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Abstract

The recent success and openness of DeepSeek-R1 have brought widespread atten-
tion to Group Relative Policy Optimization (GRPO) as a reinforcement learning
method for large reasoning models (LRMs). In this work, we analyze the GRPO
objective under a binary reward setting and reveal an inherent limitation of question-
level difficulty bias arising from its group relative advantage function. We also
identify a connection between GRPO and traditional discriminative methods in su-
pervised learning. Motivated by these insights, we introduce a new Discriminative
Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded
in the principle of discriminative learning: increasing the scores of positive answers
while decreasing those of negative ones. The main differences between DisCO
and GRPO and its recent variants are: (1) it replaces the group relative objective
with a discriminative objective defined by a scoring function; (2) it abandons
clipping-based surrogates in favor of non-clipping RL surrogate objectives used as
scoring functions; (3) it employs a simple yet effective constrained optimization
approach to enforce the KL divergence constraint. As a result, DisCO offers notable
advantages over GRPO and its variants: (i) it completely eliminates difficulty bias
by adopting discriminative objectives; (ii) it addresses the entropy instability in
GRPO and its variants through the use of non-clipping scoring functions and a
constrained optimization approach, yielding long and stable training dynamics;
(iii) it allows the incorporation of advanced discriminative learning techniques
to address data imbalance, where a significant number of questions have more
negative than positive generated answers during training. Our experiments on
enhancing the mathematical reasoning capabilities of SFT-finetuned models show
that DisCO significantly outperforms GRPO and its improved variants such as
DAPO, achieving average gains of 7% over GRPO and 6% over DAPO across six
benchmark tasks for an 1.5B model.1

1 Introduction
The recent success and openness of DeepSeek-R1 have sparked a surge of interest in large reasoning
models (LRMs), particularly in the context of fine-tuning via reinforcement learning (RL) [23]. The
core approach involves iteratively generating synthetic data using the reasoning model and applying
a rule-based reward mechanism to label the outputs. These rewards are then used to update the
policy, i.e., the reasoning model itself. Notably, this framework, featuring a novel policy optimization
method called Group Relative Policy Optimization (GRPO), has enabled DeepSeek-R1 to achieve
performance comparable to advanced proprietary LRMs at that time such as OpenAI-o1 on many
reasoning benchmarks. As a result, GRPO has rapidly become a focal point for advancing LRM
capabilities, particularly in domains like mathematics and scientific reasoning.

1The code is available at: https://github.com/Optimization-AI/DisCO
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Several efforts have sought to replicate the performance of DeepSeek-R1 or to further enhance
reasoning models using GRPO [67, 31, 42, 27, 69, 74, 5], while few others have tried to identify
its inherent limitations with potential remedies [40, 79, 39]. Useful tricks have been introduced to
improve GRPO [40, 41, 79, 27, 13, 82]. For instance, DAPO [79] employs two distinct clipping
hyperparameters to mitigate entropy collapse, encouraging exploration. Dr. GRPO [40] removes the
variance normalization in advantage function, aiming to mitigate the issue of difficulty bias. However,
these approaches remain heuristic and ad-hoc, lacking a principled foundation and falling short of
fully addressing GRPO’s inherent limitations. Our analysis identifies that Dr. GRPO continues to
suffer from the difficulty bias issue, while our experiments show that DAPO may induce excessive
entropy growth, producing highly random outputs. This motivates us to explore a central question:

How can we design more effective optimization methods for reinforcing large reasoning models
in a principled manner without inheriting the limitations of GRPO?

This paper addresses the above question through a complete redesign of the objective function,
grounded in the principles of discriminative learning. Specifically, we first analyze the objective
function of GRPO and its variants under a binary reward setting, leading to two key insights: (1)
the root cause of GRPO’s difficulty bias lies in its group relative advantage function, which induces
disproportionately small weights to questions that are either too easy or too hard; and (2) there exists
a conceptual connection to traditional discriminative approaches in AUC maximization, which aim to
increase the scores of positive outputs while decreasing that of negative outputs.

Building upon these insights, we propose a principled optimization framework for reinforcing large
reasoning models based on discriminative learning. Specifically, we optimize a discriminative
objective using a proper scoring function over input-output pairs, which increases the score of
positive outputs and decreases that of negative ones. The flexibility of our framework allows us to
leverage simple non-clipping RL surrogate objectives as scoring functions without suffering from
entropy instability, and to incorporate advanced discriminative techniques to address data imbalance
in generated rollouts. To ensure training stability, we adopt a simple yet effective constrained
optimization method to enforce a trust region constraint bounding the KL divergence between the
updated model and the old model. Our experiments for mathematical reasoning show that DisCO
significantly outperforms all baselines for fine-tuning DeepSeek-R1-Distill-Qwen and -Llama models
with a maximum 8k response length for both training and inference, and also achieves a better
performance than GRPO that uses a maximum 24k length for training and 32k length for inference.

Our main contributions are summarized as follows:
• We present an analysis of GRPO’s objective function, identifying the root cause of difficulty bias

and revealing its conceptual connection to classic discriminative methods for AUC maximization.
• We introduce a principled discriminative constrained optimization framework for reinforcing

large reasoning models, which avoids both difficulty bias and training instability. This framework
gives rise to a family of methods we refer to as DisCO.

• We demonstrate significant improvements of our DisCO method over GRPO and four other
baselines, including DAPO, through experiments for fine-tuning LRMs on mathematical reasoning
tasks, with evaluations across six benchmarks.

2 Related Work
Large Reasoning Models (LRMs). Recent advances of LRMs, such as OpenAI o1 [51], DeepSeek-
R1 [23] and Kimi K1.5 [63], have demonstrated strong reasoning capability in solving complex
tasks. Departing from earlier approaches in LLMs, such as Chain-of-thought (CoT) prompting [66,
48, 81], Tree-of-Thought [78], Monte Carlo Tree Search [18, 64, 71], a major breakthrough was
achieved by scaling RL training using verifiable rewards to incentivize LLMs to learn through self-
exploration [23, 63]. Inspired by DeepSeek-R1’s core algorithm GRPO [59], the research community
has actively pursued improved techniques for large-scale RL training, focusing primarily on three
directions: algorithm design [79, 40, 13, 39, 63, 61], reward curation [82, 67, 79], and sampling
strategies [79, 27, 83, 30]. Our work falls under the category of algorithm design.

Among these, Dr. GRPO [40] identifies response-level length bias and question-level difficulty
bias in GRPO algorithm, advocating the removal of length and advantage normalization to improve
token efficiency. DAPO [79] highlights several limitations of GRPO, such as entropy collapse,
training instability, and biased loss, and addresses them through techniques like decoupled clipping,
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dynamic sampling, and a token-level policy loss. GPG [13] introduces a simplified REINFORCE-
based objective that eliminates the need for both the critic and reference models, thereby enhancing
scalability for RL training. TRPA [61] simply uses the Direct Preference Optimization (DPO)
objective and a KL divergence regularization for fine-tuning LRMs. It can be recovered from our
basic approach, which uses a logistic function as the surrogate loss, the log of likelihood ratio with
respect to a frozen reference model as the scoring function, and the KL divergence as a regularization
rather than a constraint. However, it does not address the imbalanced rollouts. The uniqueness and
significance of our contributions lie in the analysis of GRPO objective and its variants that reveal
key limitations, and the integration of advanced discriminative learning approaches for handling
imbalanced rollouts and efficient constrained optimization technique for ensuring training stability.

Reinforcement Learning (RL). RL is a learning paradigm centered on control and decision-making,
in which an agent optimizes a target objective through trial-and-error interactions with its environ-
ment [8]. RL approaches are typically categorized into model-based [60, 53, 49, 17] and model-free
methods [68, 62, 46, 56, 57, 38, 20]. Among model-free methods, the evolution from Vanilla Policy
Gradient [68, 62] to TRPO [56] and PPO [57] has influenced the development of GRPO. In the
context of fine-tuning LLMs, another line of work is RL from human feedback (RLHF). An early
example of connecting RL with LLMs dates back to OpenAI’s work on integrating human preferences
to improve text generation tasks, such as summarization using the PPO algorithm [85]. This approach
was later extended to fine-tune LLMs for instruction following and/or alignment on helpfulness
and harmlessness [52, 3, 22, 75]. Due to the high data requirements and training costs of standard
RLHF, off-policy methods like DPO [54] and its variants [2, 16, 72, 44, 24], have been proposed to
reduce reliance on explicit reward models. Another line of on-policy algorithms for RLHF, such as
RLOO [1], ReMax [36], and REINFORCE++ [29], has been introduced to reduce the computational
burden by removing the critic network in PPO. While some works [43, 32, 29, 10, 70] attempt to
adapt RLHF techniques for reasoning tasks, they have not yielded significant improvements.

Discriminative Learning. Parallel to RL, discriminative learning is another classical learning
paradigm, that has been studied extensively for many traditional tasks, including multi-class classifi-
cation [14, 15, 6], AUC maximization [76, 80], and learning to rank [9, 19, 7]. These methods are
grounded in the common principle of increasing prediction scores for positive (relevant) labels (data)
while decreasing scores for negative (irrelevant) ones. Nevertheless, discriminative learning remains
under-explored in the cotext of LLM training. Recently, Guo et al. [25] proposed discriminative
probabilistic approaches for supervised fine-tuning of LLMs. However, unlike our approach, they did
not employ an RL framework with verifiable rewards to fine-tune LRMs.

3 Preliminaries
We consider fine-tuning a generative reasoning model πθ parameterized by θ. The old model in
one step of learning is denoted by πold. It is used to generate answers for a set of input questions.
Given a question q (with prompt included), the generated output o follows the distribution πold(·|q),
which includes reasoning traces and the final answer. Specifically, output o is generated token by
token, i.e., ot ∼ πold(·|q, o<t), for t = 1, · · · , |o|. We consider a rule-based reward mechanism
that returns a binary value for a given question q and its corresponding answer in the output o,
which uses either exact match against extracted answer or a formal verification tool [23, 33, 55].
Let r(o|q) ∈ {1, 0} denote the reward assigned to an output o with respect to the input q. Let
p(q) = Eo∼πold(·|q)[r(o|q)] ∈ [0, 1], which quantifies the difficulty of the question q under the model
πold. We denote by π+

old(·|q) the conditional distribution of outputs when the reward is one (i.e.,
positive answers) and by π−

old(·|q) the conditional distribution of outputs when the reward is zero (i.e.,
negative answers). By the law of total expectation, for any function g(o, q) we have

Eo∼πold(·|q)[g(o, q)] = p(q)Eo∼π+
old(·|q)

[g(o, q)] + (1− p(q))Eo∼π−
old(·|q)

[g(o, q)]. (1)

Group Relative Policy Optimization (GRPO). The key idea of GRPO is to generate multiple
outputs for an input q and define a group relative advantage function. For analysis, we consider the
expectation formulation instead of empirical average of the GRPO objective for maximization:

JGRPO(θ) = EqEo∼πold(·|q)

[
1

|o|

|o|∑
t=1

f

(
πθ(ot|q, o<t)

πold(ot|q, o<t)
, A(o|q)

)]
− βDKL(πθ||πref), (2)
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Figure 1: (a) Weight on questions based on correctness probability p; (b) Histogram of per-question
accuracy evaluated in the GRPO learning; (c) Comparison of the ratio of questions with 100%
correctness probability; (d) Comparison of the ratio of questions with 0% correctness probability.

where f(x, y) = min(xy, clip(x, 1−ϵ, 1+ϵ)y), A(o|q) = (r(o|q)−Eo′∼πold(·|q)
r(o′|q))√

Varo′∼πold(·|q)
r(o′|q) is the advantage

function that quantifies how much better the reward of o is compared to average reward, πref is a
frozen reference model.

Recently, several variants of GRPO have been introduced [79, 13, 39, 82, 40]. Many of them retain
the advantage function A(o|q) while modifying other components such as hyper-parameter ϵ, the
normalization factor and the likelihood ratio. Several works employ an unnormalized advantage
function Â(o|q) = r(o|q)− Eo′∼πold(·|q)r(o

′|q) [40, 13].

4 Analysis of GRPO and its variants
In the following analysis we assume p(q) ∈ (0, 1); otherwise we can remove them from consideration
as done in practice [23, 42, 59].

Proposition 1 Let us consider the objective of GRPO and its variants with the following form:

J0(θ) = EqEo∼πold(·|q)

[
1

|o|

|o|∑
t=1

f

(
πθ(ot|q, o<t)

πold(ot|q, o<t)
, A(o|q)

)]
. (3)

Assume that f(x, y) is non-decreasing function of x such that f(x, y) = I(y > 0)yf+(x, 1)− I(y ≤
0)|y|f−(x, 1), where both f+, f− are non-decreasing functions of x, then we have

J0(θ) = Eq

√
p(q)(1− p(q))Eo∼π+

old(·|q),o′∼π−
old(·|q)

[s+θ (o, q)− s−θ (o
′, q)], (4)

where s+θ (o, q) = 1
|o|
∑|o|

t=1 f
+
(

πθ(ot|q,o<t)
πold(ot|q,o<t)

, 1
)

and s−θ (o, q) = 1
|o|
∑|o|

t=1 f
−
(

πθ(ot|q,o<t)
πold(ot|q,o<t)

, 1
)

.
In particular, for GRPO we have

f+(x, 1) = min(x, 1 + ϵ), f−(x, 1) = max(x, 1− ϵ). (5)

Remark: The assumption of f(x, y) indeed holds for GRPO and its variants. We will present the
analysis for several variants of GRPO in Appendix B.3.

The proof of the above proposition is included in Appendix B.1 and is inspired by [47] with differences
that lead to two new insights from Proposition 1 regarding the two components of J0. First, let
us consider the component Eo∼π+

old(·|q),o′∼π−
old(·|q)

[s+θ (o, q)− s−θ (o
′, q)]. Since both f+ and f− are

non-decreasing functions of the first argument, then both s+θ (o, q) and s−θ (o, q) are non-decreasing
functions of πθ(ot|q, o<t). Hence, maximizing J0 would increase the likelihood of tokens in the
positive answers and decrease the likelihood of tokens in the negative answers. This makes sense as
we would like the new model to have a high likelihood of generating a positive (correct) answer and
a low likelihood of generating a negative (incorrect) answer. This mechanism is closely related to
traditional discriminative methods of supervised learning in the context of AUC maximization [77],
which aims to maximize the scores of positive samples o ∼ π+

old(·|q) while minimizing scores of
negative samples o′ ∼ π−

old(·|q), where the q acts like the classification task in the AUC maximization.
Hence, in the context of discriminative learning, we refer to s+(o, q) and s−(o, q) as scoring functions.
Therefore, Eo∼π+

old(·|q),o′∼π−
old(·|q),

[s+(o, q)− s−(o′, q)] is a discriminative objective.

Second, let us consider the component ω(q) =
√

p(q)(1− p(q)), which acts like a weight scaling
the discriminative objective for each individual input question. It is this component that leads to
difficulty bias. As shown in Figure 1(a), questions with very high p(q) values (close to 1) or very
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low p(q) values (close to 0) receive small weights for their discriminative objectives, causing the
optimization to focus primarily on questions of intermediate difficulty while paying little attention to
hard questions (p(q) ≈ 0) and easy questions (p(q) ≈ 1). This mechanism may significantly hinder
the learning efficiency. Intuitively, if the generated answers have only one correct solution out of
10 trials, i.e. p(q) = 0.1, we should grasp this chance to enhance the model instead of overlooking
it. On the other hand, even when we encounter an easy question with a probability of p(q) = 0.9,
we should keep improving the model rather than being satisfied because it still makes mistakes with
respect to this question. Our hypothesis is that removing this weight could accelerate the training.
To validate this hypothesis, we conducted a series of empirical experiments for fine-tuning a 1.5B
model as described in Section 6. We start by examining whether a substantial number of questions
have correctness probabilities (p(q)) near 0 or 1. As shown in Figure 1(b), during GRPO training, the
correctness probabilities across individual questions appear broadly distributed, with many near 0 or
1. Then, we compare the original GRPO with a variant that removes weight

√
p(q)(1− p(q)):

JGRPO_RW = EqEo∼π+
old,o

′∼π−
old
[s+(o, q)− s−(o′, q)]− βDKL(πθ||πref ). (6)

The results are shown in Figure 1(c) and 1(d). We can observe that the variant without the weighting
mechanism quickly achieves a higher ratio of 100% correctness and a lower ratio of 0% correctness,
confirming the detrimental impact of the inappropriate weighting.

We note that the difficulty bias has been pointed out in a recent work Dr. GRPO [40]. To mitigate
this issue, Dr. GRPO uses the un-normalized advantage function Â(o|q). However, with a similar
analysis as above (cf. Appendix B.3), we can derive that Dr. GRPO still has a question-level weight
ω(q) = p(q)(1 − p(q)) before the discriminative objective. As shown in Figure 1(a), this weight
mitigates but does not eliminate the imbalanced weight across questions.

5 A Discriminative Constrained Optimization Framework
While the last section has suggested a tangible remedy to address the difficulty bias of GRPO and
its variants by removing the weight before the discriminative objective, there are other issues of
the scoring function of GRPO and its variants. Next, we propose a general discriminative learning
framework for reinforcing LRMs and incorporate advanced techniques to facilitate the learning.

5.1 A basic approach

Motivated by the connection with AUC maximization, we redesign the objective directly from the
principle of discriminative learning. For a given question q, let sθ(o, q) denote a scoring function that
measures how likely the model πθ “predicts” the output o for a given input q 2. Then the AUC score
for the “task” q is equivalent to Eo∼π+

old,o
′∼π−

old
[I(sθ(o, q) > sθ(o

′, q))]. Using a continuous surrogate
function ℓ, we form the following objective (in expectation form) for maximization:

J1(θ) = EqEo∼π+
old(·|q),o′∼π−

old(·|q)
ℓ(sθ(o, q)− sθ(o

′, q)). (7)

Different surrogate functions ℓ(·) can be used. For comparison, with GRPO, we simply use the
identity function ℓ(s) = s. One difference from the discriminative objective (6) is that we use a
single scoring function sθ(o, q) for both positive outputs o and negative outputs o′. It is notable that
the different scoring functions for positive and negative outputs in (6) actually arise from the clipping
operations of GRPO objective. Recent works have found that the clipping could lead to entropy
collapse [79]. In addition, the clipping could cause the vanishing gradient, which may also slow
down the learning process. To avoid these issues, we consider non-clipping scoring functions.

Scoring functions. We consider two choices of scoring functions, i.e., log-likelihood and likelihood
ratio. The log-likelihood (log-L) scoring function is defined by sθ(o, q) =

1
|o|
∑|o|

t=1 log πθ(ot|q, o<t).

The likelihood ratio (L-ratio) scoring function is computed by sθ(o, q) =
1
|o|
∑|o|

t=1
πθ(ot|q,o<t)
πold(ot|q,o<t)

. In
Appendix B.2, we discuss the connection between the two scoring functions and the surrogate
objectives of vanilla policy gradient methods [68] and TRPO [56], respectively.

Stabilize the training with Constrained Optimization. Training instability is a long-standing
issue in RL [56, 57]. Different methods have been introduced to ensure stability. Recent RL-based
methods for learning reasoning models either follow the clipping operation of PPO [57] or use the
KL divergence regularization DKL(πθ||πref) or DKL(πold||πθ) [59, 61, 52]. However, the clipping

2in the context of generative models, “predicts” is like “generates”.
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operation could lead to the entropy collapse [79], which we try to avoid by using the non-clipped
scoring function. The KL divergence regularization DKL(πθ||πref) while being used in traditional
RL is not effective for preventing entropy collapse [27, 79]. Regarding the regularization with
DKL(πold||πθ), earlier studies [56, 57] has found that it would be difficult to choose a single value
of the regularization parameter that performs well across different problems or even within a single
problem where the the characteristics change over the course of learning. To tackle this issue, we
revisit the idea of trust region constraint of TRPO [56], i.e., restricting the updated model θ in the
trust region DKL(πold||πθ) ≤ δ. As a result, we solve the following discriminative constrained
optimization problem:

max
θ

J1(θ) := EqEo∼π+
old(·|q),o′∼π−

old(·|q)
ℓ(sθ(o, q)− sθ(o

′, q))

s.t. DKL(πold||πθ) ≤ δ.
(8)

For sake of efficiency, we use a different optimization approach from TRPO to solve the above
constrained optimization. Inspired by the recent advances of non-convex ineqaulity constrained
optimization algorithm [35], we adopt a squared-hinge penalty function for the constraint and solve
the following problem with an appropriate penalty parameter β:

max
θ

EqEo∼π+
old(·|q),o′∼π−

old(·|q)
ℓ(sθ(o, q)− sθ(o

′, q))− β[DKL(πold||πθ)− δ]2+, (9)

where [·]+ = max{·, 0}. It has been shown that under an appropriate assumption regarding the
constraint function and β, solving the above squared-hinge penalized objective (9) can return a KKT
solution of the original constrained problem (8). We refer the readers to [35] for more in-depth
analysis of this approach.

Finally, we would like to emphasize the difference between using the squared-hinge penalty function
and the regular KL divergence regularization βDKL(πold||πθ). The squared-hinge penalty function
has a dynamic weighting impact for the gradient, ∇β[DKL(πold||πθ) − δ]2+ = 2β[DKL(πold||πθ) −
δ]+∇DKL(πold||πθ), such that if the constraint is satisfied then the weight 2β[DKL(πold||πθ) − δ]+
before the gradient of the regularization term DKL(πold||πθ) becomes zero. This means the KL
divergence regularization is only effective when the constraint is violated. In contrast, the regular KL
divergence regularization βDKL(πold||πθ) always contributes a gradient β∇DKL(πold||πθ) no matter
whether the constraint is satisfied or not, which could harm the learning.

5.2 An improved approach for tackling imbalanced rollouts

One advantage of designing the objective based on the principle of discriminative learning is the
ability to leverage a wide range of advanced techniques from the literature to improve training. A key
challenge in RL fine-tuning for reasoning models is the sparse rewards, which lead to imbalance in
generated rollouts. Specifically, for some questions where p(q) ≪ 1, the number of negative outputs
can significantly exceed the number of positive ones. This reflects a classic data imbalance issue,
which has been extensively studied in the discriminative learning community [84, 58, 50]. To address
this issue, we consider distributionally robust optimization (DRO) [84, 50].

Let us first discuss why the basic approach could be ineffective for combating the imbalanced
rollouts. The objective function J1 is motivated by maximizing AUC for each question q, i.e.,
Eo∼π+

old,o
′∼π−

old
[I(sθ(o, q) > sθ(o

′, q))]. However, when there is much more negative data than positive
data, AUC is not a good measure. For example, let us consider a scenario where there are 1 positive
o+ and 100 negatives {o1−, . . . , o100− }. If the scores of these data are s(o1−, q) = 0.9, s(o+, q) =

0.5, s(o2−, q) = s(o3−, q) . . . = s(o100− , q) = 0.001, then the AUC score is 99
100 = 0.99. The AUC

score is high but is not informative as the model still generates the negative data o1− more likely than
the positive data o+. In the literature, this issue has been addressed by maximizing a partial AUC
score, which considers the pairwise order between all positives and the top ranked negatives. We
utilize a surrogate function of partial AUC score formulated from the perspective of DRO [84].

Consider a question q and a positive data o. We denote by Q the set of probability measures Q on
negative data given q (absolutely continuous with respect to π−

old(·|q)). Denote by DKL(Q, π−
old(·|q))

the KL divergence between a distribution Q and the negative data distribution π−
old(·|q). A DRO
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Table 1: Comparison of different methods for reinforcing large reasoning models. “L-ratio” means
likelihood ratio, “log-L” means log-likelihood, “proper” means any proper scoring function.

Method Difficulty Bias Clipping KL Divergence Score Function Tackles Imbalanced Rollouts

GRPO [23] Yes Yes regularization, πref clipped L-ratio No
Dr. GRPO [40] Yes Yes No clipped L-ratio No

DAPO [79] Yes Yes No clipped L-ratio No
GPG [13] Yes No No log-L No
TRPA [61] No No regularization, πold log L-ratio No

DisCO No No constraint, πold proper Yes

formulation for partial AUC maximization is given by [84][Theorem 2]:
inf
Q∈Q

τDKL(Q, π−
old(·|q)) + Eo′∼Q[sθ(o, q)− sθ(o

′, q)] :

= −τ log

(
Eo′∼π−

old(·|q)
exp

(
sθ(o

′, q)− sθ(o, q)

τ

))
.

As a result, we construct the following DRO-based objective for maximization:

J2(θ) = −EqEo∼π+
old(·|q)

τ log

(
Eo′∼π−

old(·|q)
exp

(
sθ(o

′, q)− sθ(o, q)

τ

))
. (10)

It is easy to show that J2(θ) ≤ J1(θ) by Jensen’s inequality for the convex function − log. Hence,
maximizing J2(θ) will automatically increasing J1(θ). However, the reverse is not true. This
also explains why maximizing J2(θ) could be more effective than maximizing J1(θ). The above
risk function is also known as optimized certainty equivalents (OCE) in mathematical finance [4].
We would like to point out that although OCE or DRO has been considered for RL in existing
works [65, 73], they differ from our work for addressing different issues. Wang et al. [65] apply
the OCE to compute a robust reward, replacing the standard expected reward used in traditional RL
settings. Xu et al. [73] adopt DRO for direct preference optimization of LLMs, aiming to mitigate
the noise in human preference data by addressing the distributional shift between the empirical
distribution of (q, o, o′) and its true underlying distribution.

Finally, we solve the following discriminative constrained optimization problem by using the same
squared-hinge penalty method:

max
θ

J2(θ) := −EqEo∼π+
old(·|q)

τ log

(
Eo′∼π−

old(·|q)
exp

(
sθ(o

′, q)− sθ(o, q)

τ

))
,

s.t. DKL(πold||πθ) ≤ δ.

(11)

To differentiate the approach for solving (8) and (11), we refer to the former as DisCO-b and the
latter as DisCO. In practice, all expectations will be replaced by empirical averages and the KL
divergence is also estimated at each iteration by using sampled data following [52]. We present a full
algorithm in Algorithm 1 in Appendix. Finally, we give a comparison between DisCO and existing
RL fine-tuning methods for reinforcing LRMs from different aspects in Table 1.

6 Experiments
In this section, we empirically evaluate the effectiveness of the proposed DisCO by comparing with
GRPO and other variants for reinforcing SFT-finetuned models.

Task Setting. We validate our method on mathematical reasoning tasks. Specifically, we use the
DeepScaleR-Preview-Dataset [42] for training, which includes AIME problems from 1984 to 2023,
AMC problems before 2023, and questions from the Omni-MATH [21] and Still [45] datasets,
totaling approximately 40.3k unique problem-answer pairs. We evaluate models on six benchmark
datasets: AIME 2024, AIME 2025, MATH 500 [28, 37], AMC 2023, Minerva [34], and Olympiad
Bench (O-Bench) [26]. Following [23, 42], we adopt the pass@1 metric [11] averaged over k = 16
responses for each question to ensure the reliability of model performances. The metric for each
question is calculated as 1

k

∑k
i=1 I(oi is correct), where oi denotes the i-th generated response. For

both the training and evaluation of our method and the baselines (unless otherwise specified), the
maximum response length is limited to 8k tokens. To verify the generalizability of our method to
other datasets, we also conducted experiments on DAPO-Math-17k [79] dataset, which is included in
the Appendix A.3.
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Table 2: Comparison with baseline models and baseline methods for fine-tuning 1.5B models.
OpenAI-o1-preview is included as a reference. MRL denotes Max Response Length utilized in
training/testing. The shaded models are trained by other works and the shaded numbers are reported
in their original works or in [42]. All other results are either evaluated on existing models or on the
models trained by us using different approaches. Methods in the bottom area are all for fine-tuning
DeepSeek-R1-Distill-Qwen-1.5B model on the same DeepScaleR dataset. DS is short for DeepSeek-
R1, DSR is short for DeepScaleR.

Model/Method MRL(Train/Test) AIME 2024 AIME 2025 MATH 500 AMC 2023 Minerva O-Bench Avg.

OpenAI-o1-Preview - 0.4 - 0.814 - - - -
DS-Distill-Qwen-1.5B 32k+ / 32k 0.288 0.263 0.828 0.629 0.265 0.433 0.451
DS-Distill-Qwen-1.5B 32k+ / 8k 0.181 0.215 0.758 0.515 0.237 0.353 0.376
STILL-3-1.5B-preview 29k / 32k 0.325 0.248 0.844 0.667 0.290 0.454 0.471

DSR-1.5B-Preview 24k / 32k 0.431 0.304 0.878 0.736 0.302 0.500 0.525
DSR-1.5B-Preview 24k / 8k 0.358 0.258 0.860 0.679 0.297 0.473 0.488

GRPO 8k / 8k 0.277 0.242 0.838 0.647 0.276 0.462 0.457
GRPO-ER 8k / 8k 0.298 0.242 0.839 0.649 0.279 0.452 0.460
Dr. GRPO 8k / 8k 0.252 0.238 0.831 0.631 0.268 0.440 0.443
DAPO 8k / 8k 0.310 0.252 0.848 0.675 0.296 0.456 0.473
TRPA 8k / 8k 0.354 0.235 0.835 0.653 0.283 0.458 0.470
DisCO (L-ratio) 8k / 8k 0.381 0.306 0.878 0.746 0.319 0.512 0.524
DisCO (log-L) 8k / 8k 0.404 0.317 0.876 0.758 0.333 0.509 0.533

Table 3: Comparison with baseline models and baseline methods for fine-tuning 7B models. Methods
in the bottom area are all for fine-tuning DeepSeek-R1-Distill-Qwen-7B model on the same Deep-
ScaleR dataset.

Model/Method MRL(Train/Test) AIME 2024 AIME 2025 MATH 500 AMC 2023 Minerva O-Bench Avg.

DS-Distill-Qwen-7B 32k+ / 32k 0.560 0.396 0.923 0.825 0.380 0.568 0.609
DS-Distill-Qwen-7B 32k+ / 8k 0.402 0.292 0.873 0.688 0.355 0.471 0.513

GRPO-LEAD-7B 8k / 8k 0.470 0.345 0.893 0.748 0.372 0.500 0.555
TRPA 8k / 8k 0 .570 - 0.870 0.780 0.360 0.550 -

GRPO 8k / 8k 0.498 0.394 0.916 0.807 0.381 0.555 0.592
GRPO-ER 8k / 8k 0.515 0.381 0.916 0.825 0.376 0.544 0.593
Dr. GRPO 8k / 8k 0.488 0.346 0.910 0.792 0.368 0.546 0.575
DAPO 8k / 8k 0.454 0.335 0.907 0.799 0.388 0.535 0.570
TRPA 8k / 8k 0.510 0.367 0.898 0.779 0.379 0.534 0.578
DisCO (L-ratio) 8k / 8k 0.583 0.421 0.923 0.852 0.399 0.585 0.627
DisCO (log-L) 8k / 8k 0.558 0.410 0.927 0.854 0.410 0.592 0.625

Table 4: Comparison with baseline models and baseline methods for fine-tuning 8B models. Methods
in the bottom area are all for fine-tuning DeepSeek-R1-Distill-Llama-8B model on the same Deep-
ScaleR dataset.

Model/Method MRL(Train/Test) AIME 2024 AIME 2025 MATH 500 AMC 2023 Minerva O-Bench Avg.

DS-Distill-Llama-8B 32k+ / 32k 0.506 0.346 0.896 0.815 0.295 0.541 0.566
DS-Distill-Llama-8B 32k+ / 8k 0.348 0.238 0.825 0.652 0.267 0.440 0.462

GRPO 8k / 8k 0.410 0.240 0.873 0.759 0.307 0.506 0.516
GRPO+ER 8k / 8k 0.408 0.277 0.882 0.785 0.311 0.511 0.529
Dr. GRPO 8k / 8k 0.423 0.285 0.867 0.786 0.300 0.497 0.526
DAPO 8k / 8k 0.333 0.308 0.879 0.794 0.325 0.522 0.527
TRPA 8k / 8k 0.454 0.279 0.864 0.756 0.289 0.518 0.527
DisCO (L-ratio) 8k / 8k 0.506 0.356 0.900 0.831 0.326 0.553 0.579
DisCO (log-L) 8k / 8k 0.523 0.354 0.896 0.843 0.331 0.560 0.584

Models. We conduct experiments with fine-tuning three models: DeepSeek-R1-Distill-Qwen-1.5B
model (Q1.5B), DeepSeek-R1-Distill-Qwen-7B model (Q7B), and DeepSeek-R1-Distill-Llama-8B
(L8B). All are distilled reasoning models.

Baselines. We primarily compare our methods with five most recent state-of-the-art reinforcement
learning methods, including (1) GRPO [23]; (2) GRPO with an entropy regularization (GRPO-
ER) that adds an entropy on probabilities of output tokens as a regularization to prevent entropy
collapse, which is used by DeepScaleR [42]; (3) Dr. GRPO [40]; (4) DAPO’s objective [79]; (5)
TRPA [61]. For a comprehensive evaluation, we also include a set of reasoning models that are
trained from the same base model by other studies with various techniques, such as (6) STILL-3-1.5B-
preview [12], which adapt GRPO by periodically replacing the reference model after a fixed number
of training steps; (7) DeepScaleR(DSR)-1.5B-Preview that uses maximum response length of 24k for
training [42]; (8) GRPO-LEAD-7B [82], which extends GRPO by incorporating length-dependent
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Figure 2: Training dynamics of different methods: left two are for fine-tuning DeepSeek-R1-Distill-
Qwen-1.5B model and right two are for fine-tuning DeepSeek-R1-Distill-Qwen-7B model. (a), (c)
plot the training reward (averaged over generated outputs for questions used in each step) vs the
number of training steps (cf. Algorithm 1); (b), (d) plot the generation entropy vs training steps.

rewards, explicit penalty terms, and difficulty-based advantage reweighting to encourage concise and
precise reasoning.

Training Details. For all the methods, we tune the constant learning rate in [5e−7, 1e−6, 2e−6] with
AdamW optimizer with weight decay as 0.01. Generally, a learning rate of 2e−6 works better for the
Q1.5B model, 1e−6 for the Q7B model, and 5e−7 for the L8B model. We employ a training batch
size of 128, a mini-batch size of 32, and 8 responses for each question. The temperature is set to 0.6
for both training and evaluation, following the usage recommendation from [23]. For GRPO, β is set
to 0.001 as commonly used [12, 42]. For GRPO-ER, we use a coefficient of 0.001 for the entropy
regularization [42]. For DAPO, we set ϵlow to 0.2 and ϵhigh to 0.28 by following their paper. For
our method, δ is set to 10−4 based on the empirical observation that the average KL divergence is
around 2 ∗ 10−5 and β is set to 103 such that the effective weight of the KL regularization when the
constraint is violated by δ is on the order of β ∗ δ = 0.1. Since L-ratio and log-L scoring functions
have different orders, we choose τ = 1 for L-ratio and τ = 10 for log-L scoring function, from
{0.5, 1, 5, 10}. For fair comparisons, we do not implement Dynamic Sampling [79] for DAPO and
other methods, as it introduces approximately three times the sampling cost at each training step. All
methods are run for 1,400 steps on Q1.5B models and 1,000 steps on Q7B/L8B models. Evaluations
are conducted every 200 steps, and the best performance for each method is reported.

6.1 Comparison with Baselines

Performance. We evaluate all the models across six mathematics-focused benchmark datasets to
demonstrate the effectiveness of DisCO. The results are summarized in Table 2, 3 and 4. From
Table 2 for Q1.5B models, we can observe that our proposed DisCO methods consistently outperform
other baselines by a large margin. Notably, DisCO (log-L) with 8k length for both training and
inference achieves an 7% average improvement over GRPO and surpasses DeepScaleR-1.5B-Preview
that was trained with maximum 24k length and evaluated with 32k length. A similar trend is observed
for Q7B models and L8B models (Table 3 and Table 4), where DisCO significantly outperforms all
competing approaches.

Training Dynamics. We compare the training dynamics of different methods in terms of training
rewards and generation entropy. From Figure 2 for fine-tuning Qwen-1.5B and Qwen-7B models, we
can see that all baselines suffer from premature saturation due to either entropy collapse for GRPO,
GRPO-ER, Dr. GRPO or excessive entropy growth of DAPO, which leads to an early deterministic
or highly random policy. The entropy collapse phenomenon is also observed by [79, 27, 42]. TRPA
that uses a KL divergence regularization is also observed with instability in the generation entropy
in later steps (around 1100 for Q1.5B model and around 800 for Q7B model). In contrast, our
methods with the two scoring functions are most stable, with training rewards kept increasing and
generation entropy maintained around 0.22. We also include training dynamics for the L8B model in
Appendix A.2, which follows a similar trend.

6.2 Ablation Studies

DisCO vs DisCO-b. Figure 3 (left) compares DisCO with DisCO-b using the L-ratio scoring
function for training Q7B models for 1000 steps. The comparison clearly demonstrates the significant
improvements of DisCO over DisCO-b, especially on the difficult AIME datasets. We also compare
DisCO with DisCO-b for other settings in Appendix A.1, and observe that DisCO is consistently
better than DisCO-b on average in all settings. It is also notable that DisCO-b with different scoring
functions are also better than other baselines trained or evaluated by us in Table 2 and Table 3.
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Figure 4: Ablation studies: left for comparing KL regularization vs constrained optimization; middle
for sensitivity of DisCO w.r.t. the hyperparameter τ ; right for contribution of each component.

Clipping vs Non-Clipping scoring functions. We compare non-clipping scoring functions L-ratio,
log-L with clipped L-ratio (5) in our DisCO-b approach for training Q1.5B models in Figure 3
(middle and right). For the clipped L-ratio, we adopt two versions: one with ϵhigh = 0.2 to align with
GRPO objective, and another with ϵhigh = 0.28 similar to DAPO objective. We can see that clipped
L-ratio with ϵhigh = 0.2 causes entropy collapse while clipped L-ratio with ϵhigh = 0.28 leads to
excessively high entropy level, both yielding worse performance than non-clipping scoring functions.

KL Regularization vs Constrained Optimization. We investigate the advantages of constrained
optimization over KL regularization for DisCO. Specifically, the KL regularization weight is set to
the commonly used 0.001 [12, 42]. As shown in Figure 4 (left), constrained optimization performs
better than KL regularization on both Q1.5B and Q7B models. Moreover, during our experiments,
we observed that KL regularization leads to instability in training on Q7B models, similar to TRPA,
which indicates that KL regularization is not sufficient to stabilize training.

Sensitivity of hyperparameter τ . We study the sensitivity of DisCO to hyperparameter τ on
training Q1.5B models. Similar to above experiments, we run DisCO for 1400 steps with different
τ ∈ {0.5, 1, 5, 10}. The result shown in Figure 3 (right) indicates that DisCO is not sensitive to τ in
these ranges.

Effect of each design choice. We analyze the individual contribution of each component in DisCO
by replacing its components separately with other designs. We experiment on Q1.5B models and
compare with (1) DisCO-b that removes hard negative weighting; (2) adding question-level weight
bias

√
p(q)(1− p(q) to DisCO-b, (3) replacing the KL-divergence constraint with a KL-divergence

regularization in DisCO-b, and (4) using a clipping scoring function with ϵhigh = 0.2 in DisCO-b,
respectively. From Figure 4 (right), we can see that each of our proposed components is important in
DisCO’s improvement, where the use of a non-clipping scoring function is of vital importance.

7 Conclusion
In this work, we have proposed a novel discriminative constrained optimization framework for
reinforcing large reasoning models, motivated by the analysis of the GRPO objective. The proposed
framework is grounded in the principle of discriminative learning, avoiding difficulty bias and enhanc-
ing training stability with constrained trust region optimization. The experiments on mathematical
reasoning demonstrated the significant superiority of our approaches, compared with GRPO and
its recent variants. While this work focuses on binary rewards, future extensions could incorporate
discriminative ranking objectives, like [9], to handle non-binary rewards. It would be interesting to
apply the proposed approaches for fine-tuning larger models or other reasoning tasks.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions are clearly stated in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in the last section of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions are clearly stated and proofs are provided in Appendix.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed instructions to reproduce the results are provided in the experimental
part of the main paper. Furthermore, we provide source code in the supplementary materials
for reproducing the algorithm.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Source code is provided in the supplementary materials for reproducing the
proposed algorithm.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed information about experimental settings and hyperparameters is
provided in the experimental part of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[No]
Justification: We follow the practice in this research area. Error bars are not reported because
it would be too computationally expensive for training large language models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided the experimental platform and running time of one experiment
for our algorithm in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Research conducted in the paper conform with the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We haven’t identified any social impacts of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: This paper proposes an algorithm without posing such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Datasets and methods utilized in this paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing and editing purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Experimental Results
For all the experiments on 1.5B models, each run consumes 4*2 40G A100 GPUs and each training
step takes approximately 6 minutes. For all the experiments on 7B models, each run consumes 1*8
80G H100 GPUs and each training step takes approximately 6.5 minutes.

A.1 Detailed comparison between DisCO and DisCO-b

In this part, we compare DisCO and DisCO-b with different score functions on different models. As
shown in Figure 5, DisCO consistently demonstrates better performance compared to DisCO-b across
all settings, with higher average scores observed in each case. This consistent advantage highlights
the effectiveness of the full DisCO framework. Additionally, it is worth emphasizing that even the
DisCO-b variants, with L-ratio or log-L scoring functions, outperform all other baseline methods that
are presented in Table 2 and Table 3. These results collectively underscore the robustness and general
effectiveness of the DisCO approach.

A.2 Training dynamics for fine-tuning 8B model.

In this part, we present the training dynamics of different methods for fine-tuning the DeepSeek-R1-
Distill-Llama-8B model in Figure 6. Similar to observation in Figure 2 for fine-tuning 1.5B and 7B
models, we can see that GRPO, GRPO-ER, and Dr. GRPO still suffer from entropy collapse while
DAPO leads to excessive entropy growth, all accompanied by premature saturation in training reward.
TRPA with a KL divergence regularization is also observed with instability in the training, indicating
the insufficiency of KL regularization to stabilize training. In contrast, our methods with the two
scoring functions and the KL constraint demonstrate the greatest stability, with training rewards
continuing to rise and generation entropy remaining around 0.2.

A.3 Experiments on DAPO-Math-17K dataset.

In order to demonstrate that the improvements achieved by DisCO are fundamental, rather than
relying on specific properties of the dataset, we conducted additional experiments on the DAPO-
Math-17K dataset [79] using 1.5B models, training them for 1400 steps. As shown in Table 5, DisCO
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Figure 5: Comparison between DisCO-b and DisCO on different models with different score
functions.
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Figure 6: Training dynamics of different methods for fine-tuning DeepSeek-R1-Distill-Llama-8B
model. (a) plots the training reward (averaged over generated outputs for questions used in each step)
vs the number of training steps; (b) plots the generation entropy vs training steps.
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Table 5: Comparison with baseline methods for fine-tuning DeepSeek-R1-Distill-Qwen-1.5B models
on DAPO-Math-17K dataset.

Model/Method MRL(Train/Test) AIME 2024 AIME 2025 MATH 500 AMC 2023 Minerva O-Bench Avg.

DS-Distill-Qwen-1.5B 32k+ / 32k 0.288 0.263 0.828 0.629 0.265 0.433 0.451
DS-Distill-Qwen-1.5B 32k+ / 8k 0.181 0.215 0.758 0.515 0.237 0.353 0.376

GRPO 8k / 8k 0.342 0.256 0.842 0.672 0.267 0.458 0.473
GRPO-ER 8k / 8k 0.290 0.260 0.852 0.681 0.287 0.463 0.472
Dr. GRPO 8k / 8k 0.300 0.250 0.849 0.705 0.292 0.464 0.477
DAPO 8k / 8k 0.275 0.229 0.812 0.653 0.256 0.441 0.444
TRPA 8k / 8k 0.346 0.279 0.836 0.683 0.281 0.450 0.479
DisCO (L-ratio) 8k / 8k 0.413 0.310 0.874 0.775 0.307 0.495 0.529
DisCO (log-L) 8k / 8k 0.460 0.317 0.873 0.775 0.320 0.502 0.541

methods still outperform other baselines by a large margin, demonstrating the generalizability of the
proposed method to other datasets.

B More Theoretical Results
B.1 Proof of Proposition 1

Proof Since Eo∼πold(·|q)r(o|q) = p(q),Varo∼πold(·|q)r(o|q) = p(q)(1− p(q)), we have

A(o|q) =


√

1−p(q)
p(q) , if r(o|q) = 1,

−
√

p(q)
1−p(q) , if r(o|q) = 0

(12)

According to (1), we have

EqEo∼πold(·|q)

[
1

|o|

|o|∑
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f
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Eo∼π+

old(·|q)
1
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|o|∑
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f−(
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, 1)

]

(13)

where the last equality is due to the assumption about f(x, y). For GPRO, we have f+(x, 1) =
min(x, clip(x, 1 − ϵ, 1 + ϵ)) = min(x, 1 + ϵ) and f−(x, 1) = max(x, clip(x, 1 − ϵ, 1 + ϵ)) =
max(x, 1− ϵ).
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Algorithm 1 Discriminative Constrained Optimization

1: Input: Initial policy model π0, reward function r, question set D, hyperparameter δ, β, τ .
2: Policy model πθ = π0

3: for Step = 1, · · · , T do
4: Sample a batch of questions B from D
5: Update the old policy model πold = πθ

6: For each question q ∈ B, sample n responses {oi}ni=1 ∼ πold(·|q) denoted by Sq and partition
it into S+

q and S−
q based on rewards r(oi|q) ∈ {0, 1}

7: for minibatch Bm ∈ B do
8: Compute KL divergence estimator by

D̂KL = 1∑
q∈Bm

∑
o∈Sq

|o|
∑

q∈Bm

∑
o∈Sq

|o|∑
t=1

log πold(ot|q,o<t)
πθ(ot|q,o<t)

9: Compute gradient estimator of J2(θ) by

G1 = 1
|Bm|

∑
q∈Bm

1
|S+

q |

∑
o∈S+

q

(
∇sθ(o, q)−∇

(
τ log

∑
o′∈S−

q

exp( sθ(o
′,q)

τ )
))

10: Compute gradient estimator of constraint by G2 = 2β[D̂KL − δ]+∇D̂KL

11: Update πθ with Adam-W using the gradient estimator G = G1 +G2

12: end for
13: end for

B.2 Connection between discriminative objectives and surrogate objectives in RL

The score function L-ratio is inspired by the same principle as the surrogate objective in TRPO [56].
TRPO aims to maximize the following objective subject to a constraint:

max
θ

EqEo∼πθold
(·|q)

1

|o|

|o|∑
t=1

πθ(ot|q, o<t)

πold(ot|q, o<t)
A(ot)

s.t. DKL(πold||πθ) ≤ δ.

(14)

When we apply the advantage function (12) to the objective, we have
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(15)

This gives the exact scoring function L-ratio: sθ(o, q) = 1
|o|
∑|o|

t=1
πθ(ot|q,o<t)
πold(ot|q,o<t)

. After removing the

improper weight
√
p(q)(1− p(q)), Eqn. (15) is same as Eqn. (7) with ℓ(s) = s.

In the reinforcement learning literature, vanilla policy gradient methods also gain significant attention
due to their simplicity and remarkable performance. The vanilla policy gradient(VPG) methods work
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Table 6: Weighted discriminative objectives and their scoring functions s+(o, q) and s−(o, q) for
different methods, where σ(·) is the sigmoid function.

Objective Eqω(q)Eo∼π+
old(·|q),o′∼π−

old(·|q)
ℓ
(
s+θ (o, q)− s−θ (o

′, q)
)

GRPO ω(q) =
√
p(q)(1− p(q)), ℓ(s) = s

s+θ (o, q) =
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, 1 + ϵ), s−θ (o
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′
t|q,o

′
<t)

πold(o′t|q,o′<t)
, 1− ϵ)

Dr. GRPO ω(q) = p(q)(1− p(q), ℓ(s) = s
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∑|o|
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, 1 + ϵ), s−θ (o
′, q) =
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′
t|q,o

′
<t)

πold(o′t|q,o′<t)
, 1− ϵ)
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1
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′
<t)
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GPG ω(q) = αp(q)(1− p(q), ℓ(s) = s

s+θ (o, q) =
1

Eo∼πold(·|q)|o|
∑|o|

t=1 log πθ(ot|q, o<t), s−θ (o
′, q) = 1

Eo∼πold(·|q)|o|
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t=1 log πθ(o
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t|q, o′<t)

TRPA ω(q) = 1, ℓ(s) = log(σ(β(o)s))
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t=1 log
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t=1 log
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′
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by computing an estimator of the policy gradient and plugging it into a stochastic gradient algorithm.
The most commonly used surrogate objective function for gradient estimator has the form:

JVPG = EqEo∼πθold
(·|q)

1

|o|

|o|∑
t=1

log πθ(ot|q, o<t)A(ot) (16)

Similar to the derivation above, by plugging in the advantage estimator Eqn. (12), we have:
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This directly motivate the score function log-L: sθ(o, q) = 1
|o|
∑|o|

t=1 log πθ(ot|q, o<t). After remov-
ing the inappropriate weight on questions, Eqn. (17) is same as Eqn. (7) with ℓ(s) = s.

B.3 Analysis of other variants of GRPO

In this part, we show that the other variants of GRPO still have difficulty bias on questions.

Let’s start with Dr. GRPO. In Dr. GRPO, the un-normalized advantage function is employed:

Â(o|q) =
{
1− p(q), if r(o|q) = 1,

−p(q), if r(o|q) = 0
(18)

With f(x, y) = min(xy, clip(x, 1− ϵ, 1 + ϵ)y), we have
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where s+θ (o, q) =
∑|o|

t=1 min( πθ(ot|q,o<t)
πold(ot|q,o<t)

, 1 + ϵ), s−θ (o, q) =
∑|o|

t=1 max( πθ(ot|q,o<t)
πold(ot|q,o<t)

, 1 − ϵ). We
can see that the difficult bias ω(q) = p(q)(1− p(q)) on questions persists in Dr. GRPO.

Secondly, let’s reformulate the DAPO objective to show the question-level bias. With f(x, y) =
min(xy, clip(x, 1− ϵlow, 1 + ϵhigh)y) and advantage estimator (12), the expected version of DAPO
is
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1

Eo∼πold(·|q)|o|
∑|o|

t=1 min( πθ(ot|q,o<t)
πold(ot|q,o<t)

, 1 + ϵ), s−θ (o, q) =
1

Eo∼πold(·|q)|o|
∑|o|

t=1

max( πθ(ot|q,o<t)
πold(ot|q,o<t)

, 1 − ϵ). We can see that the difficult bias ω(q) =
√

p(q)(1− p(q)) is placed on
questions persists in DAPO.

Thirdly, we show the difficult bias in GPG objective. In GPG, αÂ(o|q) is employed as their advantage
estimator. Thus, we have
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1

Eo∼πold(·|q)|o|

|o|∑
t=1

α log πθ(ot|q, o<t)Â(o|q)
]

= Eq

[
p(q)Eo∼π+

old(·|q)
1

Eo∼πold(·|q)|o|

|o|∑
t=1

α log πθ(ot|q, o<t) ∗ (1− p(q))

+ (1− p(q))Eo∼π−
old(·|q)

1

Eo∼πold(·|q)|o|

|o|∑
t=1

α log πθ(ot|q, o<t) ∗ (−p(q))

]
= Eqαp(q)(1− p(q))

[
Eo∼π+

old(·|q)
s+θ (o, q)− Eo∼π−

old(·|q)
s−θ (o, q)

]

(21)

where s+θ (o, q) = 1
Eo∼πold(·|q)|o|

∑|o|
t=1 log πθ(ot|q, o<t), and s−θ (o, q) =

1
Eo∼πold(·|q)|o|

∑|o|
t=1 log πθ(ot|q, o<t). We can see that the difficult bias ω(q) = αp(q)(1 − p(q)) is

on questions in GPG.

Finally, we summarize the question-level weights and their score functions for other variants of
GRPO in Table 6.
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