
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VATTENTION: VERIFIED SPARSE ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art sparse attention methods for reducing decoding latency fall into
two main categories: approximate top-k (and its extension, top-p) and recently in-
troduced sampling-based estimation. However, these approaches are fundamentally
limited in their ability to approximate full attention: they fail to provide consistent
approximations across heads and query vectors and, most critically, lack guarantees
on approximation quality, limiting their practical deployment. We observe that top-
k and random sampling are complementary: top-k performs well when attention
scores are dominated by a few tokens, whereas random sampling provides better
estimates when attention scores are relatively uniform. Building on this insight
and leveraging the statistical guarantees of sampling, we introduce vAttention, the
first practical sparse attention mechanism with user-specified (ϵ, δ) guarantees on
approximation accuracy (thus, “verified”). These guarantees make vAttention a
compelling step toward practical, reliable deployment of sparse attention at scale.
By unifying top-k and sampling, vAttention outperforms both individually, deliver-
ing a superior quality–efficiency trade-off. Our experiments show that vAttention
significantly improves the quality of sparse attention (e.g., ∼4.5 percentage points
for Llama-3.1-8B-Inst and Deepseek-R1-Distill-Llama-8B on RULER-HARD), and
effectively bridges the gap between full and sparse attention (e.g., across datasets, it
matches full model quality with upto 20x sparsity). We also demonstrate that it can
be deployed in reasoning scenarios to achieve fast decoding without compromising
model quality (e.g., vAttention achieves full model quality on AIME2024 at 10x
sparsity with up to 32K token generations).

1 INTRODUCTION

As the application of AI expands and workflows grow more complex, the volume of context that
large language models (LLMs) must maintain is rapidly increasing(Touvron et al., 2023; Achiam
et al., 2023; Liu et al., 2024a). However, Scaled Dot Product Attention (SDPA) operator, the core
operation behind the success of transformer architectures(Vaswani, 2017; Brown et al., 2020), is
not well suited for handling such long contexts during generation. Large contexts produce massive
key–value (KV) embedding caches, and in autoregressive models, these caches must be repeatedly
read for every new token prediction. This makes the decoding step inherently memory-bound and
time-consuming (Kim et al., 2023). The problem becomes even more severe when the KV caches
exceed available GPU memory and must be offloaded to CPU RAM, requiring costly transfers across
the CPU–GPU boundary. These bottlenecks highlight a fundamental scalability issue in attention
mechanisms, limiting the ability of LLMs to efficiently consider long contexts. A mitigation strategy
is sparse attention, which reduces memory movement by attending only to a subset of tokens in the
KV cache. A good sparse attention would offer highly accurate approximations of full attention that
it replaces.

The core abstract problem in approximating Scaled Dot Product Attention (SDPA; see Eq. 3) is
estimating the sum of n quantities (scalars for denominator and vectors for numerator in SDPA).
Since, in hindsight, the tokens that contribute most to the attention output are those with the highest
ai||vi||2 (Desai et al., 2025), a natural approach is to choose tokens i with the largest query–key
inner products k⊤i q, also known as the top-k approach (top-p, its extension, chooses budgets per
head). Thus, sparse attention research is dominated by approaches designed to approximate top-k
(Xiao et al., 2024; Tang et al., 2024; Desai et al., 2025; Li et al., 2024b; Hooper et al., 2024; Zhang
et al., 2025) and top-p (Zhu et al., 2025) efficiently. However, any deterministic sparsity, such as

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Context: Early life. Picardo was
born in Jerez de la Frontera, in
the Province of Cádiz in
Andalucí …
Prompt : Picardo created a lots of
illustrations for a book named
《Dibujos de Jose Luis Picardo》
in 1960, where is this original
book kept now?

Performance-Efficiency Trade-off

Reduction in #reads to KVCache

Av
er
ag

e
Q

ua
lit

y

vAttention

Local Error Tolerance (ϵ)

Response: The book is long out of
print and virtually …

Error / Tolerance Correlation(̂ϵ) (ϵ)

Av
er
ag

e
La

ye
r E

rr
or

 (
̂ ϵ)

Tolerance (ϵ)

Figure 1: [Left:] vAttention accepts user tolerance parameter ϵ and ensures that sparse attention
errors are controlled to be within this tolerance. [Middle] vAttention achieves a SOTA trade-off,
outperforming leading methods like HashAttention and even a strong oracle top-p on a mix from long-
context benchmarks (RULER32K, LongBench, Loogle). [Right] There is a strong correlation between
the approximation error in the layer attention output and the user-defined parameter ϵ accepted by
vAttention with verified denominator-only approximation, validating the practical relevance of ϵ
parameter

top-k, assumes that the contextual embedding of the current token can be determined by a small set
of specific tokens in the context as if information is encoded in discrete units – an assumption that
is clearly not true in input layer (e.g. next word does not depend on only a few words) and cannot
be reliably assumed in deeper layers. It is not surprising that attention scores are not always sharply
distributed, and in such cases, top-k methods fail to give a good approximation (see Fig. 2). While
top-k tokens often dominate attention outputs, contextual meaning arises from the entire distribution
of key–value vectors across all tokens. This motivates the statistical perspective behind Verified
Sparse Attention (vAttention).

Recently, LSH-based sampling was used to approximate attention (Chen et al., 2024). vAttention is
inspired by this work. vAttention is based on a key observation for approximating a sum of n terms.
If the sum is sharply dominated by a few terms, selecting those terms provides the best approximation.
Conversely, if the terms are similar in value, a case in which top-p leads to choosing an unnecessarily
large number of terms, a sampling-based estimator can approximate the sum with a small sample.
vAttention combines both strategies, and adjusts the sample size to guarantee a user-specified (ϵ, δ)
approximation to the target sum. Using this intuition, vAttention approximates both the numerator
and denominator to a specified accuracy, ensuring that the overall error in attention output incurs
at most an ϵ relative error with probability (1 − δ), thus providing a “verified” sparse attention.
To the best of our knowledge, vAttention is the first practical algorithm to provide approximation
guarantees while giving users explicit control over the quality–efficiency tradeoff. This not only
provides state-of-the-art quality on sparse attention, but it also makes a compelling argument in favor
of deploying sparse attention reliably in the wild.

We extensively evaluate vAttention across diverse models (Llama-3.1-8B-Instruct, Deepseek-R1-
Distill-Llama-8B, Mistral-7B-Instruct-v0.3) and benchmarks (RULER (Hsieh et al., 2024), Long-
Bench (Bai et al., 2024), Loogle (Li et al., 2023), AIME (Maxwell-Jia, 2024)) and composing it with
oracle-top-k, and HashAttention (Desai et al., 2025), a state-of-the-art approximate top-k. We find
that vAttention consistently achieves higher accuracy than top-k methods and delivers a superior
quality–efficiency trade-off, surpassing even the strongest oracle top-p baseline (See Figure 1. For
example, at 10% sparsity, vAttention combined with HashAttention improves RULER32K-HARD
accuracy by upto 4.5 percentage points over HashAttention across models. Furthermore, owing to its
low approximation error, vAttention supports accurate long-form generation, producing sequences of
up to 32K tokens while matching full-attention accuracy on AIME(Maxwell-Jia, 2024). Additionally,
we show that there is a near-perfect correlation between the user-specified tolerance ϵ and the aver-
age empirically observed error in attention outputs, showcasing the effectiveness of vAttention in
exposing the quality–efficiency trade-off of sparse attention to the end user (see Figure 1).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Existing work on sparse attention can be categorized into the following types, covering early explo-
rations to recent efforts. Detailed related work is presented in Appendix B.

Static Sparse Attention and KV Cache compression methods Early sparse attention methods
used fixed patterns to limit tokens during decoding. For instance, StreamingLLM (Xiao et al., 2023)
attends to “attention sinks” (early tokens) and a sliding window of recent tokens. Later work (Zhang
et al., 2023; Xiao et al., 2024) showed that such static patterns fail to generalize, motivating dynamic
sparsity. StreamingLLM’s key insight—that sinks and local windows are essential—remains central
to subsequent methods. Another direction compresses the KV cache by discarding tokens, as in
ScissorHands (Liu et al., 2024b), H2O (Zhang et al., 2023), FastGen (Ge et al., 2023), and SnapKV
(Li et al., 2024a). While memory-efficient, these approaches lack generality, since irreversible pruning
struggles in settings like multi-turn dialogue, where token relevance shifts across turns.

Approximate top-k based Sparse Attention A class of sparse attention methods approximates
top-k token selection—identifying tokens with the highest query–key inner products—since exact
computation is O(nd) and undermines efficiency. Examples include Double Sparsity (Yang et al.,
2015), which sparsifies partial channels; Loki (Singhania et al., 2024), which applies low-rank
decomposition; and InfLLM (Xiao et al., 2024) and Quest (Tang et al., 2024), which use page-level
approximations. As top-k identification is essentially an inner product search problem (Desai et al.,
2025), many methods adapt approximate nearest neighbor (ANN) techniques: PQCache (Zhang et al.,
2025) leverages product quantization, SqueezeAttention (Hooper et al., 2024) employs hierarchical
clustering, Retrieval Attention (Li et al., 2024b) adopts graph-based ANN search, and HashAttention
(Desai et al., 2025) encodes queries and keys as bit signatures. These approaches improve scalability
by narrowing the search to promising tokens, but their dependence on oracle top-k selection imposes
a fundamental limitation. As demonstrated in MagicPig (Chen et al., 2024) and further analyzed here,
even access to the exact top-k tokens under full attention does not always suffice to approximate the
original output, highlighting the need to move beyond top-k selection in sparse attention design.

Approximate Top-P based Sparse Attention A key limitation of top-k–based sparse attention is
that a fixed sparsity level fails to generalize across modules. To address this, recent work adopts
Top-p coverage, selecting a variable number of tokens whose cumulative attention scores exceed a
threshold p, thereby adapting to varying importance distributions while offering error control. Exact
Top-p, however, is even costlier than top-k as it requires sorting or aggregating all scores; methods
therefore approximate coverage—for example, Tactic (Zhu et al., 2025) models attention decay with
a power-law distribution to estimate the required number of tokens. As we show, Top-p is not the
most efficient way to achieve a target error bound; more principled mechanisms, including vAttention,
attain comparable or better accuracy with fewer tokens.

MagicPig: LSH sampling-based Sparse Attention MagicPig (Chen et al., 2024) was among the
first to highlight the issues with top-k–based sparse attention. It employs Locality Sensitive Hashing
(LSH)(Gionis et al., 1999) to select tokens for attention computation. While LSH is suboptimal for
approximate nearest neighbor (ANN) search due to its data-agnostic projections, in this context, it
provides a principled sampling-based mechanism for approximating attention (Luo & Shrivastava,
2018). Tokens retrieved via LSH have associated probabilities reflecting how they were sampled
under the randomized construction of the LSH table. Early exploration of vAttention was inspired by
MagicPig, and we elaborate further on the attention computation in subsequent sections. Another
related work, SampleAttention (Zhu et al., 2024), samples structured patterns to approximate attention.

Theoretical exploration of top-k and sampling There is extensive literature on theoretically ana-
lyzing softmax attention and introducing approximations for faster training and inference, including
Performers Choromanski et al. (2020), Linformer Wang et al. (2020), HyperAttention Han et al.
(2023), and KNN-Attention Haris (2024). These works develop subquadratic attention mechanisms
that must be trained end-to-end and are primarily focused on performance (training and inference)
post training from scratch. In contrast, our work targets inference-time attention approximation to
accelerate decoding in off-the-shelf models. A key point of comparison is with KNN-Attention Haris
(2024), which investigates top-k selection and sampling through lazy Gumbel sampling and proposes
top-k plus sampling as a relaxation. However, their emphasis is on training, with theoretical treatment
and objectives that differ substantially and do not address inference acceleration for existing models.
vAttention, by contrast, provides a simple, practical theoretical foundation that directly yields an

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Top pane: cumulative sum of attention scores sorted in descending order of magnitude,
showing the number of tokens required to achieve a p ∈ (0, 1) coverage over the scores. Bottom:
relative local attention errors across token budgets, indexed by head h and query q index

implementable algorithm, which we rigorously evaluate across multiple off-the-shelf models and
benchmarks.

Existing methods for inference time acceleration lack guarantees on the quality of approximation. In
contrast, vAttention offers explicit control over approximation quality, providing both reliability and
flexibility.

3 BACKGROUND AND MOTIVATION

We begin by describing the three categories of attention computation considered in this paper. For
clarity, we restrict our exposition to the case of batch size one with a single query vector. Consider
KVCache K,V : n× d and query vector q : 1× d.

Full Scaled Dot Product Attention (SDPA)

SDPA(K,V,q) =

n∑
i=1

(aiV[i]) where ai =
exp ⟨K[i], q⟩∑n
j=1 exp ⟨K[j], q⟩

(1)

where ai are referred to as attention scores. This represents full attention computation.

Sparse Attention with deterministic index selection: Let S denote the sequence of indices selected
by a deterministic method—such as attention sinks, sliding window, top-k selection, or a combination
of them. The sparse attention computation based on this deterministic index set is given by:

SDPAS(K,V,q) =
∑
i∈S

(âiV[i]) where âi =
exp ⟨K[i], q⟩∑

j∈S exp ⟨K[j], q⟩
(2)

Sparse Attention with randomized index selection: Let S denote the sequence of indices selected
by a randomized method—such as random sampling or MagicPig, and let P be the corresponding
sequence of selection probabilities. Given S and P , the attention computation is defined as:

SDPAS,P (K,V,q) =
∑

(i,pi)∈(S,P)

(âiV[i]) where âi =

1
pi

exp ⟨K[i], q⟩∑
(j,pj)∈(S,P)

1
pj

exp ⟨K[j], q⟩
(3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This definition subsumes deterministic index selection (where probabilities associated are 1) and can
be used to represent a selection that is a combination of deterministic and randomized selection.

We motivate our approach through a simple ablation. We use the following baseline: oracle-top:
selects the tokens with the highest inner products, constrained by the budget, and uses deterministic
attention computation. random-sample: uniformly samples a subset of tokens (without replacement)
of size equal to the budget, and applies sampling-based attention computation. MagicPig: Does
LSH-based index retrieval followed by sampling estimation. If more tokens are retrieved than the
budget allows, a subset of size equal to the budget is randomly selected; otherwise, all retrieved
tokens are used. We plot the configuration among (k = {2, 4, 8} × L = {8, 16, 32, 64, 128}) that
yields the best errors for a particular sparsity. We use a sample from the GSM-Infinite (Zhou et al.,
2025) dataset of length 25K and use the last 128 queries for attention computation.

As shown in Figure 2, the quality–efficiency tradeoff depends on the distribution of attention scores,
and no baseline is universally superior. We observe that the ordering is inconsistent—for a given
query across heads, or for a given head across queries—highlighting the need for dynamic behavior
per head per query. Moreover, when attention scores are sharply distributed, oracle top-k provides a
better tradeoff. In contrast, random sampling performs better in the presence of a long tail (looking
at the distribution of attention scores sorted in descending order). MagicPig, though based on
importance sampling, also fails to outperform other methods consistently. Drawing inspiration from
these observations, we propose to combine top-k and sampling methods. As a representative, we use
oracle-top + random-sample: using half the budget for oracle-top and the other half for sample. We
find that this combination consistently yields superior results in all three cases. This hybrid strategy
serves as a simplification of our proposed vAttention method.

4 VATTENTION: VERIFIED SPARSE ATTENTION

Restricting attention to only a fraction of tokens alters model behavior by introducing errors in the
intermediate calculations of the numerator and denominator. These errors propagate, impacting
per-head attention and, ultimately, the overall attention computation at each layer. While directly
controlling the resulting errors in per-layer outputs or overall model behavior is mathematically
challenging, we can effectively regulate the errors in these fundamental computations, which correlate
strongly with per-layer attention deviations and, by extension, model behavior. vAttention provides
recipe for (ϵ, δ) verified computation for numerator, denominator and per-head attention. In general,
(ϵ, δ) verified-X algorithm is,

Definition 4.1 ((ϵ, δ)-verified-X). For any given computation X : Rd1 → Rd2 for some d1, d2 ∈ N,
an algorithm X ′ is (ϵ, δ)-verified-X if the following holds for any x ∈ Rd1

Pr

(
||X ′(x)−X (x)||2
||X (x)||2

> ϵ

)
< 1− δ (4)

We will first describe the recipes for verified−N and verified−D for numerator and denominator
computations. Then we show how to combine then for per-head attention.

4.1 VERIFIED-D AND VERIFIED-N

Let the KV cache for a given attention head be denoted by K,V ∈ Rn×d and the query by q ∈ R1×d.
Both numerator and denominator are sum of n terms. vAttention breaks down the problem of
approximation into two parts: (1) identifying outlier or heavy-hitter tokens, and (2) approximating
the residual long tail of tokens with similar attention scores using uniform random sampling. The key
idea is two fold. First, if the heavy tokens are correctly identified, the contribution of the residual tail
can be approximated with a small sample. Second, the convergence properties of uniform sampling
can be leveraged to provide guarantees on approximation errors. We describe the exact algorithm and
its mathematical foundations below.

The index selection procedure in vAttention is illustrated in Figure 3. vAttention selects a mixture
of deterministic and stochastic indices, and is parameterized by fs, fl, ft, fb, ϵ, δ ∈ (0, 1). For the
deterministic component, vAttention includes sink indices Is, |Is| = fsn , local window indices
Il, |Il| = fln, and predicted top-k tokens It, |It| = ftn. These correspond to the most salient tokens

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: vAttention composes, sink, sliding window, and approximate top-k based attention along
with random sampling based selection whose budget is governed by an adaptive sampling module
which ensures user specified (ϵ, δ) guarantees hold for each attention head every layer. The index
computation and budget computation occur entirely on the GPU, and the final attention computation
can retrieve the KV cache from either the GPU/CPU, depending on its location.

expected to dominate the attention distribution, i.e., those with high attention scores. vAttention can
be composed with any off-the-shelf approximate top-k method. Incorporating such “heavy hitters” is
crucial for strong performance, since the stochastic component—uniformly sampled indices—can
only approximate the residual attention accurately with small sample when the remaining distribution
does not have significant outliers (i.e., when residual attention scores have comparable magnitudes).
Let If = Is ∪ Il ∪ It and |Is|+ |Il|+ |It| = nf .

Let ns=n−nf denote the number of residual indices. vAttention uniformly samples indices Idyn
from residual indices. The set of indices and associated sampling probabilities can be expressed as,

S = If ∪ Idyn Pi =
|Idyn|
ns

if i ∈ Idyn and 1 otherwise (5)

Then the vAttention computation for numerator and denominator can be written as,

N = Nf +Ndyn =
∑
i∈If

(exp ⟨K[i], q⟩V [i]) +
ns

|Idyn|
∑

j∈Idyn

(exp ⟨K[j], q⟩V [j]) (6)

D = Df +Ddyn =
∑
i∈If

(exp ⟨K[i], q⟩) + ns

|Idyn|
∑

j∈Idyn

(exp ⟨K[j], q⟩) (7)

where Nf (alt. Df) comes from deterministic indices and Ndyn (alt. Ddyn) comes from stochastic
indices that estimate the rest of the numerator (alt. denominator).

The theoretical guarantees in vAttention arise from the careful choice of the sample size, i.e., |Idyn|.
The sample size is selected to ensure that the attention approximation is ϵ-relative accurate with
probability 1− δ. We now explain how the budget is chosen. The choice of sample size is guided by
the following result on estimating the sum of n quantities (See Appendix D for proof)
Lemma 4.1 (Estimating vector sum). Let s =

∑ns

i=1 ri, s ∈ Rd be a sum of ns vector quantities
ri ∈ Rd ∀i which has to be estimated using a sample Ib of size b. Let Σ be the covariance matrix for
the population {ri}ns

i=1. Let ŝb = ns

b

(∑
i∈Ib

ri
)

be the estimate. Let Φ be the CDF for the normal
distribution. Then for a large enough b if,

b ≥

(
Φ−1

(
1− δ

2

)
ns

√
Tr(Σ)

τ

)2

then Pr(||ŝ− s||2 > τ) ≤ δ (8)

for any arbitrary τ ∈ R and δ ∈ (0, 1).

Comment We leverage the Central Limit Theorem (CLT) to approximate the sum using a sufficiently
large sample. We can obtain a similar result for scalar quantities by setting d = 1 in the theorem

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 vAttention

Require: X ∈ {N ,D,SPDA}:computation
to keep verified, KVCache K,V : n× d,
q : 1 × d. Parameters fs, fl, ft ∈ (0, 1)
: fraction of total tokens for sink, slid-
ing window and top-k tokens. Adaptive
sampling parameters fb ∈ (0, 1) : base
sampling rate, ε, δ ∈ (0, 1) user specified
guarantee.

1: Is ← {0, 1, . . . , ⌊fsn⌋−1}
2: Il ← {n− ⌊fln⌋, . . . , n−1}
3: It ← pred-top-index(ft, n,K, V, q)
4: If ← Is ∪ Il ∪ It , pf = 1|If |

5: ns ← n− |If |
6: b← budgetX (If, fb, ns, ε, δ,K,V, q)
7: Idyn ← uniform-sample(If , b, n)
8: pdyn ← b

ns
· 1|Idynamic|

9: S ← [If, Idynamic]
10: p← [pf,pdynamic]
11: return SDPAS,p(K,V, q)

Algorithm 2 budgetX

Require: KVCache K,V : n × d, q : 1 × d ,
Parameters: ns sampling range, fb ∈ (0, 1) :
base sampling rate, ϵ, δ ∈ (0, 1) probabilistic
guarantee required by user, If static index.

1: Ibs ← uniform-sample(If , fb, n)
2: if X=D then
3: σ̂2, D̂ ←get-stats(If , Ibs,K, V, q)

4: b=bD(ϵ, δ, σ̂, D̂,K, V, q)
5: else if X=N then
6: Tr(Σ̂), ˆ||N ||22←get-stats(If , Ibs,K, V, q)

7: b=bN (ϵ, δ, T̂r(Σ), ||N̂ ||2,K, V, q)
8: else
9: Tr(Σ̂), σ̂2, ˆ||N ||22, D̂ ←

compute-stats(If , Ibs,K, V, q)

10: b=bSDPA(ϵ, δ, T̂r(Σ), σ̂, ||N̂ ||2, D̂,K, V, q)
11: return b =0

above. Detailed empirical analysis of using optimistic CLT and conservative Hoeffding’s method for
budget computation is presented in E.

We can use the above lemma to compute budget required for (ϵ, δ) approximations of the numerator
and denominator independently as mentioned in Corollary D.2 D.3. These are obtained by setting
τ = ϵ∥N∥2 and τ = ϵD in the numerator and denominator cases, respectively.

4.2 VERIFIED-SDPA

Let bD(ϵ, δ, σ,D,K, V, q) (resp. bN (ϵ, δ,Tr(Σ), ||N ||2,K, V, q)) denote the minimum budget re-
quired to achieve an (ϵ, δ)-approximation for the denominator (resp. numerator). When parameters
are clear from the context, we will drop those from the expression for convenience. The individual
approximation results for the numerator and denominator can be combined to yield a bound on the
quality of the approximated attention output, as stated in the lemma below.

Lemma 4.2. If bD and bN are chosen such that we have (ϵ1, δ1) and (ϵ2, δ2) approximation on
numerator and denominator respectively and ϵ2 < 0.5, then using b = max(bD, bN) ensures that

Pr

(∥∥∥∥∥ND − N̂

D̂

∥∥∥∥∥
2

> 2(ϵ1 + ϵ2)

∥∥∥∥ND
∥∥∥∥
2

)
< (δ1 + δ2) (9)

Comment.The lemma above shows that if both the numerator and denominator are well approximated,
then the overall attention output is also well approximated.

The results above can be combined into a single theorem providing an algorithm to select budget for
(ϵ, δ) approximation of attention output.
Theorem 4.3 ((ϵ, δ) verified-SDPA(K,V,q)). Let Σ be the covariance matrix for the population
{exp ⟨K[i], qV [i]⟩}i∈Īf

. Let σ be the standard deviation for the population {exp ⟨K[i], q⟩}i∈Īf
.

Then, if the budget is

b ≥ min
ϵ′∈(0,ϵ),δ′∈(0,δ)

[
max

(
bD

(
ϵ′

2
, δ′
)
, bN

(
ϵ− ϵ′

2
, δ − δ′

))]
then

Pr(||vAttention(K,V, q)− SDPA(K,V, q)||2 > ϵ||SDPA(K, q, v)||2) ≤ δ

(10)

Let bSDPA(ϵ, δ,Σσ, ||N ||2, D,K, V, q) denote the minimum budget required for an (ϵ, δ) approxi-
mation of SDPA attention. When parameters are clear from the context, we will drop those in the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Pareto curves (Quality and Error vs. Density) for different baselines and their combination
with vAttention across different datasets/benchmarks for Llama-3.1-8B-Instruct model. More pareto
results are in Appendix A.1

expression for convenience. In practice, Σ and σ as well as exact ||N ||2 and D are not known apriori.
However, we can use a base sample from residual tokens to estimate them in order to compute these
quantities. In our algorithm, vAttention is parameterized by fb, which denotes the fraction of ns to
be used as a sample for this estimation. The complete algorithms are provided in Algo. 1 and Algo. 2.

Implementation Details The index computation for vAttention is efficient even when the KV cache
resides on the CPU. The computation is naturally vectorizable and well-suited for GPUs. Although
vAttention requires partial access to the KV cache for budget calculations, this can be handled on the
GPU using a small random cache that is incrementally populated and updated during token generation.
When combined with approximate top-k methods such as HashAttention or DoubleSparsity, the
auxiliary structures (e.g., bit cache or label cache) for top-k selection—orders of magnitude smaller
than the full KV cache—can be stored directly on the GPU. For example, HashAttention requires
only 32 bits per token per head for its bit cache.

5 EXPERIMENTS

Table 1: Average performance of different methods on RULER32K-HARD benchmark (consits of 7
datasets from RULER) at 10% sparsity. HashAttention is denoted as HAT. Detailed results are in
Appendix A.3

Llama-3.1-8B-Inst Dpsk-R1-Distill-Llama-8B Mistral-7B-Inst-v0.3
SDPA 88.74 65.41 64.05
oracle-top-k 87.18 64.87 64.37
vAttention(oracle-top-k) 88.61 65.15 64.12
HAT 81.94 60.70 54.66
vAttention(HAT) 86.56 65.06 56.90

We perform an elaborate evaluation of vAttention against oracle and approximate baselines on
multiple datasets, models, and generation lengths. The evaluation setup is explained below.

Datasets and Models. We evaluate vAttention on four benchmark suites: RULER (32K con-
text length) Hsieh et al. (2024), LongBench Bai et al. (2024), and Loogle (truncated to 16K)
Li et al. (2023), providing a broad basis for comparison. We further extract seven tasks from
RULER32K into RULER32K-HARD to isolate cases where top-k methods are known to struggle.
RULER32K-HARD consists of qa 1, qa 2, vt, fwe, niah multikey 2, niah multikey 3,
and niah multivalue, selected based on the HashAttention paper, where these datasets were

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: AIME@2024 with deepseek-ai/DeepSeek-R1-Distill-Llama-8B with vAttention (ϵ = 0.05,
δ = 0.05, ft = 0.025, fb = 0.025, sink and local tokens are set to absolute 128). The generations
are capped at 32K tokens. More details on the evolution of density and errors along sequence length
are provided in Appendix A.5. Average density at 16K length is around 10-15% for HashAttention.

Type 1 2 3 4 avg
dense 43.30 36.67 33.33 33.33 36.66
vAttention(oracle-top-k) 43.33 40.00 26.66 36.67 36.67
vAttention(HashAttention) 30.00 36.66 46.66 26.66 35.00

shown to be challenging. Detailed results are provided in the Appendix, with partial results included
here. We also use AIME2024 to evaluate vAttention on long generation and reasoning tasks. For
models, we consider three LLMs: Llama-3.1-8B-Instruct, Mistral-7B-v0.3, and DeepSeek-R1-Distill-
Llama-8B, evaluated across different subsets of benchmarks.

Baselines. In our study, we choose oracle-top-k as a baseline, which serves as the theoretical gold
standard for all approximate top-k methods, and oracle-top-p, the strongest oracle-top-based baseline,
as it can provide a dynamic oracle-top-k based on the attention score distribution. As a representative
of approximate top-k methods, we select HashAttention, which outperforms Quest Tang et al. (2024),
Double Sparsity(Yang et al., 2024), InfLLM Xiao et al. (2024), and others. For completeness, a
comparative table is provided in Appendix A.4. We report results for vAttention in combination with
both oracle-top-k and HashAttention. When aiming to achieve a particular sparsity in an experiment,
we search for the best parameters within a defined search space that yield the lowest local attention
errors while meeting the target sparsity. Details of the search space are provided in Table 3. Following
(Desai et al., 2025; Jegou et al., 2024; Hooper et al., 2024), we use full attention for context processing
and sparse attention for question and generation. Under this setup, MagicPig does not perform well.
We provide additional details in Appendix C.

Superior quality of vAttention at different sparsities The Pareto results comparing the quality of
sparse attention across different densities (i.e., the number of tokens used) are presented in Figure 4.
We also compare average improvements across models in Table 1. We observe:

• vAttention significantly improves the quality and approximation error versus density tradeoff when
combined with a top-k method (both HashAttention and oracle top-k). vAttention combined with
oracle top-k yields the best results, indicating that more accurate top-k methods are essential for
the overall quality of sparse attention, even with vAttention.

• Oracle top-p, representing the best achievable top-k approximation, does not always reach full
model quality or provide the best approximation error at reasonable sparsities. For example, on the
RULER 32K benchmarks, vAttention combined with oracle top-k even outperforms oracle top-p.

• vAttention combined with oracle top-k achieves full model accuracy at reasonable sparsity levels
across all benchmark datasets considered.

• vAttention increases the average quality of 10%-sparse HashAttention on RULER-HARD by 4.6
percentage points for Llama3.1-8B and by 4.3 points for Deepseek-R1-Distill-Llama-8B.

Long Generation with vAttention in the wild: The AIME2024 results are presented in Table 2. We
deploy vAttention with natural configuration parameters, without any parameter tuning, as would be
done in real-world settings. Token generation is capped at 32K tokens. We find that both vAttention
(oracle-top-k) and vAttention (HashAttention) match the full model quality (Avg@4), demonstrating
the effective long-sequence generation capacity of vAttention.

Efficiency with vAttention: We compare the speedups of Llama-3-8B and Llama-2-7B with
vAttention when the KV cache is hosted on the CPU, as shown in Figure 5. For this comparison, we
use a naive PyTorch implementation of vAttention index computation together with our optimized
sparse attention backend. With a more careful implementation, the performance of vAttention can
be further improved for CPU-hosted KV caches and will yield gains for GPU-hosted KV caches.
However, developing optimized CUDA kernels for vAttention is beyond the scope of this paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 5: For Llama models with the KV cache hosted on the CPU, we observe a near-linear speedup,
as inference is memory-bound and latency primarily depends on the amount of KV cache read. This
experiment is conducted using naive PyTorch code for index computation, and the results can be
further improved with a dedicated CUDA implementation.

6 CONCLUSION

The mainstream approach to sparse attention has been to approximate top-k token selection. However,
as we show in this paper, even oracle versions of top-k and top-p are either insufficient for accurate
attention approximation or require unnecessarily large numbers of tokens. More importantly, none of
the existing methods—primarily designed to approximate these oracle versions—offer guarantees
or user control over approximation errors. vAttention is the first verified sparse attention method
that not only provides fine-grained user control over approximation, but also achieves superior
quality–efficiency trade-offs compared to top-k approaches. It makes a compelling case for reliable
deployment and for realizing the significant quality–efficiency benefits sparse attention can offer. We
believe vAttention will enable the practical adoption of sparse attention in the wild.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3119–3137,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.172. URL https://aclanthology.org/2024.acl-long.172.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Aditya Desai, Shuo Yang, Alejandro Cuadron, Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica.
Hashattention: Semantic sparsity for faster inference. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=Em2oaXd8Dc.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

10

https://aclanthology.org/2024.acl-long.172
https://openreview.net/forum?id=Em2oaXd8Dc

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via hashing.
In Vldb, volume 99, pp. 518–529, 1999.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. arXiv preprint arXiv:2310.05869,
2023.

Themistoklis Haris. k nn attention demystified: A theoretical exploration for scalable transformers.
arXiv preprint arXiv:2411.04013, 2024.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Monishwaran Maheswaran, June Paik,
Michael W Mahoney, Kurt Keutzer, and Amir Gholami. Squeezed attention: Accelerating long
context length llm inference. arXiv preprint arXiv:2411.09688, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Simon Jegou, Maximilian Jeblick, Alessio Devoto, Jiwei Liu, and David Austin. Kvpress: Efficient
kv cache compression for long-context llms, 2024. URL https://github.com/NVIDIA/
kvpress. Version 1.2.0.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack optimization of
transformer inference: a survey. arXiv preprint arXiv:2302.14017, 2023.

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. Loogle: Can long-context language
models understand long contexts? arXiv preprint arXiv:2311.04939, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469, 2024a.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Retrieval augmented
generation or long-context llms? a comprehensive study and hybrid approach. In Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pp.
881–893, 2024b.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
language with ringattention. arXiv e-prints, pp. arXiv–2402, 2024a.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024b.

Chen Luo and Anshumali Shrivastava. Arrays of (locality-sensitive) count estimators (ace) anomaly
detection on the edge. In Proceedings of the 2018 World Wide Web Conference, pp. 1439–1448,
2018.

Maxwell-Jia. Aime 2024 dataset. Dataset, Hugging Face, 2024. URL https://huggingface.
co/datasets/Maxwell-Jia/AIME_2024.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank
keys for efficient sparse attention. arXiv preprint arXiv:2406.02542, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

11

https://github.com/NVIDIA/kvpress
https://github.com/NVIDIA/kvpress
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,
Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for understanding
extremely long sequences with training-free memory. arXiv preprint arXiv:2402.04617, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Shuo Yang, Ying Sheng, Joseph E Gonzalez, Ion Stoica, and Lianmin Zheng. Post-training sparse
attention with double sparsity. arXiv preprint arXiv:2408.07092, 2024.

Zichao Yang, Marcin Moczulski, Misha Denil, Nando De Freitas, Alex Smola, Le Song, and Ziyu
Wang. Deep fried convnets. In Proceedings of the IEEE international conference on computer
vision, pp. 1476–1483, 2015.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng
Chen, and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference.
Proceedings of the ACM on Management of Data, 3(3):1–30, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How
do your llms behave over infinitely increasing context length and reasoning complexity? arXiv
preprint arXiv:2502.05252, 2025.

Kan Zhu, Tian Tang, Qinyu Xu, Yile Gu, Zhichen Zeng, Rohan Kadekodi, Liangyu Zhao, Ang Li,
Arvind Krishnamurthy, and Baris Kasikci. Tactic: Adaptive sparse attention with clustering and
distribution fitting for long-context llms. arXiv preprint arXiv:2502.12216, 2025.

Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, Xiuhong Li, Guanyu Feng, Xin Lv, Huanqi
Cao, Xiao Chuanfu, Xingcheng Zhang, et al. Sampleattention: Near-lossless acceleration of long
context llm inference with adaptive structured sparse attention. arXiv preprint arXiv:2406.15486,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS RESULTS AND DETAILS

A.1 PARETO PLOTS FOR LLAMA-3.1-8B-INSTRUCT

Figure 6: Attention approximation errors vs. Density for different approaches with and without
vAttention.

Figure 7: Quality vs. Density for different approaches with and without vAttention.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 ACHIEVING REQUIRED SPARSITY.

To achieve the required sparsity, we search for the configuration parameters on a few examples from
the dataset and select the configuration with the minimum local attention approximation error while
maintaining the target sparsity. The search space used is mentioned table 3,

Table 3: For local and sink tokens we use fixed 128 tokens throughout experiments for all methods.

Target Sparsity Parameter Grid
MagicPig K = [4, 8, 16, 32] L = [16, 32, 64, 128]
oracle-top-p p=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.98, 0.99]

vAttention 5

fb : [0.01, 0.02, 0.03]
ft: [0.05, 0.1, 0.15]
ϵ: [0.05, 0.1, 0.2, 0.3]
δ: [0.05, 0.1, 0.2, 0.3]

vAttention 10

fb : [0.025, 0.05, 0.075]
ft: [0.05, 0.075, 0.1]
ϵ:[0.025, 0.05, 0.1, 0.2]
δ: [0.025, 0.05, 0.1, 0.2]

vAttention 15

fb : [0.025, 0.05, 0.075, 0.1]
ft: [0.025, 0.05, 0.075]
ϵ:[0.01, 0.025, 0.05, 0.1]
δ: [0.01, 0.025, 0.05, 0.1]

vAttention 20

fb : [0.05, 0.1, 0.15]
ft: [0.01, 0.02, 0.03]
ϵ: [0.01, 0.025, 0.05, 0.1]
δ: [0.01, 0.025, 0.05, 0.1]

A.3 DETAILED RESULTS AT 10% SPARSITY

Table 4: RULER @ 32K (Meta-llama/Llama-3.1-8B-Instruct) at 10% sparsity full benchmark results.
As mentioned in the paper, half of the datasets are quite easy and solvable by HashAttention. However,
the harder datasets is where vAttention bridges the gap between full attention and HashAttention /
oracle-top-k significantly.

ni
ah

si
ng

le
1

ni
ah

si
ng

le
2

ni
ah

si
ng

le
3

ni
ah

m
ul

tik
ey

1

ni
ah

m
ul

tiq
ue

ry

ni
ah

m
ul

tiv
al

ue

cw
e

vt qa
1

qa
2

fw
e

ni
ah

m
ul

tik
ey

2

ni
ah

m
ul

tik
ey

3

ni
ah

m
ul

tiv
al

ue
full attention 100 100 100 100 97 98.5 1.6 97.4 80.5 51.5 93.17 99.5 100 99.12
vAttention(oracle-top-k) 100 100 100 100 97 98 1.2 97.5 79.5 51.5 93.17 99.5 100 99.12
oracle-top-k 100 100 100 100 98.5 97.5 1.2 97.6 73.5 48 93.17 99.5 99.5 99
vAttention(HashAttention) 100 100 100 100 98 94 0 96.2 76 48 93.83 98.5 95 98.38
HashAttention 100 100 100 100 99 98 3.6 89 73 45.5 91.33 88.5 87.5 98.75

Table 5: RULER @ 32K (Meta-llama/Llama-3.1-8B-Instruct) average score

Easy Average Hard Average Full Average
full attention 85.30 88.74 87.02
vAttention(oracle-top-k) 85.17 88.61 86.89
oracle-top-k 85.31 87.18 86.25
vAttention(HashAttention) 84.57 86.56 85.57
HashAttention 85.80 81.94 83.87

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: [Context length capped at 32K and new tokens capped to 100 and 10% sparsity] Some
datasets from Longbench benchmark with Llama-3.1-8B-Instruct

dataset m
ul

tifi
el

dq
a

en

ho
tp

ot
qa

na
rr

at
iv

eq
a

qa
sp

er

m
us

iq
ue

qm
su

m

2w
ik

i

Avg
full attention 54.25 55.75 29.25 46.87 31.07 24.98 46.51 41.24
vAttention(oracle-top-k) 54.46 55.95 29.17 47.79 30.57 25.10 46.27 41.33
oracle-top-k 52.95 51.98 30.01 44.48 23.29 25.45 47.28 39.35
vAttention(HashAttention) 53.21 55.59 31.34 43.05 27.58 25.15 44.33 40.04
HashAttention 53.79 52.57 27.15 43.96 23.13 24.38 45.50 38.64

Table 7: RULER @ 32K (deepseek-ai/DeepSeek-R1-Distill-Llama-8B) at 10% sparsity full bench-
mark results. We only evaluate hard datasets for this setting

dataset vt qa
1

qa
2

fw
e

ni
ah

m
ul

tik
ey

2

ni
ah

m
ul

tik
ey

3

ni
ah

m
ul

tiv
al

ue

Avg
full attention 21.20 46.00 58.00 90.67 82.00 68.00 92.00 65.41
vAttention(oracle-top-k) 18.40 44.00 60.00 90.67 82.00 70.00 91.00 65.15
oracle-top-k 35.60 42.00 58.00 88.00 74.00 66.00 90.50 64.87
vAttention(HashAttention) 30.40 46.00 56.00 90.00 78.00 64.00 91.00 65.06
HashAttention 40.40 36.00 56.00 84.00 70.00 50.00 88.50 60.70

Table 8: RULER @ 32K (mistralai/Mistral-7B-Instruct-v0.3) at 10% sparsity full benchmark results.
We only evaluate hard datasets for this setting

dataset vt qa
1

qa
2

fw
e

ni
ah

m
ul

tik
ey

2

ni
ah

m
ul

tik
ey

3

ni
ah

m
ul

tiv
al

ue

Avg
full attention 88.00 50.00 48.00 91.33 60.00 20.00 91.00 64.05
vAttention(oracle-top-k) 88.00 52.00 44.00 91.33 60 24 89.5 64.12
oracle-top-k 84.40 56.00 40.00 90.67 54.00 34.00 91.50 64.37
vAttention(HashAttention) 85.60 46.00 44.00 90.67 36 4 92 56.90
HashAttention 72.80 46.00 38.00 93.33 34.00 4 94.50 54.66

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 COMPARATIVE RESULTS OF HASHATTENTION VS. OTHERS

The results are presented in Table 9

Table 9: Comparison of approximate top-k baselines with HashAttention on datasets from LongBench
for LLama-3.1-8B-Instruct. All baselines are used at 32 bits per token per head of auxilliary memory.
The table is adapted from (Desai et al., 2025)

Category→ MQA SQA Summ FS-Learn Synthetic Code
Model Aux:bits/token Tokens HPQA MFQA QmSm TQA PassR RepoB Average

Full Model NA NA 54.83 55.17 24.91 91.31 100.00 55.07 63.55
Oracle(top) NA 512 52.10 53.45 25.14 91.39 100.00 58.49 63.43

H2O NA 512 36.62 26.61 17.85 80.75 43.43 55.55 43.47
StreamLLM NA 512 33.32 27.98 17.93 51.95 11.43 57.07 33.28

InfLLM 256(pg=16,bit=16) 512 48.27 53.09 22.90 88.88 32.81 43.45 48.23
DS 32(ch=16,bit=2) 512 50.39 50.57 23.41 90.32 98.86 57.72 61.88

Quest 32(pg=16,bit=2) 512 53.13 51.31 23.01 90.15 98.29 58.29 62.36
HashAttention 32 512 54.08 53.35 25.08 92.41 100.00 59.98 64.15

A.5 LONG GENERATION WITH VATTENTION

The error and density evolution with token generation for AIME for two examples in Figures 8, 9.
vAttention adapts the sparsity in each layer for each head and for each specific query. The average
density of attention at 32K tokens is around 12%. Even with natural parameter values for parameters
of vAttention, it can achieve the required density, which leads to stable long generation.

Figure 8: Example 0

A.6 ABLATION (ϵ, δ)

B DETAILED RELATED WORK

Existing work on sparse attention can be categorized into the following types, covering early
explorations to recent efforts.

B.1 STATIC SPARSE ATTENTION

Early work on sparse attention focused on fixed sparsity patterns to reduce the number of tokens
considered during decoding. For instance, StreamingLLM (Xiao et al., 2023) employs fixed attention

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: Example 3

Figure 10: How the average density, average relative attention approximation error and overall quality
on RULER-32K(QA1, QA2) tasks vary when using only denominator-guaranteed approximation

to both ”attention sinks” (typically the first few tokens) and a sliding window over recent tokens.
However, subsequent studies (Zhang et al., 2023; Xiao et al., 2024) have shown that static patterns
often fail to generalize well, highlighting the importance of dynamic sparsity in attention mechanisms.
While StreamingLLM itself does not fully support dynamic token selection, its key insight—that
attention sinks and local windows are crucial—has strongly influenced later approaches. Most recent
sparse attention methods now incorporate sink and local tokens as foundational components of their
selection strategies.

B.2 KV CACHE COMPRESSION METHODS

A parallel line of research focuses on KV cache compression, wherein tokens are selectively dis-
carded based on heuristics aimed at reducing memory overhead. Representative approaches include
ScissorHands (Liu et al., 2024b), H2O (Zhang et al., 2023), FastGen (Ge et al., 2023), and SnapKV
(Li et al., 2024a). While these methods can be effective in lowering memory usage, they often lack
generalizability across tasks due to their irreversible token pruning. This limitation is particularly
pronounced in settings such as multi-turn dialogue/interaction, where the relevance of contextual
tokens may vary significantly between turns, making fixed pruning strategies inadequate.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 APPROXIMATE TOP-k BASED SPARSE ATTENTION

A line of sparse attention methods is grounded in the observation that only a small subset of tokens
significantly contribute to attention computation—typically those associated with the highest attention
scores under full attention. For a given query vector q, the most relevant tokens are those whose
key vectors k yield the highest inner products q⊤k. In theory, optimal sparsity could be achieved
by selecting the top-k tokens with the highest inner products. However, computing all pairwise
inner products requires O(nd) operations, which diminishes the potential computational savings.
Consequently, most methods in this class rely on various approximations to efficiently estimate the
top-k tokens.

Recent methods in this direction introduce specific strategies to reduce the computational costs of
inner products. For instance, Double Sparsity (Yang et al., 2024) approximates inner products using a
reduced set of channels, while Loki (Singhania et al., 2024) leverages low-rank projections to operate
in a compressed, lower-dimensional space. Other techniques, such as InfLLM (Xiao et al., 2024)
and Quest (Tang et al., 2024), employ page-level summary vectors to identify potentially important
tokens at the block level, thereby limiting the number of inner products evaluated. Despite their
computational benefits, these methods often rely on heuristic approximations, which can lead to poor
recall in identifying the true top-k tokens critical for accurate attention computation.

Given that the task of identifying top-k tokens effectively reduces to the Maximum Inner Product
Search (MIPS) problem (Desai et al., 2025), a number of recent methods have adopted techniques
from approximate nearest neighbor (ANN) search. For example, PQCache (Zhang et al., 2025)
leverages product quantization to accelerate MIPS, while SqueezeAttention (Hooper et al., 2024)
employs hierarchical clustering to improve the efficiency of top-k retrieval. Retrieval Attention
(Li et al., 2024b) adopts graph-based ANN search, and HashAttention (Desai et al., 2025) encodes
queries and keys as bit signatures, enabling efficient similarity computation in Hamming space.

Although these approaches improve scalability by narrowing the search to the most promising tokens,
their reliance on approximating the oracle top-k tokens introduces a fundamental limitation. As shown
in MagicPig (Chen et al., 2024), and further analyzed in this work, even access to the exact top-k
tokens under full attention does not always suffice to faithfully approximate the original attention
output—highlighting the need to go beyond top-k selection in designing effective sparse attention
mechanisms.

B.4 APPROXIMATE TOP-p BASED SPARSE ATTENTION

A key limitation observed in top-k-based sparse attention methods is that a fixed sparsity level fails
to generalize across different attention modules within a model. To address this, recent approaches
have shifted towards achieving top-p coverage, where the goal is to select a variable number of
tokens whose cumulative attention scores under full attention exceed a threshold p. This adaptive
strategy better aligns with the varying importance distributions across layers and heads. Additionally,
it provides control over the amount of error an attention module can make.

However, identifying the exact set of tokens that satisfy the top-p criterion—i.e., those whose
cumulative attention scores exceed a predefined threshold p—is computationally more demanding
than top-k selection, as it requires sorting or aggregating over all token scores. To mitigate this
cost, recent methods approximate the coverage estimation to efficiently select token indices that
collectively capture the desired attention mass. One such approach is Tactic (Zhu et al., 2025), which
approximates top-p attention by modeling the decay of attention scores using a power-law distribution,
allowing for efficient estimation of how many top-scoring tokens are needed to meet the coverage
threshold.

As we will show in this paper, while top-p attention offers some degree of error control—subject to
the quality of its approximation—it is not the most efficient approach for achieving a given error
bound. More principled mechanisms can attain comparable or lower error using fewer tokens. In
this work, we introduce one such method: vAttention, which enables improved error control through
adaptive and token-efficient selection.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.5 MAGICPIG: LSH SAMPLING BASED SPARSE ATTENTION

To the best of our knowledge, MagicPig was the first work to highlight the issues associated with
top-k-based sparse attention.

The method leverages Locality Sensitive Hashing (LSH) (Gionis et al., 1999) to select which tokens
participate in attention computation. While LSH is generally considered suboptimal for approximate
nearest neighbor (ANN) search due to its data-agnostic projections, its use here offers a principled and
novel mechanism for approximating attention. LSH-based retrieval can be viewed as a sampler (Luo
& Shrivastava, 2018). Thus, the tokens retrieved from LSH have probabilities associated with them,
under which they were sampled in the randomized construction of the LSH table. We can estimate
the numerator and denominator of attention using the importance sampling formulation. Early
exploration for vAttentionwas inspired by MagicPig, and we will elaborate more on the attention
computation in subsequent sections.

While LSH gives a principled way to compute attention, the issue associated with using LSH remains.
Firstly, given the orthogonal distribution of keys and queries (Chen et al., 2024), LSH fails to
distinguish between the different keys to the level at which original softmax demands – often leading
to a highly skewed distribution of buckets (some buckets are very heavy while other buckets are
empty). Centering is considered to be a practical solution to this. However, it is easy to prove that
under centering, the original ordering among tokens for an arbitrary query is not preserved, making
the operation ad hoc. Even if centering is valid, the number of hashes required to achieve sufficient
recall is significantly higher than that of related methods, such as HashAttention(Desai et al., 2025),
necessitating the involvement of CPU RAM.

Finally, none of the existing methods across categories offer concrete guarantees on the quality of
approximation—even at the level of a single attention head. In contrast, vAttention addresses this gap
by providing a principled solution to the problem of uncontrolled approximation in sparse attention.
Our method enables explicit control over the approximation quality for each individual attention head,
offering both reliability and flexibility.

C EVALUATION SETUP AND COMPARISON ON MAGICPIG

Since our work is primarily concerned with the efficiency of sparse attention during decoding, it
is common practice to preprocess long contexts using full attention. Under this paradigm, two
evaluation setups for sparse attention are typically employed:

1. [Setup A] Full-prompt preprocessing with dense attention followed by sparse decoding
The entire prompt is first processed with full attention, and sparse attention is applied only
during the decoding phase. In this setup, the first token generated already benefits from full
attention.

2. [Setup B] Split-prompt processing (context vs. question): The prompt is divided into two
parts:
(a) Context is processed with full attention
(b) Question + subsequent generations are processed with sparse attention

Some earlier works, such as MagicPig, adopt the first setup. In contrast, more recent ap-
proaches—including HashAttention and SqueezeAttention—follow the second. A methodology
similar to the second is also used in NVIDIA’s KVPress – a framework to compare KV cache
compression methods, where the KV cache is compressed after the context is processed but before
the question is introduced. We argue that the second setup is the more meaningful choice.

The reasoning is as follows. Sparse attention for long-context evaluation is usually tested on datasets
with relatively short generations (e.g., RULER, LongBench, etc). Suppose the entire context is first
processed by full attention (setup 1). In that case, all the necessary information to answer the question
has already been extracted by the time the first token is predicted. Applying sparse attention only
after this point, especially with a fixed local attention window, does not truly test its ability to retrieve
and utilize information from the long context. This hypothesis is validated by observations where,
under setup A, MagicPig appears to perform well, but their performance collapses under setup B.
(see Table 10)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Therefore, to genuinely assess the effectiveness of sparse attention in long-context settings, it is
essential to adopt setup B

Table 10: Faithful reproduction of MagicPig results on RULER and differences from our MagicPig
implemenation and evaluation setup. Evaluation-A: preprocess full context+question via full atten-
tion followed by sparse attention only for genreation. Evaluation-B: preprocess only context with
full attention and question along with generations are processed by sparse attention. MagicPig-A:
(logic in Authors Code) which does not use simpleLSH transform for inner product search (only uses
angular LSH) and uses dense layers for 0,16. MagicPig-B(logic of our base code) uses simpleLSH
transform for inner product search as per theory, does not use any dense layers. In our evaluation
setup, which is a more reasonable evaluation, MagicPig does not perform well.

setup MagicPig (K=8,L=75) ni
ah

si
ng

le
1

ni
ah

si
ng

le
2

ni
ah

si
ng

le
3

ni
ah

m
ul

tik
ey

2

ni
ah

m
ul

tik
ey

3

ni
ah

m
ul

tiv
al

ue

A
ut

ho
rs

co
de

A = B
+ questions processed via
dense attention

A =B (core paper description)
+ dense layers(0,16)
+ no simpleLSH transform

100 100 100 98 98 98

O
ur

co
de B B 100 96 76 46 12 81.5

B B
+ dense layers(0,16) 100 96 96 74 60 84.5

A B
+ dense layers(0,16) 100 98 98 94 90 88

A A 100 100 100 98 98 95.5

Furthermore, some methods deliberately mix dense and sparse attention across layers. We take a
different stance: sparse attention itself should be sufficiently adaptive to each layer’s requirements,
increasing its effective density when necessary rather than relying on dense layers as a fallback.

D THEORY

D.1 DERIVATION VIA CENTRAL LIMIT THEOREM (CLT)

Lemma D.1 (Estimating vector sum). Let s =
∑ns

i=1 ri, s ∈ Rd be a sum of ns vector quantities
ri ∈ Rd ∀i which have to be estimated using a sample Ib of size b. Let Σ be the covariance matrix for
the population {ri}ns

i=1. Let ŝb = ns

b

(∑
i∈Ib

ri
)

be the estimate. Let Φ be the CDF for the normal
distribution. Then for a large enough b if,

b ≥

(
Φ−1

(
1− δ

2

)
ns

√
Tr(Σ)

τ

)2

then Pr(||ŝ− s||2 > τ) ≤ δ (11)

for any arbitrary τ ∈ R and δ ∈ (0, 1).

Using the Multivariate Central Limit Theorem,

√
b

(
1

b

∑
i∈Ib

ri −
s

n

)
d−→ N (0,Σ).

√
b

n

(
n

b

∑
i∈Ib

ri − s

)
d−→ N (0,Σ).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

√
b

n
(̂s− s)

d−→ N (0,Σ).

√
b

n
u⊤ (̂s− s)

d−→ N (0,u⊤Σu).

u⊤ (̂s− s)
d−→ n√

b
N (0,u⊤Σu).

To achieve a error within τ for δ, we must have

n√
b

√
(u⊤Σu)Φ−1

(
1− δ

2

)
< τ

This can be achieved if
n√
b
(
√
Tr(Σ))Φ−1

(
1− δ

2

)
< τ

Solving for b

b >

(
n

τ
(
√
Tr(Σ))Φ−1

(
1− δ

2

))2

D.2 COROLLARIES FOR NUMERATOR AND DENOMINATOR

Corollary D.2 ((ϵ, δ) approximation of N). Let Σ be the covariance matrix for the population

{exp ⟨K[i], q⟩V [i]}i∈Īf
. Let N̂ = Nf + ns

b

(∑
i∈Idyn

exp ⟨K[i], qV [i]⟩
)

be the estimate when
using sample Idyn of size b. Let Φ be the CDF for the normal distribution. Then for a large enough b
and for any arbitrary ϵ, δ ∈ (0, 1), if

b ≥

(
Φ−1

(
1− δ

2

)
ns

√
Tr(Σ)

ϵ||N ||2

)2

then Pr(||N̂ −N ||2 > ϵ||N ||2) ≤ δ (12)

Corollary D.3 ((ϵ, δ) approximation of D). Let σ be the standard deviation for the population

{expK[i], q}i∈Īf
. Let D̂ = Df + ns

b

(∑
i∈Idyn

exp ⟨K[i], q⟩
)

be the estimate when using sample
Idyn of size b. Let Φ be the CDF for the normal distribution. Then for a large enough b, for any
arbitrary ϵ, δ ∈ (0, 1), if

b ≥
(
Φ−1

(
1− δ

2

)
nsσ

ϵD

)2

then Pr(|D̂ −D| > ϵD) ≤ δ (13)

D.3 COMBINATION OF APPROXIMATIONS OF NUMERATOR AND DENOMINATOR

Lemma D.4. If bD and bN are chosen such that we have (ϵ1, δ1) and (ϵ2, δ2) approximation on
numerator and denominator respectively and ϵ2 < 0.5, then using b = max(bD, bN) ensures that

Pr

(∥∥∥∥∥ND − N̂

D̂

∥∥∥∥∥
2

> 2(ϵ1 + ϵ2)

)∥∥∥∥ND
∥∥∥∥
2

< (δ1 + δ2) (14)

If we have a (ϵ1, δ1) approxiamtion for numerator and (ϵ2, δ2) for denominator. Consider the
following expression

||N̂
D̂
− N

D
||2 = ||DN̂ − D̂N

D̂D
|| (15)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

With probability (1− δ1 − δ2)

||DN̂ −DN ± ϵ2DN

D̂D
|| = ||N̂ −N ± ϵ2N

D̂
|| (16)

≤ ||N̂ −N ||2 + ϵ2||N ||2
D(1± ϵ1)

(17)

≤ ϵ1||N ||2 + ϵ2||N ||2
D(1± ϵ2)

(18)

= (ϵ1 + ϵ2)
||N ||2

D(1− ϵ2)
(19)

≤ (ϵ1 + ϵ2)(1 + 2ϵ2)
||N ||2
D

if ϵ2 < 0.5 (20)

≤ 2(ϵ1 + ϵ2)
||N ||2
D

(21)

(22)

D.4 WHY REDUCING BIAS IN ESTIMATION IS MORE IMPORTANT THAN REDUCING VARIANCE.

The propagation of errors through the model can be modeled as a random walk of ±ϵi steps for
simplicity.

The argument follows from the standard analysis of mean-square error of random walk of n steps.
Let each step have a mean square error of size ϵ2.

case 1: Entire MSE is attributed to bias Then the MSE at step n is n2ϵ2

case 2: Entire MSE is attributed to variance Then the MSE at step n is nϵ2

Thus, the impact of bias on error propagation is much stronger than that of variance.

Generally, if the bias and standard deviation of error at each step are µ, σ, then the MSE at step n is

MSE(n) = n2µ2 + nσ2 (23)

MSE(n) = (n(n− 1))µ2 + nϵ2 (24)

Thus the compounding effect of bias is much stronger than that of variance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E EMPIRICAL ANALYSIS OF TIGHTNESS FOR CLT AND HOEFFDING BOUNDS

In this section, we present an empirical analysis of the tightness of our theoretical bounds for
denominator approximation. We compare the Central Limit Theorem (CLT) based approximation
with Hoeffding’s inequality, focusing on the configuration ϵ = 0.1, δ = 0.2 with 5% oracle top-k
selection.

E.1 SUMMARY ANALYSIS ACROSS LAYERS

The results are presented in Figure 11 and Figure 12.

We evaluated the tightness of both bounds with the following setup:

• Approximation parameters: ϵ = 0.1 and δ = 0.2

• Oracle top-k: 5% of total tokens selected deterministically
• Model: Llama-3.1-8B-Instruct on RULER dataset with 16K context length

Figure 11: CLT-based approximation analysis with ϵ = 0.1, δ = 0.2 and 5% oracle top-k.

Comparing the two results (Figure 11 and Figure 12) , we find:

• Conservative bounds: Hoeffding equires 2.8× more samples (average 874) compared to
CLT for the same guarantees.

• Robust guarantees: Hoeffing Achieves near-zero failure rate (< 2%) but at significant
computational cost.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 12: Hoeffding-based approximation analysis with ϵ = 0.1, δ = 0.2 and 5% oracle top-k,
showing consistently higher sample requirements than CLT.

E.2 LAYER-SPECIFIC ANALYSIS

For a given query, the distribution of attention scores pl,h varies significantly across different
heads/layers. The adaptive design of vAttention allows for dynamic budget for a given tolerance
level (ϵ, δ). Across different layers (layer 1/16/32) of the Llama-3.1-8B-Instruct model, we mea-
sure the empirical budget for the CLT and Hoeffding-based budget estimates. In particular, for
(ϵ = 0.1, δ = 0.2), we investigate the distribution of relative errors and average budget/head in
Figures 13 , 14, 15.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) CLT budget : (top-left) mean and maximum average relative error per head; the dashed line
is the target error tolerance (ϵ) (top-right) the fraction of queries (δ̂) that are within the specified
error tolerance (ϵ) (bottom-left) vAttention budget per head with CLT relaxation (bottom-right)
distribution of relative errors (ϵ̂) across heads

(b) Hoeffding budget : (top-left) mean and maximum average relative error per head; the dashed line
is the target error tolerance (ϵ) (top-right) the fraction of queries (δ̂) that are within the specified error
tolerance (ϵ) (bottom-left) vAttention budget per head with Hoeffding bound b̂ << N (bottom-
right) distribution of relative errors (ˆepsilon) across heads

Figure 13: Layer 1 analysis: For early layers, the Hoeffding budget is non-vacuous and is highly
likely to meet the verification thresholds. Further, the budget with CLT relaxation leads to much
smaller budgets while providing a decent likelihood with average relative error within the tolerance
error (ϵ)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) CLT budget : (top-left) mean and maximum average relative error per head; the dashed line
is the target error tolerance (ϵ) (top-right) the fraction of queries (δ̂) that are within the specified
error tolerance (ϵ) (bottom-left) vAttention budget per head with CLT relaxation (bottom-right)
distribution of relative errors (ϵ̂) across heads

(b) Hoeffding budget : (top-left) mean and maximum average relative error per head; the dashed line
is the target error tolerance (ϵ) (top-right) the fraction of queries (δ̂) that are within the specified error
tolerance (ϵ) (bottom-left) vAttention budget per head with Hoeffding bound b̂ << N (bottom-
right) distribution of relative errors (ˆepsilon) across heads

Figure 14: Layer 16 analysis: For middle layers, the Hoeffding budget is more conservative and
is requires high budget to meet the verification thresholds. Further, the budget with CLT relaxation
leads to much smaller budgets while providing a decent likelihood with average relative error within
the tolerance error (ϵ), but have higher local errors

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) CLT budget : (top-left) mean and maximum average relative error per head; the dashed line
is the target error tolerance (ϵ) (top-right) the fraction of queries (δ̂) that are within the specified
error tolerance (ϵ) (bottom-left) vAttention budget per head with CLT relaxation (bottom-right)
distribution of relative errors (ϵ̂) across heads

(b) Hoeffding budget : (top-left) mean and maximum average relative error per head; the dashed line
is the target error tolerance (ϵ) (top-right) the fraction of queries (δ̂) that are within the specified error
tolerance (ϵ) (bottom-left) vAttention budget per head with Hoeffding bound b̂ << N (bottom-
right) distribution of relative errors (ˆepsilon) across heads

Figure 15: Layer 32 analysis: For late layers, the Hoeffding budget is less likely to meet verification
thresholds. Further, the budget with CLT relaxation leads to much smaller budgets while providing a
decent likelihood with average relative error within the tolerance error (ϵ)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F ABLATION OF DIFFERENT ϵ, δ CHOICES FOR NUMERATOR AND
DENOMINATOR VERIFIED APPROXIMATION

Figure 16: Denominator-verified approximation. Average density and average layer error for different
configurations. Note that for reasonable choices of δ, the correlations between user defined ϵ and
average layer error is very high, implying fine-grained control over errors. These plots are created for
niah multikey 2 with fs = fl = 128, ft = 0.05, fb = 0.05 and we do not lower cap the computed
budget by base sampling budget as we do in experiments to produce these plots.

Figure 17: Numerator-verified approximation. Average density and average layer error for different
configurations. Note that for reasonable choices of δ, the correlations between user defined ϵ and
average layer error is very high, implying fine-grained control over errors. These plots are created for
niah multikey 2 with fs = fl = 128, ft = 0.05, fb = 0.05 and we do not lower cap the computed
budget by base sampling budget as we do in experiments to produce these plots.

Few things to note in Figure 16 and Figure 17.

• The correlations of average layer error with ϵ in both cases is very high (almost a linear
relation). Which means that both the verified recipes are effective in providing fine-grained
control over actual errors.

• Varying the ϵ, δ you can span a wide range of sparsity. The ϵ settings for the numerator
have to be higher since numerator operates the guarantee in a higher-dimensional space
(head dim). And in higher dimensions, the volume contained in ϵ radius ball is exponen-
tially smaller than in lower dimensions (e.g. 1 for the denominator)

G BOOT STRAPPING THE σ2 FOR DENOMINATOR AND TR(Σ) FOR
NUMERATOR. HOW BIG BASE SAMPLES DO WE NEED?

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 11 shows the errors in estimating the required statistics for numerator and denominator verified
recipes.

Table 11: The average error in estimating variance in the denominator (σ2) and trace in numerator
(Tr(Σ)). We see that even with tiny samples, the important variances and traces are approximated
very well. The relative error in estimation increases when we look at smaller variances, but these
not not very important to estimate since the true budget associated with those variances is orders of
magnitude smaller and is lower-capped by base budget in most cases in the implementation.

niah multikey 2

base sampling rate ∼Tokens denominator var (var >0.001) numerator trace (trace >0.01)
0.025 1000 4.74% 2.77%
0.05 2000 4.45% 3.16%

0.1 4000 3.10% 2.00%
qa 1

base sampling rate ∼Tokens denominator var (var >0.001) numerator trace (trace >0.01)
0.025 820 4.91% 2.67%
0.05 1640 3.78% 2.04%

0.1 3280 2.57% 1.30%
vt

base sampling rate ∼Tokens denominator var (var >0.001) numerator trace (trace >0.01)
0.025 820 5.31% 2.69%
0.05 1640 3.63% 1.72%

0.1 3280 2.46% 1.42%

H QQ PLOTS FOR DENOMINATOR

. Figure 18 shows that the estimator of denominator is indeed normally distributed following CLT.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 18: Validity of CLT : The above histogram and QQ plots show that the estimator constructed
for the denominator indeed follows a distribution very close to the normal distribution, validating the
use of CLT in the vAttention procedure. The sampling rate is relative to context window size which
in this experiment is 32K

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

I SENSITIVITY ANALYSIS FOR DIFFERENT PARAMETERS OF VATTENTION

To understand the stable region of parameters, we perform the following experiment. Starting from a
natural config of

sink_size=128,
window_size=128,
HashAttentionTopK(heavy_size=0.05)
base_rate_sampling=0.05,
epsilon=0.05,
delta=0.05,

we vary each individual parameter one at a time in the following ranges

sink_size=[0, 2, 4, 8, 16, 32, 64, 128]
window_size=[0, 2, 4, 8, 16, 32, 64, 128]
HashAttentionTopK(heavy_size=[0, 0.005, 0.01, 0.025, 0.05, 0.1]
base_rate_sampling=[0, 0.005, 0.01, 0.025, 0.05, 0.1]
epsilon=[0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5]
delta=[0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5]

The layer errors observed are presented in the following figure.

Figure 19: The figure shows layer error as a function of density while varying each parameter across
a range of values mentioned in manuscript. The black fitted curve represents the typical relationship
between layer error and density. Different parameter settings move the system along this curve, and
departures from it reveal unstable regions for each parameter. From these trends we can conclude
that sink size and window size should not be extremely small. Setting either of them to zero leads to
very large errors. Sink sizes of at least two and window sizes of at least sixty four remain stable. The
base rate for sampling should also not be too small. A value of at least 0.025, meaning 2.5% of the
context window, is stable. The heavy size for top k should again not be too small, and values of 0.025
or higher are stable. By choosing safe values for these core parameters, the layer error versus sparsity
tradeoff can then be explored through the epsilon and delta values.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

J WIDER EMPIRICAL RESULTS

Model Density DoubleSparsity MagicPig OracleTopK OracleTopP PQCache dense vAttention(OracleTopK)

Qwen3-30B-A3B-Instruct-2507 2% 22.00 20.67 90.58 92.27 90.91 - 90.89
5% 25.22 32.50 91.11 91.75 90.94 - 90.89
10% 36.20 38.43 91.41 91.33 91.52 - 90.80
20% 59.57 69.25 91.08 91.33 91.17 - 90.63
100% - - - - - 91.02 -

Qwen3-4B-Instruct-2507 2% 18.39 18.72 86.33 88.83 85.80 - 87.61
5% 21.55 29.33 87.44 88.06 87.56 - 88.17
10% 26.02 39.63 87.61 88.33 87.67 - 86.94
20% 47.50 76.37 88.22 87.72 87.67 - 88.22
100% - - - - - 88.67 -

Llama-3.1-8B-Instruct 2% 34.90 16.28 74.10 86.07 68.95 - 87.18
5% 52.83 24.83 83.83 87.01 83.14 - 86.72
10% 74.75 30.20 86.37 87.45 86.29 - 87.50
20% 83.40 44.08 86.90 87.62 86.98 - 88.11
100% - - - - - 87.89 -

Llama-3.2-1B-Instruct 2% 8.50 6.05 25.38 31.30 21.18 - 36.78
5% 12.12 11.80 32.66 34.74 30.47 - 37.80
10% 15.57 11.80 35.22 35.81 36.18 - 37.83
20% 21.81 15.78 35.89 36.00 35.97 - 37.51
100% - - - - - 37.47 -

Llama-3.2-3B-Instruct 2% 18.57 17.22 41.57 51.19 39.30 - 59.25
5% 24.32 21.86 47.32 56.41 46.32 - 65.45
10% 30.77 21.86 53.33 59.34 51.72 - 65.09
20% 40.26 36.19 59.00 62.15 59.25 - 65.95
100% - - - - - 66.25 -

Table 12: Model performance across different baselines and sparsity levels

32

	Introduction
	Related Work
	Background and Motivation
	vAttention: Verified Sparse Attention
	verified-D and verified-N
	verified-SDPA

	Experiments
	Conclusion
	Additional Experiments Results and Details
	Pareto plots for Llama-3.1-8B-Instruct
	Achieving required sparsity.
	Detailed results at 10% sparsity
	Comparative results of HashAttention vs. Others
	Long Generation with vAttention
	Ablation (,)

	Detailed Related Work
	Static Sparse Attention
	KV Cache compression methods
	Approximate top-k based Sparse Attention
	Approximate top-p based Sparse Attention
	MagicPig: LSH sampling based Sparse Attention

	Evaluation Setup and Comparison on MagicPig
	Theory
	Derivation via Central Limit Theorem (CLT)
	Corollaries for Numerator and Denominator
	Combination of approximations of numerator and denominator
	Why reducing bias in estimation is more important than reducing variance.

	Empirical Analysis of Tightness for CLT and Hoeffding Bounds
	Summary analysis across layers
	Layer-Specific Analysis

	Ablation of different , choices for numerator and denominator verified approximation
	Boot strapping the 2 for denominator and Tr() for numerator. How big base samples do we need?
	QQ plots for denominator
	Sensitivity analysis for different parameters of vAttention
	Wider empirical results

