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Density matrix purification is an efficient way of avoiding the expensive cubic scaling diagonalization in
self-consistent field calculations. Although there are a number of different algorithms suggested to
reduce the number of matrix multiplications for purification, there is no rigorous mathematical proof
which scheme is optimal. In this Letter, we show analytically that the repeated application of the fifth-
order Holas polynomial throughout all iterations is an optimal scheme that reduces the error symmetri-
cally for both occupied and virtual occupations, and either the use of lower/higher-order polynomials
throughout or mixed use of polynomials of different degree at different iteration results in higher cost.

� 2011 Elsevier B.V. All rights reserved.
One-particle density matrix (P) is normally obtained by diago-
nalizing the Hamiltonian matrix (H) in self-consistent field (SCF)
calculations. The cubic scaling of the matrix diagonalization, how-
ever, makes the conventional SCF calculations such as Hartree–
Fock or density functional theory calculations difficult to treat
large molecular systems. To address this diagonalization bottle-
neck in SCF, many methods [1–9] that scale linearly with system
size (N) have been developed. Since there are only O(N) number
of significant matrix elements in P for large enough systems, direct
minimization of the energy functional with respect to the density
matrix elements led to a linear scaling algorithm [1].

Alternatively, one can form the Hamiltonian matrix, and from it
computes the density matrix. In this, one essentially represents the
density matrix as a Heaviside step function of the Hamiltonian
matrix

P ¼ hðlI�HÞ; ð1Þ

where h(.) denotes Heaviside step function, I is a unit matrix, and l
is a chemical potential of the system. Eq. (1) can be computed by
approximating the Heaviside step function as Fermi–Dirac [2] or
complementary error functions [3] which can then be expanded
and evaluated efficiently with the Chebyshev polynomials of the
Hamiltonian matrix of finite order.

Instead of direct calculation of Eq. (1) using matrix polynomials
of very high order, one can also determine P iteratively starting
from an appropriately chosen initial guess for density matrix with
the correct eigenfunctions. This latter category, the focus of the
present Letter, is called the purification method [4] since the algo-
rithm is designed to purify the initial density matrix to have the
correct eigenvalues to 0s and 1s when converged. Both density ma-
trix expansion methods or purification algorithms scale linearly
ll rights reserved.
with system size due to the locality and sparsity of H and P in
the localized atomic orbital basis.

McWeeny’s purification function [4] is the most widely used
formula that purifies density matrix, where Eq. (2) is recursively
used until the eigenvalues of P converge to 0s and 1s

Pnþ1 ¼ 3P2
n � 2P3

n: ð2Þ

Although the original algorithm to use Eq. (2) for purification
requires a priori knowledge of the chemical potential, Palser and
Manolopolous [5] developed an algorithm that works without a
priori knowledge of the chemical potential and only requires the
total number of electrons, i.e., canonical purification. Other forms
and degrees of polynomials have also been suggested to replace
Eq. (2) for faster convergence and higher efficiency [6–9]. Kryachko
[6] proposed a cubic polynomial that has a different form from that
of McWeeny, and claimed that it shows a cubic convergence unlike
the McWeeny’s function that converges quadratically. The Kryach-
ko’s polynomial, however, later was correctly pointed out by Holas
[7] that it only purifies the occupied occupation numbers. Holas [7]
then suggested higher-order polynomials with more rapid conver-
gence behavior than quadratic that purify both occupied and vir-
tual occupation numbers. Niklasson [8] introduced a trace-
correcting algorithm to switch between two different functions
that purify only occupied (Pnþ1 ¼ P2

n when the trace is too high)
or virtual (Pnþ1 ¼ 2Pn � P2

n when the trace is too low) occupation
numbers separately, namely, by using the latter asymmetric for-
mulae selectively depending on the trace of the density matrix
along the iteration. This use of asymmetric formulae was then ex-
tended to higher-order polynomials by Mazziotti [9] to enhance
the convergence rate from quadratic to cubic. Despite the extra
matrix multiplications needed to evaluate higher-order polynomi-
als, it was concluded that the use of higher-order polynomials may
overall be more efficient than lower-order purification functions
due to a more rapid reduction of the error.
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In this Letter, we focus on purification functions that are sym-
metric in reducing the errors for the occupied and virtual occupa-
tion numbers equally, and derive an optimal purification scheme in
terms of the degree and sequence of polynomials that are applied
during iterations. If the polynomials used at all iterations are re-
quired to purify the density matrix, we show analytically that
the repeated application of the fifth-order Holas polynomial
throughout all iterations is an optimal algorithm, and either the
use of lower/higher-order polynomials throughout or the mixed
use of different-order polynomials at different iteration results in
higher cost.

Theorem 1. Let P0 ¼ Pþ �, where P is the exact density matrix and
P0 is the initial density matrix. If gnðP0Þ denotes a polynomial that
purifies P0 symmetrically for 0 and 1,

P1 ¼ gnðP0Þ ¼ Pþ 0 ð�nÞ; n P 2 ð3Þ

then its degree is at least 2n � 1 in general.

Proof. An exactly idempotent density matrix has eigenvalues 1s
and 0s. If we take Taylor expansion of gnðPþ �Þ with respect to 1
and 0, the two stable points to be purified, four conditions must
be met to purify the density matrix,

gnð1Þ ¼ 1; ð4aÞ
gnð0Þ ¼ 0; ð4bÞ
gðiÞn ð1Þ ¼ 0; ð4cÞ
gðiÞn ð0Þ ¼ 0; ð4dÞ

where i ¼ ½1;n� 1� and superscript (i) indicates the ith derivative.
Every condition is linearly independent, and so to satisfy these four
conditions, the polynomial should have at least 2n adjustable
parameters. Therefore, the degree of polynomial is 2n � 1 at least.
This completes the proof. h

For example, McWeeny’s function is unique in that it is the only
third-order polynomial of the same degree that can purify density
matrix with an equal quadratic convergence for both occupied and
virtual occupations, as also pointed out by many others [4–9]. By
induction of the McWeeny’s form, Holas gave explicit expressions
for g2; g3 and g4 [7], and later Mazziotti also derived the same for-
mulae differently [9].

Theorem 2. If the purification function is required to purify P at each
iteration, the optimal purification scheme is when the polynomials at
all iterations are of the same degree.

Proof. We assume that the purification at each iteration is per-
formed using different polynomials of different degrees, 2ni � 1,
where i denotes the ith iteration. After m iterations, we then get

Pm ¼ Pþ O �
Qm

i¼1
ni

� �
: ð5Þ

We stop the iteration if the exponent of the error
Qm

i¼1ni is close to k.
In general, 2n � 2 matrix multiplications are needed to evaluate the
(2n � 1)th order general polynomial if the coefficients of all terms in
each power of P are nonzero. For the Holas polynomial of degree
2n � 1, however, the coefficients of the 0th to (n � 1)th terms are al-
ways zero to satisfy the four stability conditions in Theorem 1, and
so not all 2n � 2 multiplications are needed. More precisely, the gn,
the polynomial of degree 2n � 1, takes the form gn ¼ Pnða0Iþ
a1Pþ a2P2 þ a3P3 þ � � � þ an�1Pn�1Þ where all ai(i = [0,n � 1]) are
nonzero. To evaluate gn, one thus needs to calculate all powers of
P up to n and one extra matrix multiplication to compute the prod-
uct, Pn times the term in parentheses, yielding the total n matrix
multiplications. Therefore, the total computational cost (t) during
all iterations is approximately proportional to
tðfnigÞ ¼
Xm

i¼1

ni ð6Þ

The objective is then to minimize t to achieve a target accuracy of �k

with k �
Qm

i¼1ni. To do so, we use the fact that the arithmetic mean
is greater than or equal to the geometric mean

1
m

Xm

i¼1

ni P

ffiffiffiffiffiffiffiffiffiffiffi
Ym
i¼1

ni
m

vuut ; ð7Þ

where the equality holds when all ni have the same values. One can
deduce

tðfnigÞ ¼
Xm

i¼1

ni P m

ffiffiffiffiffiffiffiffiffiffiffi
Ym
i¼1

ni
m

vuut � m
ffiffiffi
km
p

; ð8Þ

Therefore, the minimum in t occurs when all ni are the same. This
proves Theorem 2. In other words, applying the polynomials of
the same order repeatedly is more efficient than combining polyno-
mials of different degrees at different iterations. h

Theorem 3. The fifth-order Holas polynomial is optimal if the purifi-
cation function itself is required to purify a density matrix.

We have shown in Theorem 2 that the application of polynomials of
the same order at all iterations yields the optimal purification effi-
ciency. If we use the same degree of polynomial n for all ni, the total

computational cost tðfnigÞ ¼ m
ffiffiffi
km
p
� logðkÞ

logðnÞn, which has a minimum

at n = 3. Therefore, the optimal n is 3, yielding the fifth-order Holas
polynomial, g3 ¼ P3ð10I� 15Pþ 6P2). This completes the proof for
Theorem 3. Mazziotti suggested [9] that if the particle and hole den-
sity matrices are used and treated in a certain way to represent the
symmetric purification functions, namely those of Holas [7], the
number of matrix multiplications for higher-order polynomials
can be reduced. For the latter case, the optimal degree of polyno-
mial shown here to be five may change to higher-order. h

In summary, we have presented mathematical proofs that the
repeated application of the same-order polynomial throughout
all iterations is an optimal algorithm for the density matrix purifi-
cation if the errors for the occupied and virtual occupation num-
bers are to be reduced equally and symmetrically, and any other
combinations of polynomials at different iterations result in higher
cost. We have shown that the fifth-order Holas polynomial,
g3 ¼ P3ð10I� 15Pþ 6P2Þ, is computationally optimal to purify
the density matrix.
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