,c is determined at time t− 1, the indicator function Lt is also deter-
mined at time t− 1. Thus the summand random variable∑

c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
Lt

satisfies

E

[∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
Lt

∣∣Ht−1

]

=E

[∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉 ∣∣Ht−1

]
Lt

=0.

Thus the sequence of random varialbes{∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
Lt

}
t∈T ℓ

forms a martingale difference sequence with respect to the filtration {Ht}t∈T ℓ .
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The summand random variable further satisfies∑
c

Pr(c)
〈
pt,c, ℓ̃t,c

〉
Lt

=
∑
c

Pr(c)pt,c(at)
ℓt,c(at)

fe(at) + γ
Lt

≤
∑
c

Pr(c)pt,c(at)
1

fe(at) + γ
Lt

=
pt(at)

fe(at) + γ
Lt

≤4.

Then by Azuma-Hoeffding inequality, the following inequality holds with probability at least 1− δ:∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
Lt ≤ 4

√
T log(

1

δ
).

Thus we have ∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c,E

[
ℓ̃t,c
∣∣Ht−1

]
− ℓ̃t,c

〉
≤ 4

√
T log(

1

δ
)

with probability at least Pr(G)− δ.

Combining the first component and the second component, we get that∑
t∈T ℓ

∑
c

Pr(c)
〈
pt,c, ℓt,c − ℓ̃t,c

〉
≤ 4

√
T log(

1

δ
) + 2KTγ

with probability at least Pr(G)− δ.

B.5 COMBINING THE PIECES

Combining all previous arguments, we get that

Reg(π)

≤2
√
T log(

1

δ
)

+4

√
T log(

1

δ
)

+2
1

η
logK + 8η

(
2KT +

1

γ
log(

1

δ
)

)
+8

√
T log(

1

δ
) + 4KTγ

+8KγT + 2
K exp(−ι)T

γ
+ 2

98KTι

L
+ 2

γ2LKT

ι

+16

(√
2KTι log(

δ

2
) + 2

√
2
TK2

L
ι log(

δ

2
)

)

+30

√
T log(

1

δ
)

+2(
8 · 36ι

γ
+ 2

8

γ
) log(1/δ) + 2KT exp(−ι)

with probability at least Pr(G)− 8δ.
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Taking ι = 2 log(8KT 1
δ ), L =

√
ιKT

log(K) = Θ̃(
√
KT log 1

δ ), γ = 16ι
L = Θ̃(

√
log(1/δ)

KT ), and

η = γ
2(2Lγ+ι) = Θ̃(1/

√
KT log(1/δ)), it is easy to see that Reg(π) = Õ(

√
KT log 1

δ ) with
probability at least Pr(G)− 8δ ≥ 1− 9δ for any policy π and any δ ∈ (0, 1).

The final step is rescaling the probability constant by a factor of 1/9, which gives that Reg(π) =

Õ(
√
KT log 1

δ ) with probability at least 1− δ and ends the proof of Theorem 1.
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