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ABSTRACT

Reinforcement learning fine-tuning (RLFT) is a dominant paradigm for improv-
ing pretrained policies for downstream tasks. These pretrained policies, trained
on large datasets, produce generations with a broad range of promising but un-
refined behaviors. Often, a critical failure mode of RLFT arises when policies
lose this diversity and collapse into a handful of easily exploitable outputs. This
convergence hinders exploration, which is essential for expanding the capabilities
of the pretrained policy and for amplifying the benefits of test-time compute scal-
ing. To address this, we introduce an objective for policy gradient methods that
explicitly enforces the exploration and refinement of diverse generations, which
we call a polychromic objective. We then show how proximal policy optimization
(PPO) can be adapted to optimize this objective. Our method (1) employs vine
sampling to collect on-policy rollouts and (2) modifies the advantage function to
reflect the advantage under our new objective. Experiments on BabyAl, Mini-
grid, and Algorithmic Creativity show that our method improves success rates by
reliably solving a larger set of environment configurations and generalizes better
under large perturbations. Moreover, when given multiple attempts in pass@n
experiments, the policy achieves substantially higher coverage, demonstrating its
ability to maintain and exploit a diverse repertoire of strategies.

1 INTRODUCTION

Reinforcement learning fine-tuning (RLFT) is widely used to enhance the performance of pretrained
models across diverse downstream domains. For instance, RLFT has been applied to steer large
language models (LLMs) toward instruction following and complex reasoning (DeepSeek-Al et al.,
2025; OpenAl et al., 2024; Qwen, 2025). A common thread across these settings is the availability
of expressive generative models (i.e., pretrained distributions), trained on large and diverse datasets,
that already exhibit a broad repertoire of strategies. RLFT then refines these distributions by
reinforcing the strategies that yield higher reliability and performance.

However, exploration during RLFT remains a central challenge. Prior work (Cui et al., 2025; Zhao
et al., 2025) has documented entropy collapse: instead of expanding their repertoire, fine-tuned
policies concentrate probability mass on a narrow set of high-reward behaviors already present
in the pretrained distribution, effectively sacrificing entropy and diversity. This limits exploration
and prevents the discovery of alternative strategies that could expand the base model’s capabilities.
Empirically, this effect is captured by the pass@n metric, which measures the probability that at
least one out of n independently sampled rollouts succeeds. When n is large, RL-fine-tuned models
often underperform their pretrained counterparts because the latter retain greater diversity (Yue
et al., 2025; Wu et al., 2025). Such diversity is practically important; it supports generalization to
new tasks (Kumar et al., 2020) and amplifies test-time compute scaling (Snell et al., 2024).

The goal of this paper is to study how to induce policies to explore and refine a diverse repertoire
of generations through RLFT. Our key insight is that algorithms should optimize objectives that
explicitly encourage exploration and refinement of the diverse generations already embedded in the
pretrained distribution. Standard regularization techniques, such as entropy bonuses, often induce
local or token-level variation but fail to promote semantic or trajectory-level exploration and can
be overshadowed by the RL objective. In contrast, we propose a unified formulation that directly
optimizes for a diverse set of successful behaviors, encouraging the policy to generate broad, varied
trajectories rather than collapsing onto a few high-reward ones.
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To this end, we propose the framework of set reinforcement learning (set RL), where the objective
is defined over a set of trajectories sampled independently and evaluated by a multi-sample objec-
tive (Tang et al., 2025). Unlike standard RL, which maximizes the likelihood of a single optimal
trajectory, set RL maximizes the likelihood of an optimal set of trajectories sampled independently
under a set-level objective. Within this framework, we introduce polychromic objectives which
combine reward and diversity by scoring sets highly only if they contain both successful and diverse
trajectories. Optimizing a policy with respect to this objective is a principled approach towards
encouraging the policy to explore and search for a diverse set of generations that also maximize
reward. We then instantiate one such objective and show how proximal policy optimization
(PPO) (Schulman et al., 2017b) can be adapted to optimize it effectively, yielding a practical
algorithm we call polychromic PPO. We evaluate our method on BabyAlI (Chevalier-Boisvert et al.,
2019), Minigrid (Chevalier-Boisvert et al., 2023), and Algorithmic Creativity (Nagarajan et al.,
2025). Our results show that polychromic PPO achieves higher rewards and success rates, generates
diverse trajectories that substantially improve pass@n coverage, and generalizes more robustly to
perturbations in the initial state.

2 PRELIMINARIES

We consider a Markov decision process (MDP) defined by state space S, action space A, transition
dynamics distribution p(s¢41 | st, at), reward function r : S x A — R, initial state distribution
po and discount factor v € (0,1). In reinforcement learning (RL), the goal is to learn a policy
that maximizes the value V(mg) = Err, [DorooV'7(s¢,a¢)] = Err, [R(7)] where R(7) is the
(discounted) sum of rewards in trajectory 7. One widely used RL algorithm is proximal policy
optimization (PPO) (Schulman et al., 2017b) which, iteratively, collects rollouts under a behavior
policy 73 and updates a policy mg by constraining the divergence between the two policies from
growing too large: letting r, = mg(ay | s¢)/ms(as | s¢), PPO optimizes an empirical estimate of the
following:

Eg,md™ (),aimms (-s0) [min (rtfl(st,at),clip(rt, 1—e1+ e)fl(st, at))} . (1)

where d™ (s) is the stationary state-visitation distribution under policy 4.

3 REINFORCING EXPLORATION DURING RLFT

We aim to address the problem of entropy collapse during RLFT through a method that explicitly
induces exploration by encouraging the generation of diverse trajectories. In §3.1, we introduce
a variant of RL that allows for objectives beyond reward maximization and observe its various
properties. This framework will provide us with a way to optimize objectives that are beyond return
maximization, such as objectives that also encourage exploration. In §3.2, we specify the objective
used within this framework for that purpose, which we call a polychromic objective. In §3.3, we
propose our practical algorithm for optimizing the objective.

3.1 SET REINFORCEMENT LEARNING

We introduce a variant of the standard RL setup in which, given an objective function, we optimize
over a set of trajectories. We call this framework set reinforcement learning (set RL), where the
goal is to solve:

nglx EnmNﬂe('\So) [f(SO; T1," aTn)] . )

Here f(sg, 71, ,7Tn) is some objective function over trajectories 7y.,, = {71, -+, 7} sam-
pled independently from the policy. This is in contrast to standard RL where the problem,
maxg B, (|s,) [R(7)], uses an objective function, R(7), defined over a single trajectory. The
generality of set RL makes it a powerful tool for objectives beyond sum of rewards. Set RL objec-
tives can be optimized using policy gradient methods by noting that

n T
Vf)ETl;n’vﬁs(‘lSo)[f(so?ﬁin)] =K+ ~mo(ls0) [(f(507 Tl:") - f(SO)) Z ZVG log 779((1?/) ‘ ng))] (3)
i1=1 t=0

where f(sg) is a variance-reduction baseline. In this paper, we use the baseline f(so) =

By oo (-50) Lf (805 T1:n)]. Note that the advantage term f(so,71.,) — f(s0) is shared across all
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trajectories in the set 7y.,,. This is a key defining feature of the set RL framework; the log-probability
gradient of all trajectories in a set must be multiplied by the same factor. This contrasts with Tang
et al. (2025), which also use n-sample objectives but employs trajectory-specific baselines (e.g.,
leave-one-out) leading to advantages of the form f(so, 71.n) — f(S0, T1:i—1, Ti+1:n); SO the update
for trajectory 7; depends on a baseline computed from the remaining trajectories, yielding individ-
ualized credit assignment. In our case, a uniform baseline provides a common update signal to all
trajectories in the set, enabling optimization with respect to the quality of the entire set of trajecto-
ries. In other words, by definition, set RL does not distinguish between trajectories within a set, but
instead optimizes the policy by comparing across sets as a whole. Note that the set RL framework
can still be used to optimize the standard RL objective by choosing f(so, T1:n) = = > i, R(7;).
However, the framework allows for a broader class of objectives, such as inference-time objectives

(Tang et al., 2025).

Notice that set RL is distinct from the framework of multi-objective reinforcement learning (Roijers
et al., 2013). In multi-objective RL, we aim to maximize the same objective as in standard RL,
except the rewards are vector-valued. As such, the objective is still defined over a single sampled
trajectory, as opposed to being defined over a set of trajectories. While it is possible to consider
vector-valued rewards in the set RL framework as well, in this paper we focus on optimizing scalar
valued objectives of the form f(sg, 71.,) € R.

Before we move on to our proposed algorithm, it is helpful to construct a notion of value functions
in the framework of set RL i.e., the expected sum of rewards as specified by the objective. We
begin with a simplified (but impractical) setting. Suppose that at every state s encountered during
an on-policy rollout, we can sample a set of n actions, ay., ~ mg(- | ), which lead to n trajectories
stemming out of every state that branch even further along timesteps. Then, given this set of actions,
a1, taken from the state s, the policy gets the set reward f(s, a1.,) with respect to the objective
function f. Although such a setup is impractical for long-horizon tasks, analyzing it will help us
better understand what set RL algorithms should aim to achieve.

Under this assumption, the data collection process naturally generates a state-visitation tree.

Beginning at the root state sg, each visited state s branches into n children, one for each sampled
t

action. At depth ¢, the tree therefore contains n' states, denoted by sil), R s,g" )

sgl), the corresponding set of n sampled actions is written as (at)gtzl Given this tree-structured

rollout and assuming an infinite-horizon discounted return, we define the value functions associated

with set RL as follows:

. For each state

Definition 3.1 Given a policy m generating a state-visitation tree and a set objective f : S x A" —
R, the set value function V. (s; f) and the set Q-function Q% (s, ay.,; f) are defined as
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We use the notation V*# and QF to distinguish it from the value function and @Q-function in standard
RL. Here, we assume that the discount factor v € (0, %L) to ensure values remain bounded - the
range is smaller since at we add the expected sum of rewards from n actions stemming out of each
state. Intuitively, V/#(s) is the expected discounted return of the entire state tree rooted at s, where
the reward at each node is given by the set objective. In contrast, Q% (s, a1., ) evaluates the expected
return of the tree that begins at s with the specific action set ay.,,. Note that, although we assumed
sets at the action-level instead of at the trajectory-level, this setting is equivalent to the trajectory-

level set RL as in eq. (2) under the objective function F(s, 7.,7) == 31, Zf;l FF(D (a) ()

1n
in the finite-horizon setting (in the infinite horizon setting, we would have take the limit 7" — o0).
These definitions help us better understand the objective of set RL. In standard reinforcement
learning, we want to learn the policy such that the expected return from a trajectory is maximized.
In set RL, we want to learn the policy that maximizes the expected return from a tree generated
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using our policy is maximized. Given these definitions, we have the following result which is an
extension of the performance difference lemma (Kakade & Langford, 2002) to the set RL setting
(see §C.1 for proof):

Lemma 3.2 Given any two policies 7y and mg and a fixed initial state sy, under any set objective
function f,

VE (505 1) — V2 (503 ) = —

:1—771

# .
]ESngre(')1a1:nN779('|5) |:A7Tﬂ (3; a1:n;5 f)} .

Similar to the standard reinforcement learning setting, this result says that if we update the policy g
to g such that, at all states visited by mg, the advantage A% (s, a1.n; f) = Q% (s, a1n; f) =V, (s)
of a set of actions taken by our new policy 7y is positive, then we will get a policy that has strictly
higher performance (as measured by its value). This suggests that many of the principles underlying
methods like PPO can be extended to the set RL paradigm as well for policy improvement.

Having seen the generality of set RL, we now construct an objective function to be used within this
framework that will allow us to induce exploration.

3.2 A PRACTICAL POLYCHROMIC OBJECTIVE

Our central construction is the notion of polychromic objectives that are aimed towards training an
agent to explore and learn a diverse set of behaviors. Intuitively, these are set objective functions
fpoly : & x T™ — R that jointly capture (1) the success of a set of trajectories in terms of reward
and (2) the degree to which the set exhibits exploration or diversity. While we later generalize
this construction in §5, in this section we focus on the specific objective used in our algorithm and
experiments:

S|

fpoly(37 Tl:n) =

> R(ri)d(s, T1n), 6)
i=1

where R(7;) is the discounted sum of rewards in trajectory 7;, and d(s, 71.,,) is a function that
quantifies the diversity of trajectories within the set. We require that both R(7;) and d(s, 71.,)
are normalized between 0 and 1. Because the set-RL gradient uses a shared advantage for all
trajectories in a set, this objective increases the likelihood of successful behaviors and diverse
exploratory trajectories. Unlike prior approaches, the shared advantage term amplifies exploratory
trajectories that do not (yet) yield high rewards, pushing the policy to discover diverse strategies.

Various diversity metrics have been studied and incorporated in reward functions in prior works;
examples include the Vendi Score (Friedman & Dieng, 2023) and classifier-guided diversity
(Zhang et al., 2025; Li et al., 2025). Our algorithm is designed to be agnostic to the choice of
metric: given any diversity function, we evaluate the success and diversity of a set of trajectories
and optimize the policy to maximize both in sets.

3.3 PoLycHRoOMIC PPO

In this section, we present an algorithm for optimizing eq. (6) by modifying PPO, which is
motivated by the extension of the performance difference lemma to the set RL framework (as shown
in Lemma 3.2). We choose to modify PPO since it is a widely used algorithm for reinforcement
learning fine-tuning (Ouyang et al., 2022; Stiennon et al., 2020) known for stability and greater
sample-efficiency (Achiam, 2018). However, the modifications we propose to instantiate our
algorithm can be used to modify other algorithms too, such as REINFORCE, in order to optimize
eq. (6). Our approach differs from standard PPO in two key respects: the method using which we
sample on-policy rollouts and the advantage function used in the update.

A direct implementation of the definition of set advantage functions as in Lemma 3.2 would require
sampling n actions from every visited state, leading to exponential data requirements. To avoid this,
we instead rely on vine sampling (Schulman et al., 2017a; Kazemnejad et al., 2025) for on-policy
data collection. In vine sampling, after collecting an initial set of rollouts, we select a subset
{s51,..., sp} of the states visited, called rollout states. At each rollout state s;, we generate N
additional rollouts (called vines) starting from s;. This procedure ensures that we obtain multiple
states with independently sampled trajectory sets stemming out of them. The particular scheme
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we use is closely related to the vine sampling scheme in TRPO (Schulman et al., 2017a); details
are deferred to §A.1.1. Our algorithm, however, is compatible with any vine-sampling method that
guarantees sufficient vine coverage. Note that, since vine sampling requires the ability to reset the
environment, our algorithm is only applicable to environments where such resets are possible.

Given access to sets of trajectories from each rollout state, we can estimate the polychromic
advantage. At a rollout state s; from which we generated N > n trajectories, we estimate the
polychromic advantage as

IR .
AF(s1, a1 fpoty) = - ZR(Ti)d(sth:n) — V(515 fpoly)
=1

where a; € 7; for some 7 € 1,...,n. Since PPO requires an advantage defined for individual
actions, we assign to each action a; the advantage of the set 7., that contains it. In other words,
given a set of trajectories 7.y, all actions taken from s; in this set receive the same update signal as
desired in set RL. We use the following Monte Carlo estimate of the value baseline: v (s¢; fpoly) =
& SM Footy (st 7'1(2,,)1), where Tl(lr)ml € {1,---, M} denotes the M independently sampled sets of
n trajectories starting from s;. This unbiased estimate was sufficient for our experiments, but one
can trade off variance further by using biased estimates which we leave to future work.

For non-rollout states, the update remains the same as standard PPO, using generalized advantage
estimation (GAE) (Schulman et al., 2018). As is often used in practical implementations of PPO,
we also include a per-state KL penalty Dk, (73(- | s)|ma(- | s)) at every state visited, which we
found helpful for stability. The pseudocode is presented in algorithm 1, with modifications relative
to PPO highlighted; extended pseudocode and implementation details are given in appendix A.

Algorithm 1 Polychromic PPO

1: for iteration = 1,2,... do
2 Collect trajectories under 7g; rollout vines 71,37 from rollout states
3 if s; rollout state then

4 Form sets, g1, ..., gn of n trajectories from s,

5 Set A(se,at) = fpoly(St,95) = % 21y fooly (st, ;) for (st a:) € gs
6: else
7

8

9

0

1

Compute A(s;,a;) via GAE

end if

Update my for K epochs on minibatches B by maximizing the PPO objective in eq. (1)
Set T3 < Ty

1
11: end for

4 EXPERIMENTAL EVALUATION

Our experiments aim to answer two questions: (1) How does polychromic PPO, a set RL algorithm
that explicitly encourages diverse trajectory generation, affect performance? More specifically, does
improving diversity come at a significant cost in accuracy and success rate? (2) Does polychromic
PPO encourage the policy to explore and learn diverse behaviors? In particular, learning to
solve a task through diverse generations should, ideally, increase the pass@n performance i.e.,
the probability of succeeding at least once when given multiple attempts. (3) Does encouraging
the policy to explore and maximize the diversity of generated trajectories help the policy to be
more robust to perturbations in the state-visitation distribution? To address these questions, we
evaluate on Minigrid (Chevalier-Boisvert et al., 2023), BabyAlI (Chevalier-Boisvert et al., 2019),
and Algorithmic Creativity (Nagarajan et al., 2025). We evaluate on these environments since they
allow for a diverse set of solutions We provide full environment and implementation details in §A,
and briefly describe the environments below.

Minigrid and BabyAlI are grid-world platforms with multiple rooms populated with keys, balls,
and distractors. The agent receives natural-language goals (e.g., open a red door and then go
to the ball on your left after placing the grey ball next to a door). We pretrain our policy on
expert demonstrations (Chevalier-Boisvert et al., 2023; 2019); we then fine-tune and evaluate
on 50 fixed configurations (each configuration specifies a grid layout and mission pair). In the
triangle discovery task in Algorithmic Creativity, an agent must output sequences of triangles from
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Pretrained REINFORCE w/ PPO w/ Poly-PPO Poly-PPO
Environment policy REINFORCE UCB PPO UCB (ours) w/ UCB (ours)
Goto (0.246,34.2)  (0.533,73.0) (0.538,73.4) (0.406, 46.2) (0.428,47.4) (0.575,80.2) (0.561,76.2)
Pickup (0.141,21.4)  (0.259, 39.8) (0.391, 56.0) (0.283,33.4) (0.243,27.8) (0.452,63.2)  (0.486, 65.6)
Synthseq (0.157,20.2)  (0.325,45.4) (0.361, 47.8) (0.277,32.2) (0.224,26.2) (0.341,47.0)  (0.317,43.2)
Bosslevel (0.212,20.6)  (0.266, 33.4) (0.286, 36.4) (0.336,38.8) (0.310,35.8) (0.378,45.2)  (0.379, 46.8)

Four Rooms  (0.469,70.4)  (0.639,89.6)  (0.672,92.6)  (0.618,89.2) (0.502,78.6) (0.666,92.4)  (0.667, 93.2)

Table 1: Average reward and success rate (%) on BabyAlI and Minigrid tasks. Each value is averaged
over 100 rollouts across 50 configurations and 3 random seeds.

undirected graphs that are not revealed to the agent in context; the agent must learn the graph from
recalling data it has already seen and through further interactions during RLFT. We pretrain on
triangles and edges drawn from 10 graphs, and then fine-tune on 3 graphs.

We compare polychromic PPO (Poly-PPO) to REINFORCE with baseline (Williams, 1992) and
standard PPO (Schulman et al., 2017b). We also compare with a UCB-style regularization (Azar
et al., 2017) where we add Aycp - min{1, N(s,a)"2} to every advantage A(s,a). Here, N(s,a)
is the number of times action a was sampled from state s and Aycp is a hyperparameter. For Poly-
PPO, we define the diversity function d(s, 71.,) to be the fraction of distinct trajectories in 7i.,;
in Minigrid/BabyAl, two trajectories are called distinct if they visit different sets of rooms and, in
Algorithmic Creativity, two trajectories are distinct if they visit different sets of nodes. In both cases,
d = 0 if all trajectories visit the same set of rooms or nodes.

All of these are long-horizon, sparse reward settings. Since the pretrained policy struggles to solve
several of these long-horizon tasks, the policy must strategically explore during RLFT and avoid
collapsing onto behaviors that solve only a subset while failing to generalize to the rest.

4.1 How DOES PoLYCHROMIC PPO AFFECT PERFORMANCE?

The results summarizing performance, in terms of average reward and success rate, in Minigrid and
BabyAlI are provided in table 1. We find that Poly-PPO consistently matches or outperforms the best
baseline in reward and success. Adding the UCB bonus helps the baselines, REINFORCE and PPO,
improve performance in some environments. We find that UCB is complementary to Poly-PPO as
well - the bonus enables the agent to achieve higher performance in Pickup and Bosslevel.

The results on Triangle Discovery are shown in fig. 2, validity is the number of valid triangles
constructed. Diversity is the number of unique valid triangles and creativity metric is defined as the
percentage of generations that are unique valid triangles not present in pretraining data (Nagarajan
et al., 2025). PPO substantially increases validity compared to the pretrained policy, but lower
creativity and diversity. On the other hand, Poly-PPO achieves slightly lower validity than vanilla
PPO, but the gap is modest and highlights the tradeoff it strikes between success and exploration
which we discuss in the next subsection.

4.2 DOES POLYCHROMIC PPO ENCOURAGE DIVERSE GENERATIONS?

Success rates do not adequately represent the coverage of tasks that the policy can solve. Since
success rates are averaged across all configurations, a policy that overfits to a subset may achieve
high reward there while failing elsewhere. To probe this, we examine pass@n curves - for each
configuration, we provide the policy n attempts and find the fractal of configurations the policy
can solve, which is called the pass rate. As n increases, methods that generate diverse trajectories
should, ideally, achieve greater coverage/pass rate.

Pass@n results on the BabyAl environments are shown in fig. 1. We first discuss all methods
without the UCB bonus. We observe that REINFORCE does not improve pass rate sufficiently
fast as the number of attempts increases: despite higher success rates overall, its coverage is lower
than the pretrained policy at large n. PPO, on the other hand, starts off from a much lower pass
rate than other methods at small n but the pass rate increases as n grows; however, it is still lower
than the pretrained policy and significantly lower than Poly-PPO. This indicates that these baseline
methods suffer from an inherent trade-off between diversity and accuracy in the generations. In
comparison, Poly-PPO achieves substantially higher pass rate than all baselines. It also achieves
equal or higher pass rate than the pretrained policy at almost all values of n. Another indicator for
the higher diversity in generations is that the pass rate for Poly-PPO continues to rise until about
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Figure 1: Pass@n on BabyAlI tasks. Top: methods without UCB. Bottom: methods with UCB. Each
curve is pass rate vs. number of attempts.

n = 80, whereas the baselines saturate much earlier (around n = 20). The effect is pronounced,
especially, in Bosslevel where Poly-PPO achieves around 15% higher pass rate as n grows to 160
whereas baselines see modest increase.

We next examine the effect of adding the UCB bonus.

For REINFORCE, the bonus improves pass rate at small 100 B2 ™ g LB
n in Pickup and Synthseq, but the gain saturates around £ Creativity
n = 10 and vanishes for larger n; it has no effect in R oo
Bosslevel or Goto. For PPO, the bonus reduces pass =
rate at small n, and although it improves performance %o. L6
at larger n, the gap to the pretrained policy and Poly- 12 .
PPO remains. By contrast, combining UCB with Poly- .
PPO yields equal or higher coverage across most n (ex-
PPO

cept small n in Synthseq), showing that Poly-PPO pre-  o.00
serves and refines pretrained diversity rather than collaps-

ing onto narrow behaviors. Figure 2: Results on Algorithmic Creativ-
ity. Bars show normalized values for each
metric, with raw values above each bar.
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In the Triangle Discovery task, We find that polychromic
PPO achieves substantially higher diversity and creativity.
In particular, Poly-PPO outperforms all baselines, includ-
ing the pretrained policy, on both diversity and creativity metrics, as shown in fig. 2. Although it
achieves slightly lower validity than PPO (significantly larger than REINFORCE though), Poly-PPO
encourages broad exploration and the discovery of novel solutions. This trend is further reflected in
the pass@n evaluation (see fig. 3). Specifically, validity pass@n measures whether at least one of
the n attempts forms a valid triangle; diff @n quantifies the number of unique triangles obtained in n
attempts; and creativity pass@n assesses whether at least one of the n attempts is creative. We find
that Poly-PPO outperforms baselines in both creativity and diversity metrics, while attaining greater
validity performance than the pretrained policy. Notably, even though REINFORCE achieves high
diversity, it comes at the significant cost in validity@ 1 where it is even below the pretrained policy.

We find that Poly-PPO achieves substantially higher diversity and creativity in the triangle discov-
ery task. As shown in fig. 2, it outperforms all baselines, including the pretrained policy, on both
metrics, while maintaining competitive validity above the pretrained policy. This pattern holds in
the pass@n evaluation (see fig. 3). Overall, Poly-PPO surpasses baselines in creativity and diversity
while attaining higher validity than the pretrained policy, REINFORCE and nearly the same as PPO.
Notably, although REINFORCE achieves high diversity, it does so at a steep cost: its validity@1
falls even below that of the pretrained policy.
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Figure 3: Pass@n results on Algorithmic Creativity. For validity pass@n and creativity pass@n,
the agent gets a pass if at least one of the n attempts was a valid and creative triangle, respectively.
In diff @n evaluation, we evaluate the number of generations that were unique given n attempts.

Pretrained ~ REINFORCE ~ REINFORCE PPO Polychromic  Poly-PPO
Environment policy w/ Baseline w/ UCB PPO  w/UCB PPO w/ UCB
Goto 30.2 41.3 37.1 21.1 18.4 60.6 54.3
Pickup 152 22.0 20.5 12.5 8.87 334 28.0
Synthseq 20.0 19.3 26.2 16.6 115 30.6 321
Bosslevel 23.8 225 27.6 26.6 282 343 32.8
Four Rooms 65.0 82.7 81.5 15.3 14.2 88.7 87.2

Table 2: Average pass rate (%) in one attempt on BabyAlI and Minigrid tasks under large initial-state
perturbations.

4.3 DOES POLYCHROMIC PPO GENERALIZE TO STATE PERTURBATIONS?

We evaluate generalization under perturbed initial states in Minigrid and BabyAl. For each
grid—mission configuration, we first find all the rooms visited by the pretrained policy under high-
temperature sampling over 100 rollouts. Then, we select 10 states randomly from inside each room
as our initial states. Effectively, this changes the initial state to a completely different room in such
a manner that the task remains solvable from the new initial state. Note that this randomization
substantially changes the task for the agent; as shown in fig. 5, with respect to the new initial state,
a successful trajectory would require very different strategies. From the new start state, we evaluate
using pass@]1 for all states in each layout. As shown in table 2, consistently, Poly-PPO generalizes
more reliably than baselines under these perturbations.

5 ENTROPY ANALYSIS

In this section, we analyze how the entropy of a policy evolves when trained to optimize the poly-
chromic objective in eq. (6). Our guiding question is: Under the polychromic objective, on which
actions is a policy most likely to collapse its probability mass? In our analysis, we restrict our atten-
tion to the bandit setting i.e., time horizon H = 1, with binary rewards. We assume a discrete action
space, and that the diversity function d(s, a1.,,) equals the fraction of actions in a;.,, that are distinct
(d = 0 if the set is a singleton). We assume that our policy has a softmax parameterization. Before
turning to the polychromic objective itself, we extend the entropy analysis of Cui et al. (2025) to the
set RL setting. In standard reinforcement learning with policy gradient methods, Cui et al. (2025)
showed that, at state s, after one update to the policy, the change in the entropy of the policy at s can
be approximated as:

H(mg ™t | s) — H(mg | 5) ~ aCov(logmy(a | 5), A(s, a)) @)

where « is the learning rate. This result formalizes the understanding that a policy collapses its
entropy onto high-reward actions when there is a strong covariance between the policy’s probability
mass on an action and the advantage of the action.

Given any set objective f : & x A" — R, we ask: how does the entropy of the policy change

after one step update (from wg to 775“) when learning under this set-RL framework? The following

proposition characterizes the first-order change (proof in §5.1):
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Proposition 5.1 Consider the set-RL setup at state s. After one update to the policy, the change in
entropy, A = H (7r§+1 | s) — M (7 | s), is given by

n

1 n
A~ —aCova,,, ( > logm(a; | s),Covay (f(s,a,), Y Ha; = aj})),
i=1

i,j=1
where both covariances are taken with respect to 7§ (- | s) and o is the learning rate.

This result provides a lens for understanding when and where entropy collapse occurs. Intuitively,
suppose that for some reference set a1.,, there is a strong covariance between (i) the overlap of ay.,,
with sampled sets and (ii) the value of the objective f. As the policy concentrates more probability
mass on such sets, the entropy decreases. Conversely, when the covariance is strongly negative,
the policy reallocates probability mass to sets with higher value under f, which increases entropy.
Thus, the central question becomes: which sets a;.,, are most prone to entropy collapse under the
polychromic objective? Our analysis proceeds by introducing and studying the following key object:

Definition 5.2 The scaffold value of a set of actions, a1.,, under a policy w and a set-RL objective
f:8 x A" — Ris defined to be

n

~ 1 ,
Af(al:n;ﬂ') = COVa’l:nNTr('\s)(f(sv allm,)’ I(alzn) Z l{ai = a’j})

ij=1

where I(ay.,,) is the maximum size of the intersection of ay.,, with any other set a}.,,.

The scaffold represents, for every action set a;.,, a measure of the policy’s propensity to collapse
its entropy around that set. We illustrate this further through the following lemma which shows us
how the scaffold value of an action set affects the change in the probability of a policy sampling the
set(proof in §5.1)

Lemma 5.3 Consider any set of actions ay., € A™. The change in the log probability of sampling
this set of actions after one policy update using set RL can be written as the following first-order
approximation:

1og7r§+l(a1;n | s) ~ log 7y (a1 | 8) + alf(ar.,; mh) — aC(6)
where C(0%) is a function independent of a1 ..

With this apparatus in hand, we next show that the polychromic objective rules out collapse onto
homogeneous sets of actions (proof in §C.4):

Proposition 5.4 Consider the polychromic objective in eq. (6). For any homogenous set ay.,, = {a}
where r(s,a) = 1, there exists € € (0,1) such that Ay, | (a) < 0when mg(a | s) > €. Furthermore,

. 1—
the scaffold values of these homogenous sets satisfy the bound Ay, (a) < 4/ w.

This result shows that once a successful action a accumulates sufficient probability mass, the poly-
chromic objective automatically prevents further entropy collapse onto sets that only contain this
action and, when we use larger sets in the set RL framework, the maximum scaffold value of a
homogeneous set decreases. Before that threshold, the scaffold value of homogeneous sets of this
action may be positive, but it is tightly bounded with the bound decreasing further as n grows. This
is desirable since it suggests that our policy learns to generate this action without incessantly col-
lapsing probability mass on and memorizing such homogeneous sets. Next, we analyze the scaffold
values of heterogenous sets with successful actions (proof in §C.5):

Proposition 5.5 Suppose a;.,, is heterogeneous where each a; is unique with probability p € (0, 1).

n

Suppose exactly q of the n actions satisfy r(s,a;) = 1, and that any other action a’ ¢ ay., with
mg(a’ | s) > Oyieldsr(s,a’) = 0. Then, the scaffold value of ay.,, satisfies Ay, (a1.n) > 2" (=p)

n

Note that the set in this proposition includes unsuccessful actions as well that contribute diversity. As
such, there are, likely, several such heterogeneous sets with positive scaffold values that attract more
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probability mass than homogeneous sets. Moreover, lower bound guarantee increases as the number
of successful actions in the set increases. The polychromic objective therefore channels entropy
collapse toward those sets that balance success and exploration, rather than permitting collapse onto
homogeneous behaviors. Together, these results motivate our construction of polychromic objectives
in general. Broadly, such objectives reward both (i) the returns achieved by a set of trajectories and
(ii) the diversity of the trajectories.

Definition 5.6 A polychromic objective is defined as (s, T1.,) = " (s, T1.0) 0D (8, T1:n)

where o) and D are scalar-valued functions that are normalized to the range
[0,1] and satisfy: (1) the covariance of o) with average reward is positive i.e.
CoVry. o (-15) (P (8, 1), iy R(7)) > 0, and (2) the covariance of ¢ with homogene-
ity is negative i.e., Covo,. ny(-1s) (0D (8, T1n), Sty 1{mi = 7}) < 0 for any 7.

In other words, a polychromic objective factors into a reward component with positive covariance to
return and a diversity component with negative covariance to homogeneity. Their product enforces
that both success and diversity are indispensable.

6 RELATED WORK

RL fine-tuning often suffers from entropy collapse, where policies concentrate on a few high-reward
behaviors and lose coverage of the pretrained distribution (Cui et al., 2025; Wu et al., 2025; Yue et al.,
2025). Entropy bonuses (Haarnoja et al., 2017; 2018; Schulman et al., 2017b; Seo et al., 2021; Islam
et al., 2019) mitigate this locally but may struggle to induce semantic or trajectory-level exploration.
Ecoffet et al. (2021) aims to explore more from promising states and trains a policy to robustly
handle stochasticity. Other approaches, more similar to our work, explicitly reward diversity, e.g.,
diversity-weighted objectives (Li et al., 2025), UCB bonuses (He et al., 2025; Lanchantin et al.,
2025), batch-level exploration rewards (Song et al., 2025) or use covariance controls (Cui et al.,
2025). The crucial distinction our work makes is the set RL framework that enables learning a set
of behaviors wherein some trajectories receive positive gradient updates for exploration despite not
contributing the maximum rewards attained in the set.

7 CONCLUSION

We framed the problem of learning a diverse set of successful behaviors in terms of set reinforce-
ment learning and proposed optimizing the polychromic objective, which evaluates sets of actions
using both reward and diversity. We derived polychromic-PPO, a variant of PPO that incorporates
vine sampling and a modified advantage estimator to optimize this objective. There are several lim-
itations of our approach. Firstly, our approach requires the ability to reset the environment to any
set to enable vine sampling. Furthermore, ensuring sufficient vine coverage can be computationally
demanding. Future work could develop more efficient, low-variance gradient estimators, or adopt
curriculum and annealing schemes that balance exploration early in training with exploitation later.
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(a) GoTo: mission “go to purple box.” (b) Pickup: mission “pick up a green
ball.”

(c) Synthseq: mission “put the ball on (d) Bosslevel: mission “put a yellow
your right next to a red ball and pick key next to the blue key and pick up
up a purple ball after you open a grey a ball after you pick up a yellow key.”
door.”

Figure 4: Example BabyAl environments and their missions.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining, 2025. URL https:
//arxiv.org/abs/2504.07912.

A IMPLEMENTATION DETAILS

BabyAlI and MiniGrid. For BabyAl tasks, the policy conditions on the grid image, the agent’s
direction embedding, and the mission text (encoded by a GRU); the action space is the standard
BabyAl/MiniGrid discrete set left, right, forward, pickup, drop, toggle, done. We provide example
configurations for each task in fig. 4. We train a CNN-GRU policy that outputs action logits. In
MiniGrid-FourRooms, the action space is identical, but the observation excludes a mission (as the
goal specification is fixed), so we use a compact MLP that produces action logits conditioned on a
flattened image observation. During pretraining, we use an 80/20 train—test split of expert demon-
strations for each task, except for Synthseq and BossLevel, where we found that the full dataset was
required to obtain a reasonably strong base policy. We used the dataset from Younis et al. (2024).
We pretrain by minimizing the cross-entropy loss with an entropy regularizer.

During RLFT, we fine-tune on 50 configurations. For all tasks except BossLevel and Synthseq, these
configurations are drawn from the pretraining test set; for BossLevel and Synthseq, we did not carve
out a separate test set. If the agent reaches the goal at time ¢ (episode horizon H=100), it receives
the reward 1 — 0.5 - %; otherwise 7 = 0. (BabyAI/MiniGrid defaults to 1 — 0.9 - %; we found
that lowering the time penalty improved diversity during RLFT, especially for REINFORCE, by
reducing the disadvantage of longer but successful trajectories.)
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Algorithmic Creativity (Triangle Discovery). In Triangle Discovery, an agent must output a
sequence of edge tokens that form a valid triangle in an unobserved undirected graph. The input
sequence comprises a graph index plus a prefix prompt and the agent’s past outputs. We set the
maximum sequence length to be 11. The action space is a discrete vocabulary of size 1017. We
pretrain a decoder-only Transformer with masked cross-entropy for 25 epochs. The pretraining
dataset, from Nagarajan et al. (2025), contains 15,000 samples per graph, with the same being a
triangle with probability % and an edge with probability % edges. Each graph has 999 nodes. For
RLFT, we fine-tune on 3 fixed graphs. The reward is sparse: +1 for a valid triangle, O otherwise.

A.1 PoLycHRoMIC PPO

We summarize implementation details for polychromic PPO , beginning with the vine sampling
scheme used for on-policy data collection, then additional stability techniques and full pseudocode
in algorithm 2.

A.1.1 VINE SAMPLING

In this section, we describe the vine sampling scheme (Schulman et al., 2017a) we used for poly-
chromic PPO . In vine sampling, we first generate a number of trajectories. Then, we select a subset
of the states visited, denoted by {s1,...,sp} - this is called the rollout set. For each state s; in the
rollout set (we call this a rollout state), we generate a set of trajectories 7.5 ~ 7g(- | $;). To avoid
notational overload and to make sample accounting explicit, we distinguish:

* n: the set size used by the set-RL objective (number of trajectories per set)
* N: the number of rollouts collected from each rollout state/vine state
* p: the number of rollout states selected along each seed rollout

* M: the trajectory budget i.e., maximum number of trajectories we can collect.

We now discuss the method we used to select the set of rollout states. Our goal is to identify multiple
states from which we want to generate vines so that we can use the polychromic advantage to update
the policy at a large number of states. Suppose, we have a trajectory budget M, i.e., we are allowed
to generate at most M trajectories during the on-policy data collection. We first sample N rollouts
independently where N > n. Now, for each of these N trajectories, we identify p rollout states
according to some criterion. Some examples of rollout state criterion are: (1) Top p states with the
highest entropy; sample more trajectories from states where the policy is more uncertain, (2) Top p
states with the highest critic losses; sample more trajectories where our critic is wrong/biased, and
(3) p equally spaced out states. Suppose the main trajectory is 7' timesteps long. We select the states
at timestep %, 2r ... 2L

pF1 T pFTe

In this paper, we used the third criterion. Note that, in this scheme, we generate, in total, N 4 NV 2 (p—
1) trajectories. Since we are allowed to sample at most M trajectories, we must select NV and p such
that N > nand N +N?(p—1) < M. Across all environments, we set a trajectory budget M = 136
for all methods. As such, we use sets of size n = 4 for set RL, N = 8 vines at each rollout state,
and p = 2 rollout states per trajectory. Note that at each of these rollout states, given we generate [N
rollouts, we can find (]T\Z ) sets for our set RL algorithm. For our chosen hyperparameters, this was
sufficiently large number of sets from each rollout state allowing us to use several sets to compute
the baseline.

A.1.2 OTHER IMPLEMENTATION DETAILS AND PSEUDOCODE

Now, we will discuss other implementation details for polychromic PPO . We provide the pseu-
docode for the complete algorithm in algorithm 2.

We found that adding the KL penalty from the behavior policy was helpful for stability. In the
absence of it, in some tasks, the model’s performance collapses after a certain number of training
epochs. This is likely because our method explicitly encourages exploration and the KL penalty
provides an anchor that prevents the model from drifting too far.

In practical implementation, we found that adding a window within which we update all the advan-
tages to the polychromic advantage to be useful. As shown in algorithm 2, we do not only set the
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advantage at the rollout state s; to be the polychromic advantage - instead, we set the advantages
at states S¢, S¢+1,- -+ , S+ to be the polychromic advantage even though we do not generate vines
from s441, -, Si+w. This ensures that the exploratory behavior that the polychromic advantage
encourages is induced at all states throughout the window. Otherwise, although the policy might
be exploratory at s;, it might revert to being purely exploitative at all subsequent states due to the
updates using the standard PPO objective; this would cause the policy to not explore. This issue be-
comes pronounced in environments where, despite being exploratory at s;, the exploitative behavior
in all subsequent states may override the exploration in s;. This is why this implementation trick
was important in BabyAlI and Minigrid while, in Algorithmic Creativity, we set W = 0 since once
the policy visits a diverse set of nodes from sy, it is not easy to merge paths.

Hyperparameter Value
PPO epochs 2
Minibatch size 64
Discount (v) 1.0
GAE parameter () 0.95
Clipping parameter (€) 0.2
Actor learning rate 1x107°
Critic learning rate 1x1074
Value loss coefficient (c,) 0.5
KL coefficient (Bk1,) {0.005, 0.01, 0.05, 0.1}
Max grad norm 0.5
Temperature 1.0
Size of sets (n) 4
Num. vines at state (V) 8

Polychrome window (W) 5 for BabyAI/Minigrid, O for Algorithmic Creativity
Num. vine states (p) 2

Table 3: Polychromic PPO hyperparameters. All hyperparameters are fixed apart from the KL
coefficient Skr, for which we provide the set we sweep over.

B GENERALIZATION EXPERIMENT

To evaluate the agent’s ability to generalize to initial state perturbations, we designed the following
experiment. First, for each environment seed, we perform 100 rollouts with the pretrained policy
to identify all reachable rooms. Then, for each unique room visited, we evaluate the target policy
(fine-tuned using RL) by placing the agent at 10 randomly selected starting positions within that
room. Performance is measured using the pass@ 1 metric, which calculates the success rate on the
first attempt from these novel starting points. This randomization presents a significant challenge,
as a successful trajectory from a new initial state often requires substantially different strategies than
those effective from the original start state as shown in fig. 5.
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Algorithm 2 Polychromic PPO

Require: pretrained Policy g, value function V, discount v, GAE parameter A, clipping €, policy

epochs K, value coef ¢,,, KL target coef [Skr,
(Poly-PPO specific:) number of sets N, set size n, number of vine states p, number of vines IV,
window length W.

1: Initialize mg < mg

2: for iteration =1,2,... do

3:  Collect on-policy data using fractal sampling:

4: Initialize rollout_states < {} > dictionary: state — list of trajectories

5: Roll out N trajectories using 7g

6: for each trajectory 7 do

7: select p vine states from 7

8: for each vine state s do

9: Roll out IV trajectories from s using 7g
10: Append the new trajectories to rollout _states][s]
11: end for

12: end for
13:  Compute advantages:
14: ifs & rollout_states then

15: (St — 71+ ’}/V¢(8t+1) — V¢(St)
16: Ay + GAE(Se.7,7, ) > generalized advantage estimation
17: Rt — At + V¢(St)
18: elseif s € rollout_states then
19: Create groups g1, 91, -+ , gu of n trajectories from rollout_states]s].
20: Compute set scores score(g;) = fpoly (8, T1:n) for 7., € gs(eq. (6))
21: Compute baseline f(s) = 4 S2M | score(g:).
22: Define polychromic advantage of pairs (s, at), - .., (S¢4w,arrw) € 7 for each 7 € g;:

APY (54 ay) « score(g;) — f(s) > polychromic advantage
23:  endif
24:  Normalize {A;}
25: forepoch=1,..., K do
26: for minibatch B do
27: Compute ratios 7:(6) < %
28: Policy loss:
La(0) = —— S min(r(6)Ar, lip(ri(6),1— €, 1+¢€) Ay)
1Bl i
29: Value loss: Ly (¢) = 571 X e (Vo (st) — Rt)2
30: KL penalty: Lxr.(0) = 57 2 e KL(ms(-[s¢) | 7o (-]5¢))
31: Total loss:
L(0,6) = La(0) + cvLv(d) + Bxr LxL(0)

32: Take gradient step on 6, ¢ to minimize £
33: Update 7g < mg
34: end for
35:  end for
36: end for
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Figure 5: Generalization under state perturbations in BabyAl BossLevel environment. The figure
shows successful rollouts across perturbed initial states (blue circles), highlighting diverse strategies
learned by the agent.

C PROOFS

C.1 PROOF OF LEMMA 3.2

Given the set reinforcement learning framework, we first consider the set up where, from each state
s visited during on-policy rollouts, we can generate n actions, ai.,. As such, from each state, we
generate a tree where each node branches out into n children. We denote all the nodes at depth ¢ of

this tree by sgl), e SE" ),
Furthermore, if from a state s, the agent generates the set of actions a;.,, the agent gets a reward
fooly(ssa1m) = 230 r(s,a;)d(s,a1.,) where 7(s,a;) is the original reward function in the

MDP and d(s, a;.,,) is some function measuring diversity.

For simplicity, we assume that the initial state is fixed. Note that we can construct the distribution
of states visited by policy 7y at time ¢ in this tree as follows:

P(so — {sgl), e ,{sgn/)}7t,7r9)
= P(so — {s*" )},t,ﬂ'g)
= > mo((@0)in | s0) D P(s5) | 50, (a0)rn) -

(a0)1:m S

t 1 nt 1
x 3 mo((am) - ()t ) L si st )

t—1
(a0 (a0 )

1:nt 1:nt—1 nt—1
x P(sg™ ) [ s ) (@) (@) )

Here, each mg(ay., | s) = [/, mo(a; | s). Similarly, we use the following shorthand:
1 nt~! 1 nt~! i
mo((e)in o ()i sty ) H mo((ae)iin | 5i2).

Before we prove the lemma, we make the following observation: suppose the environment’s state
transition dynamics is deterministic, then the polychromic Q-function can be written using the poly-
chromic value function as follows:
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Q(5,a1m) = Footy (5, a1:0) +7 > VE(s()

i=1

where sgl), S sgn) are the states reached from s after taking actions a;., independently.

One can easily verify this by starting from the definition of the set Q-function and noting that:

Z,.yt Z fpoly(sgi)7 (at)gzzl) ‘ S0 = S, al:n(SO) = Q1:n
t= =1

=E 72fp01y(51 y al ® +Z'Y proly St ; at Z?,L)

i=1

=3, | oo 617 (@) B (329" 3 Sy 67, ()00 = 5 o = anmof?: ()

n . n [e%s} nt—t

i i _ n(i—1)+5 n(i—1)+5 so=s,s{%

1Y B [ @) 41 3E S S O, a0 el

i=1 i i=1 t=2 =1 ' " "

n
=72 V)

i=1

Given this and our constructions of the polychromic value functions, the proof of Lemma 3.2 follows
the same procedure as the standard performance difference lemma in Kakade & Langford (2002).

Lemma C.1 Given the state visitation tree generated by policy g and any normalized objective
function f,

oo n
3 3 1
Eﬂe nyt f(sg )7 (a't)g 27,) - WEswdﬁe(s),almwwe(~\s) [f(S, al:")] (®)
t=0 =1
where -
d (s) = (1 —~n) ZZ#P S0 = S, t,mp).
t=0 i=1
Proof.

= Z'yt Z > Plso = st b T0)Ea o [F687, (@) 0)]

=1 ()
St

=1, 1-m Z”y ZZP s0 = 5 1, 70)Eay, (s00) [f(SEi)y(at)gfL)

= (l)

1

N 1-—- ’ynEswdgfg (8),a1:n~mo(+]s) [f(sval:n] .
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O
Lemma 3.2 (restated). Given any two policies 7y and 7g,
1
# f
Vﬂ' ( ) V7T/3( ) 1— 'ynEs“‘dgrg(')aalanﬂ'G('ls) [Arrg (Sa al:n):| . (9)
Proof. We first, show that
0 .
VE (s) — ZZQ (57, (@) () = VE () | s0 = 5] . (10)
t=0 i=1

We show this by the following simplification:

- t -

=Exr, Z 'Yt Jpoly (51@7 (at)(ll:)n) So =S| — Vﬁﬁ (s)

- t -

=Exr, Z 'Yt Jpoly (S§1)7 (at)(ll:zL) So =S8 — Vﬁﬁ (s)

ithvZ% I | o —s]

VYD VE T [ s = ]

1 n(i—1)+
= ]Eﬂ's [Z ’Yt (fpoly (51(5 ) at +’VZ ﬂ‘[—; §+1 ) ﬂ))]
t=0 i

3
3

Now, the first term on the right hand side can be simplified (we suppress the condition that sy = s
in terms of notation):

35S (oo (557, @) +v2 Ei:‘f‘””’ﬁ]

'YtZEﬂe fpoly(sg , (ag)q (1) +7Z sti(z 1)+g))

(2) n(i—1) A
o Esf,i,(at)ﬁf)n E fpoly(sg »(a1); +'VZ §+1 ﬂ)) Stm(at)gzz

=§IHZEQ,7,Q,><> @2, (7, (@)

—1

*
Il

<

-

t

Z'Yt Qwﬁ S¢ )7 (at)gl)n)

t=0 i=1

3

20



Under review as a conference paper at ICLR 2026

Therefore,

=Er, [ Y7 QF, (s, (a))) — Vi, (s7)
t=0 =1

Then, using eq. (8), the statement follows.

C.2 PROOF OF PROPOSITION 5.1

We follow the set-up in Cui et al. (2025). We parameterize the policy as a softmax distribution:

mofa | 5) = =)

o €XD (Zsa7)

where z,, is the output logit of action a from state s. We also have the following derivative:

0
9o logmg(a | s) =1{a’ = a} —me(a’ | s).

First, we prove the following that shows how the output logit changes after one-step parameter
update in the set RL paradigm.

Lemma C.2 Given the softmax policy wg is updated using eq. (3) using a step-size «, the change in
the output logit z, after one step update is given by

n

Zf;rl - Zfa = O‘Eal:nwﬂ"g(-b) f(svalin) Z l{ai = a}‘| - anﬂ-g(a | S)Ea1:n~ﬂg(-\s) [f(saalrn)] .
i=1

Proof. This can be proven by elementary properties of expectation:

k+1 _ _k 9

Zsa Zsa = aﬁEaanﬂg(-\s) [f(87 al:n)]

0
o1 | o 0P | ) (s

a

= o

=

»

0
0zk

1 sa

=akE

arn~mh(¢|s)

.Ms'N

log(mf (a; | 8))f(s,a1:n)]

K2

= o

<M§I

(1as = a} = wh(a ] ) £(s. >]

al:n"’ﬂg(‘|5)

i=1

O
Now we prove the main result:
Proposition 5.1 (restated). Consider the set-RL setup at state s. After one update to the policy, the
change in entropy, A = H (7T§+1 | s) — H (7} | s). is given by

n

1< i
A~ —aCov,, - Zlog g (a; | 5), Covar | f(s,a).,), Z {a; = d}} )
i=1 i,j=1
where both covariances are taken with respect to 75 (- | ).

Proof. We have the following first order approximation of A (Cui et al., 2025):

A r —CovVyrr (s (log mh(a|s), 25t — 2k ).

r~Ysa
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Using Lemma C.2, we get that
A ~anE[f(s, a1:n)]CoVyrk (1) (log g (a | s),mg(a | s))

- aCOVaNﬂ'g(-\s) <10g ﬂ—(];(a’ | s)anlmwﬂ'g(-\s) [f(sv al:n) Z 1{0’1 = a}‘|>

i=1

Note that
Covy,., <f(s,a1:n), Z Ha; = a}) =Eq,., ~rk(]s) [f(s, ai.n) Z Ha; = a}}
i=1 =1
- TL’]Tg(G, | S)Eal:n~w§(~|s) [f(svalin)]
Using this, we get that
A manE[f(s, a1:n)]|Covark(.|s) (log7g(a| s),mg(a|s))

i=1

- CYCOVaNﬂ,g(AlS) <log Wg((l | 3)3 ]Ealmwﬂ'g(-|5) [f(sa al:n) Z 1{(17. = a}‘|>
:om]E[f(s,alzn)]CovaNﬂg(_‘s) (1og 75 (a | s),wg(a | s))

- aCovaNﬂgus) <log7rg(a | 5),Cov,., (f(s,alzn),z Ha; = a}) +

=1

nﬂ-g(a | S)]Ealmrvﬂ'g(»\s) [f(svalzn)] )

= —aCova~W§(,|S) <10g7r§(a | s),Cov,., (f(s,alzn),z H{a; = a})) .

i=1

All that remains to show is

n

1 n
Covg,.,, -~ Zlogﬁg(ai | 5),Covar | f(s,a1.,), Z Ha, = a;}

i=1 ij=1

= COVang(.Ls) <log7r§(a | s),Cov,., (f(s, ai.n), Z Ha; = a})) )

i=1
This can be seen using the linearity of covariance and the fact that each a; in aj., is sampled
independently:

n

1 n
Covyg,., - Zlogﬂg(ai | 5),Covar | f(s,a1.,), Z Ha; = aj}

i=1 ij=1
1 n
= ﬁ Z Covalzn IOg 775 (ai | 3)’ COVa'Ln f(S’ all:n)a Z 1{&1‘ = a';}
i=1 =

= Covyunk(s) <log7r§(a | s),Cova,., (f(s,alm),z Ha; = a}>> .

i=1

C.3 PROOF OF LEMMA 5.3

Lemma 5.3 (restated). Consider any set of actions ay.,, € A™. We can write the change in the log
probability of sampling this set of actions after one policy update using set RL as:

log 5 ™ (a1.0 | 8) = log mh (arn | 8) + @A f(arn; mh) — aC(6F)
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where C(6*) is a function independent of a1.,,.

Proof.  This follows from using a first-order Taylor approximation of > ., log 7r§+1(ai |
s) at Y. ,logm(a; | s) and then using Lemma C.2. Here, C(0%) =
Covai:nwwg(-b) (f(s’ allzn)> Z?:l ﬂ—g(a’llzn | 8)) U

C.4 PROOF OF PROPOSITION 5.4

Proposition 5.4 (restated). Consider the polychromic objective in eq. (6). For any homogeneous set
a1, = {a} where 7(s,a) = 1, there exists € € (0,1) such that Ay (a) < 0 when mp(a | s) > e

Furthermore, the scaffold values of these homogeneous sets satisfy the bound Ay, (a) < 4/ @.

Proof. We first prove the first part of the proposition. Let p = my(a | s). We will use the shorthand
Aa) = Ag,o (a;m9), f = fooly and f = Ea,, wr(.fs) [f (5, @1:n)]. Then,

R R
A(CL) = COVa/I:an@(.|5)(f(S,Clllm), m Z l{ag = aj})
ij=1

n

A 1
= COVa’I:,L~7Ta(~|s)(f(57all:n)7 n Z l{ag = CL})

i=1

= Z Z 7T¢9(al1:n | 5)(f(5’ all:n) - f)(% - ]Ea1;n~7r9(~\s) |fill Z 1{()%' = a}])

=1

S| X w9 - HE )

J=0 \la},,N{a}|=j
lnp] . 2
D ICEY D SRR
§=0 lat.,N{a}|=j
n 4
f Y Een| X w90 - D
j=|np]+1 lal.,N{a}tl=j
[np] .
— (% _ p) Z 7T9((1l1:n | 3)(f(87 a/1:n>)
=0 laf.,N{a}|=j

LD SENCEON D SR I IERTN)

j=lnp]+1 lal.,N{a}tl=j
& j
- f Z Z 7T-9(a/1:n ‘ S)(g _p)
3=01ay,,Nn{a}|=j
Now, we can simplify using properties of the binomial distribution as follows:

- , i N~ (1 n\ i _
> Y malad-n=3(L-p) (2)pa-mi-o
3=0la].,N{a}|=j j=0

Therefore, the scaffold value becomes:

Lnp) .
Ma)= Y (E=p) | > moldra]$)(F(s,a,)
J=0 laf.,N{a}|=j

LD SENC YN B DR N N)

Jj=lnpl+1 lai.,N{a}|=j
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[np] . .
J 2j
S Z(g _p)ﬁ Z 7T-Q(a‘llzn | S)
J=0 laf.,N{a}|=7
~ ] n—j+1
Y Cep—— Y melahals)
j=lnp|+1 la},,,N{a}|=j

= ?—:p:(i —p)% <?>p7(1 —p)"

- J n—j+1/(n\ ; s
J_ IS 1 _ )
+‘§ (=P <j>p( p)
j=lnp]+1

[np]

= ]Z_:O(‘; *p)% <?>pj(1 —p)"

+ S (i—p)w<@>pj(l—p)”j

j=lnpl+1 noo

Here, in the second line, we used the fact when a}.,,N{a} is of size j, then the smallest possible value
of f(s,a}.,)is % since at least 2 out of n elements are unique and at least j out of n elements attain
reward 1. On the other hand, we can bound it above by "%‘H which happens if all elements
get reward +1 and n — 5 + 1 elements are unique. In the last line, we used the fact that when
f(s,al., = {a}) = 0 as the diversity is 0. Now, let e = “~L. Then, whenp > ¢, [np] > n — 1.
Therefore,

Lnp) . .
Mo =3 -pE(")pa-p <o

Now we prove the second part. First, define the following upper bound of the scaffold value of the
homogeneous sets:

M) < Exomninn | (5 =) €200 = Bl

n
% < [mp)
where Cy (z) = { =25z € [[np| + 1,n — 1]
0, z=n

Now, E[£ —p] = 0 and E[(£ —p)?] = Var(£) = L Var(X) = @. On the other hand, we can
bound C,,(X) as follows: when z < |np], Cp(z) = 2% < ZLTLLQPJ < 2. On the other hand, when
j € [lnp] +1,n — 1], we have Cy,(z) = 2=2+1 < 1. Combining, we have that E[C), (X)?] < 1.
Therefore, using the Cauchy—Schwarz inequality:

Ba(n) = Ex Bin(n,p) KX —p> Cn(X)]

n

()
oi=p)

N
=

E[Cn(X)?]
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C.5 PROOF OF PROPOSITION 5.5

Proposition 5.5 (restated). Suppose a;., is heterogeneous where each a; is unique with probability
p € (0,1). Suppose exactly ¢ of the n actions satisfy r(s,a;) = 1, and that any other action

*m/*

a ¢ ay., with mg(a’ | s) > 0 yields r(s,a’) = 0. Then, the scaffold value of a;., satisfies
Afpoly (alrn) > W-

Proof. This can be proven using very similar techniques. Let P; = (2) /(1 —p)"~J. Again, we use
the shorthand f = fi,o1y. Then,

n j
Aarn) = ij(ﬁ - p)Ela’lmﬂaLn\:j [f(s, a'llzn)]
=0

[np]
J
= PO(O 7p) -0+ Z Pj(% 7p)E\a'1:nﬁa1m|:j [f(S, all:n)]
j=1
= j q
+ Pj(; —P)Ela;mmmml:j [f (s, a’m)] + Pp(1—p)- n
j=|np]+1
n—1 q
> 3 B =Bl nen i (.0 + Pa(l =)
j=lnp]+1
q
> P,(1— =
2 Pa(l=p)- -
_@"(1—p)
n
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