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Abstract

As agents based on large language models are increas-
ingly deployed to long-horizon tasks, maintaining their align-
ment with stakeholder preferences becomes critical. Effec-
tive alignment in such settings requires reward models that
are interpretable so that stakeholders can understand and au-
dit model objectives. Moreover, reward models must be ca-
pable of steering agents at interaction time, allowing pref-
erence shifts to be incorporated without retraining. We in-
troduce ARCANE, a framework that frames alignment as
a multi-agent collaboration problem that dynamically rep-
resents stakeholder preferences as natural-language rubrics:
weighted sets of verifiable criteria that can be generated
on-the-fly from task context. Inspired by utility theory, we
formulate rubric learning as a reconstruction problem and
apply a regularized Group-Sequence Policy Optimization
(GSPO) procedure that balances interpretability, faithfulness,
and computational efficiency. Using a corpus of 219 labeled
rubrics derived from the GDPVal benchmark, we evaluate
ARCANE on challenging tasks requiring multi-step reason-
ing and tool use. The learned rubrics produce compact, legi-
ble evaluations and enable configurable trade-offs (e.g., cor-
rectness vs. conciseness) without retraining. Our results show
that rubric-based reward models offer a promising path to-
ward interpretable, test-time adaptive alignment for complex,
long-horizon AI systems.

1 Introduction
As AI agents based on large language models (LLMs) take
on longer-horizon, project-scale tasks with multiple special-
ized agents, maintaining alignment with stakeholder pref-
erences becomes increasingly critical (Masters et al. 2025).
Prior research has shown how cooperation can falter under
partial observability, shifting incentives, or social feedback
loops (e.g. Leibo et al. 2017; Jaques et al. 2019; Carichon
et al. 2025). Recent studies on LLM-based debate and col-
laborative reasoning echo these dynamics: joint systems can
exhibit sycophancy (Cau et al. 2025), persuasion failures
(Wynn et al. 2025), and collective bias amplification (Ash-
ery et al. 2025). Thus, alignment becomes a system-level ob-
jective that must hold under delegation, communication, and
co-adaptation.
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Recently, rubrics have emerged as a promising paradigm
for evaluating and improving the alignment of agentic
systems with human preferences. Rather than optimizing
against a single opaque reward model, rubric-based ap-
proaches define structured natural-language criteria that de-
compose preferences into interpretable and verifiable di-
mensions, such as factual accuracy, reasoning depth, and
clarity. Recent work has explored rubrics both as evaluation
instruments and as training-time objectives: for example, us-
ing them directly as reward functions during reinforcement
fine-tuning (Gunjal et al. 2025), or as expert evaluators in
professional and educational domains (Wang et al. 2025b;
Anghel et al. 2025). Large-scale frameworks such as Open-
Rubrics (Liu et al. 2025b) further demonstrate that rubrics
themselves can be synthetically generated, enabling scal-
able, domain-specific supervision without extensive human
labeling. Together, these developments suggest that rubrics
can serve as interpretable, multi-dimensional reward models
capable of guiding complex behavior.

However, existing methods largely treat rubric generation
and rubric-conditioned optimization as separate processes,
assuming rubrics are given rather than learned through in-
teraction with stakeholders. This limits their adaptability to
evolving or multi-objective preference contexts. To address
this gap, we propose to frame rubric generation itself as a
policy-optimization problem within a multi-agent alignment
setting. Specifically:
• We design ARCANE (Adaptive Rubric-based Control of

Agents via Natural-language Exchange),1 a rubric-based
alignment framework in which a manager agent learns
to generate rubrics that align worker agents with stake-
holder utilities through interactive preference elicitation.

• We propose a two-stage learning procedure to opti-
mize the manager agent policy: initial supervised fine-
tuning using synthetic manager–stakeholder dialogues,
followed by reinforcement fine-tuning via regularized
Group Sequence Policy Optimization (GSPO) (Zheng
et al. 2025), incorporating penalty terms for rubric com-
plexity and stakeholder interaction cost.

• We evaluate ARCANE on tasks from the GDPVal bench-
mark (Patwardhan et al. 2025), empirically showing that

1Link to ARCANE code can be found in the MA-Gym readme:
https://github.com/DeepFlow-research/manager agent gym



the learned rubrics (1) effectively guide workers to max-
imize stakeholder preferences at test-time; (2) preserve
rankings over outputs from the stakeholder preferences,
and (3) are interpretable and effectively verifiable.

2 Related Work
Training-Time Alignment. Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al. 2022;
Stiennon et al. 2022) remains the dominant paradigm for
aligning language models with human preferences. Variants
remove the explicit reward model and directly optimize like-
lihood ratios to match human-preferred outputs (Rafailov
et al. 2023; Hejna et al. 2023; Hong et al. 2024). While
effective, RLHF and its variants optimize against fixed
training preferences and can mis-generalize under shifting
stakeholder goals (Son et al. 2025). Moreover, they remain
vulnerable to reward over-optimization (Gao et al. 2023),
exploiting inaccuracies in learned proxies. Foundational
critiques (Zhang et al. 2025b; Xu et al. 2024) further
show that the Bradley–Terry assumptions underlying most
pairwise preference learning—transitivity and indepen-
dence of irrelevant alternatives—are systematically violated
in realistic, high-dimensional preference spaces (Huang
et al. 2025a; Xu et al. 2025). In multi-agent deployments,
where preferences evolve dynamically and are distributed
across interacting agents, these single-agent methods lack
mechanisms for maintaining shared alignment.

Test-Time Reward Modeling. To address the rigidity of
training-time methods, recent work has explored test-time
reward models that evaluate outputs dynamically. Gener-
ative Reward Models (GenRM) (Mahan et al. 2024) and
foundation reward models such as GRAM (Wang et al.
2025a) use language models to generate natural-language
evaluations rather than fixed scalar rewards, while multi-
objective extensions (Lin et al. 2025) and Directional Pref-
erence Alignment (Wang et al. 2024a) allow controllable
trade-offs across learned reward dimensions. These methods
increase flexibility but remain opaque: GenRM and GRAM
provide scalar or textual judgments without revealing which
criteria drive evaluation or how those criteria are weighted.
Moreover, test-time evaluation typically treats the model as
a single-agent assessor, ignoring the coordination and com-
munication challenges that arise when multiple agents must
interpret or act on shared feedback (Agashe et al. 2025).
Consequently, these systems remain difficult to audit, cali-
brate, or adapt in collaborative multi-agent settings.

Interpretable Alignment. Recent efforts aim to make re-
ward models more transparent by decomposing preferences
into interpretable dimensions. ArmoRM (Wang et al. 2024b)
uses a mixture-of-experts reward architecture with prede-
fined human-interpretable components (e.g., helpfulness,
harmlessness, humor), and sparse autoencoders (Zhang et al.
2026) disentangle reward representations into latent fac-
tors correlated with semantically meaningful properties.
Auto-Rubric (Xie et al. 2025) and Rubrics-as-Rewards
(RaR) (Gunjal et al. 2025) introduce structured natural-
language rubrics as reward functions, showing that rubric-
based reinforcement fine-tuning improves robustness and

alignment stability. Large-scale frameworks such as Open-
Rubrics (Liu et al. 2025b) and Chasing the Tail (Zhang et al.
2025a) demonstrate scalable synthetic rubric generation and
fine-grained discrimination between high-quality responses,
while domain-specific rubrics (Arora et al. 2025; Wang et al.
2025b; Anghel et al. 2025) achieve consistent evaluation
across expert tasks. However, all of these methods assume
static rubrics defined once per domain or task, limiting their
ability to adapt to preference drift or negotiate evolving eval-
uation criteria across interacting agents.

Multi-Agent Alignment and Coordination. Alignment
challenges intensify when multiple autonomous agents must
cooperate, communicate, or share goals. Multi-agent rein-
forcement learning (Albrecht et al. 2024) studies show that
coordination often fails under partial observability, non-
stationarity, or conflicting incentives (Foerster et al. 2016;
Lowe et al. 2017; Leibo et al. 2017; Jaques et al. 2019). Re-
cent analyses reveal analogous dynamics in LLM-based sys-
tems, where agents exhibit sycophancy, conformity, and bias
amplification (Cau et al. 2025; Wynn et al. 2025; Carichon
et al. 2025). Frameworks such as CAMEL (Li et al. 2023),
AutoGen (Wu et al. 2024), and ConsensusAgent (Pitre et al.
2025) show that multi-agent collaboration can improve rea-
soning and division of labor, but they rely on ad hoc or man-
ually tuned reward structures. The emerging view is that
multi-agent alignment is not a property of individual poli-
cies but of the interaction process itself, requiring shared,
interpretable, and negotiable incentives to ensure coopera-
tive stability. ARCANE builds on this insight by modeling
rubrics as dynamic, communicable artifacts that coordinate
alignment across agents and over time.

3 Problem Specification
We consider a general decision-making process involving
interacting agents with one of three conceptual roles:

• A Stakeholder (S): who has a preference ordering over
outputs, represented by a latent (ordinal) utility function
U∗(y | x) that measures satisfaction with an output y
given a task x containing a preference description p.

• A Manager (M ): who observes the task environment,
can elicit preferences through interactions with the stake-
holder and is responsible for coordinating the actions of
worker agents based on its learned representation of the
stakeholder’s preferences.

• Workers (W1, . . . ,Wn): which perform actions that
generate the output y under the manager’s guidance.

The goal of the manager-worker team is to produce out-
puts y that maximize the stakeholder’s true utility U∗. The
existence of such a U∗ to represent stakeholder preferences
fundamentally assumes those (state-dependent) preferences
are complete and transitive, a standard axiom in utility the-
ory. However, U∗ is typically not available in explicit or
closed form: it may be incompletely specified, revealed only
through sparse feedback, or change as preferences drift.
Consequently, the workers act with respect to some proxy
objective û, a potentially misaligned approximation of U∗.



If every agent could observe and directly optimize U∗, the
problem would reduce to a fully cooperative team game. Let
π = (πM , πW ) denote the joint policy of the manager and
workers. Under perfect observability and common reward,
the optimal joint policy is

π∗ = arg max
πM ,πW

Ey∼πW (·|x,aM )

[
U∗(y | x)

]
. (1)

where aM ∼ πM (·|x) denotes the manager’s high-level
alignment actions, generated from context x and provided as
input to the worker’s policy πW . In this cooperative limit, the
optimization objective is straightforward: all agents share a
single objective and need to explore their joint policy space
to maximize it.

3.1 Alignment as a Bilevel Optimization Problem
Framing alignment as a multi-agent system with partial ob-
servability of U∗, the alignment challenge can be expressed
as a bilevel optimization problem. The manager’s policy de-
termines the information or objectives available to the work-
ers, while the workers respond by generating outputs that
optimize those objectives.

Formally, the manager seeks to find a policy that max-
imizes expected stakeholder utility under the workers’ in-
duced behavior:
max
πM

Ex

[
EaM∼πM (·|x)Ey∼πW (·|x,aM )

[
U∗(y | x)

]]
. (2)

The inner expectation captures the workers’ best response
to the manager’s policy, and the outer expectation reflects
the manager’s optimization of stakeholder value across tasks
and preference states. When workers optimize a proxy utility
û(y | x) that diverges from U∗, the resulting misalignment
can be quantified by a utility gap:

LU = E
[
(U∗(y | x)− û(y | x))2

]
. (3)

Reducing this utility gap is the fundamental goal of align-
ment research: designing learning or coordination mecha-
nisms that ensure the proxy reward available to workers ap-
proximates the true stakeholder utility as closely as possible.

A system is considered functionally aligned if its proxy,
û, is ordinally equivalent to the stakeholder’s true utility, U∗,
across the support of the joint policy (Debreu 1954). The
equivalence holds if û maintains the same preference order-
ing as U∗, such that û(yi | x) > û(yj | x) if and only if
U∗(yi | x) > U∗(yj | x) for any outcomes (yi, yj) sam-
pled from the joint policy (πM , πW ). When this condition
is met, û is a positive monotonic transformation of U∗ over
this domain, and optimizing this proxy yields the same opti-
mal policy as optimizing the true utility. ARCANE aims to
learn such order-preserving proxy functions under realistic
uncertainty and stochastic coordination, even without direct
observability of U∗.

In realistic deployments, managers cannot modify worker
parameters—especially when workers are closed-source
foundation models or APIs—so alignment must proceed
through delegated control. By eliciting stakeholder prefer-
ences inaccessible to workers, the manager gains privileged
information and conveys it through interpretable coordina-
tion signals, forming a minimal yet practical multi-agent
alignment system grounded in communication rather than
parameter sharing.

4 Proposed Method: ARCANE
ARCANE is a framework for learning structured, inter-
pretable proxy utilities that align workers’ behavior with
stakeholder preferences. ARCANE instantiates the abstract
alignment setting from Section 3 by representing the man-
ager’s coordination signal as a rubric: a decomposable, ver-
ifiable, and dynamically configurable approximation of the
stakeholder’s true utility function U∗(y | x).

The core idea is to have our manager M learn a rubric de-
composer Dϕ that maps task descriptions and stakeholder
preference statements into structured rubrics. Each rubric
specifies a set of weighted, verifiable criteria that jointly de-
fine a linearly additive proxy utility ûϕ(y | x). By learning
rubrics that closely track the stakeholder’s underlying util-
ity, ARCANE enables the workers’ policies to explore their
joint action space as if they were cooperatively optimizing
U∗ itself.

ARCANE comprises of four central components: (1) rep-
resenting rubrics and implementing verifiers; (2) modeling
rubric generation as a multi-agent collaboration between the
stakeholder S and the manager M ; (3) a training-time rubric
optimization via a two-phase curriculum (supervised fine-
tuning followed by a reinforcement fine-tuning procedure);
and (4) designing a framework for test-time steering via
rubric-scaled policies.

4.1 Rubric Representation and Decomposer
Architecture

The manager agent initially receives the task context x con-
taining a stakeholder preference p, and learns to output a
structured rubric R using a rubric decomposer Dϕ, by iter-
atively engaging with the stakeholder S. Formally, a rubric
is a finite set of weighted evaluation criteria:

R = {(cj , wj)}Mj=1, (4)

where each cj is a natural-language description of a measur-
able property (e.g., “Includes citations to recent empirical
studies”), and wj ∈ [0, 1] with

∑
j wj = 1 denotes its rela-

tive importance.
Each criterion cj is paired with a verifier νj(cj , x, y) ∈

[0, 1] that estimates how well an output y satisfies cj in con-
text x. Verifiers may be:
• Rule-based: deterministic checks such as citation count

or formatting;
• Model-based: lightweight LLM or classifier evaluators

for semantic properties such as factuality, coherence, or
tone.

The rubric’s overall proxy utility is computed as

ûϕ(y | x) =
M∑
j=1

wj νj(cj , x, y), (5)

which serves as the manager’s operative approximation of
the stakeholder utility U∗(y | x).

During training, Dϕ is trained to generate rubrics whose
induced proxy utilities ûϕ correlate strongly with stake-
holder evaluations U∗. The generated rubric R is then given



to the worker policy πW as a natural language prompt, guid-
ing generation toward outputs that satisfy the specified cri-
teria. At test time, the same utility estimator ûϕ enables con-
trollable inference through rubric-conditioned sampling or
reranking. This formulation turns the abstract objective of
minimizing the expected utility gap into a concrete, inter-
pretable learning problem while maintaining scalability and
transparency.

4.2 Stakeholder–Decomposer Collaboration
We model the interactive collaboration between the stake-
holder and the manager as a pre-execution consultation:
before any work begins, the manager interacts with the
stakeholder through a structured natural-language Q&A ex-
change to elicit and clarify the stakeholder’s latent prefer-
ences that are represented by the true utility function U∗.

Given a task context x, the manager agent engages the
stakeholder with a short sequence of clarifying questions

q1:T = fask(x), (6)

to which the stakeholder provides answers

a1:T = freply(U
∗, q1:T ), (7)

expressing priorities, constraints, or examples of desired
outcomes. After the dialogue concludes, the manager uses
its decomposer to synthesize a rubric proposal

R = Dϕ(x, q1:T , a1:T ) (8)

encoding the elicited preferences as weighted, verifiable cri-
teria. This single consultation serves as a lightweight, inter-
pretable approximation of U∗ prior to any worker execution.

Since there are tangible costs to executing verifiers {v} in
terms of compute and time, and excessively interacting with
the stakeholder, the manager should learn a policy which
maximizes expected stakeholder utility while minimizing
clarification and revision costs:

max
πM

Ex

[
U∗(y | x)− λclarify Cclarify(q1:T )

− λcompute Ccompute(R)
]
,

(9)

where Cclarify measures the stakeholder’s cognitive burden
(e.g., the number or complexity of feedback turns) and
Ccompute penalizes excessive rubric regeneration. The de-
composer thus learns to trade off fidelity to stakeholder pref-
erences with efficiency of interaction.

Conceptually, this consultation constitutes a one-shot co-
operative game under partial observability: the stakeholder
reveals limited, noisy information about U∗ through lan-
guage, and the decomposer must infer a faithful, structured
approximation that guides worker agents. This interaction
formalizes alignment as a process of communication and in-
ference rather than observation, bridging human intent and
agent execution through an interpretable artifact R.

The final rubric R⋆ captures the negotiated understanding
between stakeholder and manager. Subsequent worker poli-
cies πW condition on R⋆ to guide task execution, behaving
as though they were optimizing U∗ directly while preserving
transparency and post-hoc configurability.

4.3 Training Data and Supervision
ARCANE is trained using supervision signals that reveal
partial information about the stakeholder’s latent utility
function U∗. Following the formalization in Appendix A,
any strictly proper supervision operator O—including point-
wise scores, pairwise comparisons, listwise rankings, or
rubric-based evaluations—identifies the same ordering of
U∗ on the decoding support. This property ensures that our
training procedure remains theoretically consistent regard-
less of how preferences are observed.

In practice, we instantiate O using gold rubrics, which
provide explicit, interpretable decompositions of stake-
holder utility into weighted criteria and associated verifiers.
Gold rubrics offer a transparent and verifiable form of super-
vision that allows us to both (i) measure alignment fidelity
across interpretable dimensions and (ii) quantitatively eval-
uate structure and calibration during learning. Because Ap-
pendix A establishes order-equivalence across supervision
formats, the use of gold rubrics does not limit generality:
any alternative supervision signal consistent with U∗ would
induce the same learned ordering up to a monotone transfor-
mation.

Concretely, our training dataset consists of tasks and their
associated evaluation observations:

D = {(xi,Oi[U
∗
i ])}Ni=1, (10)

where each task xi encodes a natural-language description
of stakeholder goals, and Oi[U

∗
i ] provides an observation of

the underlying utility through its rubric representation R∗
i .

Each R∗
i decomposes U∗

i into a set of weighted, verifiable
criteria (see Appendix B), forming high-fidelity supervision
signals that guide the decomposer during optimization.

This supervision framework allows us to cleanly link data
specification and training objectives: the decomposer learns
to generate rubrics whose induced proxy utilities ûϕ pre-
serve the same ordinal structure as U∗ while remaining in-
terpretable and auditable.

4.4 Training-Time Optimization via Curriculum
ARCANE trains the decomposer Dϕ through a two-phase
curriculum: a supervised warm start to avoid cold-start in-
stability, followed by reinforcement fine-tuning with Group-
Sequence Policy Optimization (GSPO) (Zheng et al. 2025).

Stage I: Supervised Fine-Tuning (SFT). To bootstrap
the decomposer’s ability to generate coherent and well-
structured stakeholder interactions and rubric proposals, we
extend the supervision dataset D with a synthetic subset of
clarification dialogues. For each task x, we use a large rea-
soning model (LRM) to generate stakeholder responses that
yield a reference rubric R⋆(x) consistent with U⋆ in a given
environment.

We then train the decomposer Dϕ using next-token pre-
diction over its dialogue turns and rubric text, masking loss
on system prompts and task inputs, which is standard prac-
tice for instruction tuning (Wei et al. 2022). This procedure
teaches the model to express structured, weighted criteria
aligned with the reference rubrics.



The SFT objective is the standard language-modeling
loss:

LSFT(ϕ) = −E(x,R⋆)

[∑
t

log πϕ(rτ | r<t, x)

]
(11)

where rτ are tokens of the synthetic stakeholder conversa-
tion and the rubric text. After SFT, the parameters ϕ0 serve
as initialization for the reinforcement phase.

Stage II: GSPO over Rubric Proposals. In the rein-
forcement phase, the manager acts as a stochastic policy
πM (R | x) that proposes candidate rubrics. Training is per-
formed episodically over the tasks (x,O[U⋆]) ∈ D defined
in Section 4.3, where each task x serves as an environment
for rollout-based optimization. For each task x, K rubrics
{Rk}Kk=1 are generated, each conditioning a worker model
πW that produces an output yk ∼ πW (· | x,Rk). The stake-
holder utility rk = U⋆(yk | x) serves as the scalar return.
We compute a group-normalized baseline r̄ = 1

K

∑
k rk and

standardized advantages Âk = (rk − r̄)/std({rj}Kj=1).
The decomposer parameters are updated to maximize
the Group Sequence Policy Optimization (GSPO) objec-
tive, which replaces the token-level importance ratios
of GRPO (Shao et al. 2024) with a length-normalized,
sequence-level ratio sk(ϕ):

JGSPO(ϕ) = Ex

[
1

K

K∑
k=1

min

(
sk(ϕ) Âk,

clip
(
sk(ϕ), 1−ϵ, 1+ϵ

)
Âk

)
− β DKL

(
πϕ(· | x) ∥πref(· | x)

)
− Cclarify(q1:T ) − Ccompute(Rk)

]
(12)

sk(ϕ) =

(
πϕ(Rk | x)
πold(Rk | x)

)1/|Rk|

= exp

(
1

|Rk|

|Rk|∑
t=1

log
πϕ(zk,t | x, zk,<t)

πold(zk,t | x, zk,<t)

)
(13)

where zk,t denotes the t-th token in the rubric sequence
Rk = (zk,1, . . . , zk,|Rk|), generated autoregressively by the
manager policy πϕ given the task context x and the preced-
ing tokens zk,<t.

The KL term enforces a trust region around the reference
policy πref , preventing divergence during training. At this
stage, the auxiliary regularizers Cclarify and Ccompute are
derived from metadata collected during rubric generation.

Clarification cost. Cclarify(q1:T ) depends on the num-
ber and difficulty of clarification questions during the stake-
holder–manager dialogue, following a logarithmic normal-
ization to model diminishing burden:

Cclarify(q1:T ) =
log(1 + 0.1neasy + 0.5nmed + nhard)

log(16)
,

(14)

where neasy, nmed, nhard denote the numbers of clarification
questions that the stakeholder agent classifies—via a fixed
LLM prompt specifying criteria for easy, medium, and hard
difficulty—into the corresponding cognitive-burden levels.
This discourages excessive or complex clarifications while
tolerating minor ones.

Compute cost. Ccompute(Rk) measures the resource cost
of rubric verification as a weighted combination of monetary
and time costs:

Ccompute(Rk) =
log(1 + wcostcusd + wtimetsec)

log(1 + α)
, (15)

where wcostcusd and wtimetsec denote weighted LLM verifica-
tion cost and wall-clock time. Both are fitted to logarithmic
curves for smooth saturation across task sizes (weights spec-
ified in Appendix E). To further stabilize learning and im-
prove sample efficiency, we extend GSPO with prioritized
experience replay. After each rollout, we record the mean
return of each episode and for an iterative epoch we selec-
tively replay episodes with mean policy returns in the bot-
tom N -th percentile across eposides in training epoch. This
emphasizes failure cases where the decomposer underper-
formed, allowing the policy to learn corrective refinements
to low-utility rubric proposals. This modification follows
similar principles to prioritized sampling in reinforcement
learning (Schaul et al. 2016), but applied at the rubric-group
level rather than individual state transitions.

The final training loss is L(ϕ) = −JGSPO(ϕ). Pseudo
code for the full procedure is given in Algorithm 1. Once
trained, the decomposer can be used to steer generation at
test time via rubric-conditioned sampling, as described next.

4.5 Test-Time Steering via Rubric-Scaled Policies
After training, the decomposer enables interpretable control
over worker behavior without any additional gradient up-
dates. At test time, ARCANE steers worker agent behavior
by conditioning worker policies on the generated rubric R⋆

as shared context. This defines a joint worker policy

πcoop
W (y | x,R⋆) =

∏
i

πWi
(y | x,R⋆), (16)

whose collective behavior is implicitly aligned toward the
stakeholder’s true utility U∗. Since R⋆ defines ûϕ as a mono-
tonic proxy for the stakeholder’s true utility U∗, it can serve
as an oracle for ranking candidate outputs.

In practice, we can exploit this property to achieve test-
time scaling through multiple strategies:

• Best-of-K sampling: Generate K candidates from
πcoop
W (y | x,R⋆), score them via ûϕ, and select the

highest-scoring one.
• Importance reweighting: Resample candidates in pro-

portion to their rubric scores such as performed by (Liu
et al. 2025a).

• Tree or beam search: Use rubric scores as heuristics
to guide structured decoding (e.g., in code or reasoning
tasks).



Algorithm 1: Group Sequence Policy Optimization (GSPO)
for Rubric Generation
Require: initial decomposer parameters ϕ (from SFT), worker

policy πW , stakeholder simulator U⋆, datasetD of tasks, group
size K, epochs E, clip ϵ, KL coefficient β, learning rate η, max
dialogue turns T , replay buffer B, replay percentile p

1: ϕref ← ϕ
2: for epoch = 1, . . . , E do
3: for x ∈ D do
4: Initialize dialogue history h0 ← ∅
5: for t = 1, . . . , T do
6: Propose rubric draft Rt ← Dϕ(x, ht)
7: Get stakeholder feedback δt ∼ U⋆(· | Rt, x)
8: Update history ht+1 ← ht ∪ {(Rt, δt)}
9: if feedback is satisfactory then

10: break
11: end if
12: end for
13: Sample K rubric proposals: {Rk}Kk=1 ∼ πϕ(· | x, ht)
14: for k = 1, . . . ,K do
15: Generate worker output yk ∼ πW (· | x,Rk)
16: rk ← U⋆(yk | x) − λclarify Cclarify(ht) −

λcompute Ccompute(Rk)
17: end for
18: r̄ ← 1

K

∑K
k=1 rk

19: Âk ← (rk − r̄)/std({rj}Kj=1)
20: for k = 1, . . . ,K do
21: Compute importance weight sk(ϕ) (Eq. 13)
22: Compute clipped policy loss Lk (Eq. 12)
23: end for
24: L ← 1

K

∑K
k=1 Lk

25: Store (x, {Rk}Kk=1,L, r̄) in buffer B
26: end for
27: // Prioritized experience replay:
28: Select bottom p-th percentile episodes by r̄ from B
29: for each stored (x, {Rk},L, r̄) in replay set do
30: Update ϕ← ϕ− η∇ϕL
31: end for
32: end for
33: Return trained decomposer parameters ϕ⋆ ← ϕ

Because rubrics are interpretable, stakeholders can di-
rectly inspect, edit, or override the criteria {cj} and weights
{wj} used at inference time. This provides a transpar-
ent mechanism for configurable alignment, linking training-
time optimization to post-hoc human control.

5 Experiments
Our experiments aim to answer three research questions:

• RQ1 (Usefulness): Does guiding the worker team with
learned rubrics increase the utility of their outputs versus
unguided generation?

• RQ2 (Faithfulness): Does the manager agent learn to
rank candidates at test time in a manner consistent with
the rankings computed from the stakeholder utility U⋆?

• RQ3 (Interpretability & Efficiency): Are the rubrics
generated by the manager agent compact, legible, and
practical to verify?

5.1 Dataset and Domain
We use the GDPVal corpus (Patwardhan et al. 2025), a
large-scale benchmark designed for evaluating goal-directed
agents that operate over challenging real-world tasks. Each
task in GDPVal represents a multi-step work episode re-
quiring agents to manipulate, analyze, or synthesize struc-
tured files—such as spreadsheets, documents, and figures.
This setting reflects practical domains like data analysis,
document authoring, or visual reporting, where correctness
must be demonstrated through verifiable outputs rather than
language-only responses.

After filtering out tasks with unsupported file types (e.g.,
audio, PSD, CAD, or Apple Pages), we retain 219 tasks,
partitioned into 175 train and 44 evaluation episodes. All
resources are file-based: workers must emit artifacts such
as .md, .xlsx/.csv, .pdf/.docx, or .png/.jpg, en-
abling deterministic verification by downstream evaluators.

5.2 Rubric Design and Labeling Stages
Each task is paired with a staged gold rubric R⋆, written by
expert annotators to cover three complementary aspects of
task quality:
• Stage 1 – Gate: Checks basic structure and task com-

pliance (e.g., “Is the required file present?”, “Does the
output follow the expected schema?”).

• Stage 2 – Verification: Validates factual or logical cor-
rectness, often mixing code-based tests with LLM judges
to confirm that computations, references, and data align
with the task description.

• Stage 3 – Quality: Assesses higher-level attributes, e.g.
clarity, completeness, style, and usefulness to end user.

This staged decomposition was given as guidance to human
rubric authors, ensuring that each gold rubric collectively
covered structural, semantic, and qualitative dimensions of
“goodness” for the task. Each rubric targets 9–12 criteria,
distributed by weight across stages (Gate 20–30%, Verifica-
tion 40–50%, Quality 20–30%). Criteria are implemented
as either rule-based checks or LLM judgments. Overall,
the collection includes 2,601 criteria: 1,931 LLM judges
(74.2%) and 670 code rules (25.8%).

5.3 Rubric Evaluation Mechanics
Each rubric criterion is evaluated by either a vision-language
model (VLM) judge or a deterministic code rule. LLM-
judge rules use a fixed multimodal model snapshot capa-
ble of reading rendered artifacts (e.g., spreadsheets, PDFs,
figures) and apply templated 0–1 scoring prompts. To mini-
mize verifier error, we (i) use verifier models from different
model families as the workers they judge to avoid ”self en-
forcement bias” (Huang et al. 2025a), and design rules to
be easily verifiable, exploiting ”asymmetry of verification”
(Huang et al. 2025b). Code rules are executed as Python
functions with access to all intermediate and final task re-
sources, allowing deterministic checks such as schema vali-
dation, bounds tests, or consistency verification. This hybrid
evaluation enables reproducible low-level validation while
reserving LLM judges for higher-level reasoning and quali-
tative assessment.



Baselines. We compare four baseline configurations, all
using identical worker model configurations:

• Best-of-N (No Rubric): A baseline in which the man-
ager agent performs no rubric generation or stakeholder
interaction. Workers directly attempt the task based on
its description x, and after all completions, the manager
ranks the resulting N outputs {y} using its own subjec-
tive preference model û.

• Rubric Generation (SFT): The manager, finetuned us-
ing the SFT model from Section 4.4, first interacts with
the stakeholder to elicit and generate a rubric, which is
then distributed to N parallel workers for best-of-N roll-
outs. The resulting outputs {y} are subsequently scored
by the learned utility estimator ûϕSFT .

• Rubric Generation (GSPO): Identical to the previous
setup, but using the GSPO-trained manager from Sec-
tion 4.4. This isolates the effect of preference-optimized
rubric generation compared to supervised finetuning.

• Oracle Rubric: A privileged best-of-N configuration in
which the manager is given direct access to the ground-
truth rubric R⋆. The manager distributes R⋆ to work-
ers to guide task execution, and final outputs are ranked
according to the corresponding ground-truth utility U⋆.
This serves as an empirical upper bound on the achiev-
able gains from rubric guidance.

The sole difference across baselines is the source of rubric
guidance (none, SFT-generated, GSPO-generated, or ora-
cle). This controlled setup isolates the impact of rubric qual-
ity on worker performance. Training details can be found in
Appendix E and worker parameterizations in Appendix C.

5.4 Results
Usefulness (RQ1) We report average true return U∗(yi |
xi) across 44 held-out tasks xi.

Findings. Figure 1 shows mean returns under increasing
test-time compute (best-of-N sampling, N=1. . .8). Guided
variants consistently outperform the unguided baseline. As
shown in Table 1, mean return rises modestly from 0.58
(No Rubric) to 0.62 (GSPO) at N = 1, while the Oracle
Rubric reaches 0.70. At N=8, the ordering remains (No
Rubric < SFT < GSPO < Gold) with larger increase in
means 0.58, 0.68, 0.74, and 0.81. This monotonic improve-
ment shows that learned rubrics effectively encode stake-
holder preferences, boosting task-level return without mod-
ifying the worker model or decoding parameters.

A one-sided Wilcoxon signed-rank test on the evalua-
tion tasks confirms statistical significance of GSPO’s mean
returns over SFT returns (p=0.0182 at N=8), with mean
per-task improvement +0.044 (W+=592, W−=269; 22
episodes where GSPO wins vs. 19 where SFT wins). At
best-of-eight sampling, mean returns are 0.6817 (SFT) vs.
0.7460 (GSPO), confirming a statistically significant margin
at α=0.05. Reinforcement fine-tuning thus improves rubric
utility beyond supervised learning alone. All guided models
(SFT, GSPO, and Oracle) exhibit nearly identical best-of-
N scaling slopes: each doubling of N yields an average ≈
+0.03 absolute gain. Although their absolute returns differ,
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Figure 1: Test-Time Compute Scaling: SFT vs GSPO vs
No Rubric and Oracle Baselines. Mean returns on the 44-
task evaluation set under single-sample generation (N=1)
and best-of-N sampling (N=1. . .8). Error bars show 95%
bootstrap confidence intervals. The Oracle (Gold Rubric)
baseline is an upper bound on rubric guidance effectiveness.

Model Mean±sd (N=1) Mean±sd (N=8)

No Rubric (LLM-Judged) 0.58± 0.01 0.58± 0.02
SFT Model 0.59± 0.09 0.68± 0.03
GSPO Model 0.62± 0.12 0.74± 0.03
Oracle Rubric (Baseline) 0.70± 0.12 0.81± 0.03

Table 1: Mean returns ± standard deviation across eval-
uation tasks under single-sample (N=1) and best-of-eight
(N=8) generation.

the parallel scaling curves between the learned (SFT, GSPO)
and Oracle conditions indicate that the learned rubrics con-
fer a similarly consistent advantage per additional sample.
In other words, once a rubric is introduced, stochastic ex-
ploration improves quality at nearly the same rate as if eval-
uation were performed by the oracle critic—suggesting that
learned rubrics approximate its scoring function even with-
out direct access to U⋆.

Faithfulness (RQ2) We measure agreement between
rubric-induced scores ûϕ and oracle utilities U⋆ using Nor-
malized Discounted Cumulative Gain across 8 worker roll-
outs per episode (NDCG@8), averaged across 44 evalu-
ation tasks. For each task, we evaluate the same set of
eight rollouts but rank them once under the learned rubric
ûϕ and once under the oracle U⋆. Formally, NDCG@8 =(∑8

i=1 reli/ log2(i+ 1)
)/(∑8

i=1 rel
⋆
i / log2(i+ 1)

)
where reli is the oracle relevance (i.e., U⋆ score) of

the item ranked at position i by ûϕ, and rel⋆i denotes
the oracle relevance under the ideal (descending) ordering.
NDCG quantifies listwise consistency—rewarding rubrics
that place high-utility candidates near the top while dis-
counting errors lower in the list (Zhou et al. 2024; Zhao
et al. 2025). Each system generates eight candidates using
its own rubric guidance. We then take these generated candi-
dates and evaluate them under both the system’s rubric (ûϕ)
and the oracle utility function (U⋆), measuring how faith-



fully the rubric’s relative preferences track true stakeholder
utility on identical candidate sets.

We also include a No-Conversation (Base Rubric) base-
line, in which the manager still generates a rubric but does
so using the base model without any stakeholder dialogue.
This variant isolates the model’s intrinsic understanding of
the stakeholders preference for each task by taking it di-
rectly from the description x, independent of explicit pref-
erence elicitation, serving as a lower-bound comparison for
stakeholder-guided rubric learning.

Results. Table 2 shows steady gains: NDCG@8 improves
from 0.7998 (Base) to 0.8103 (SFT) and 0.8722 (GSPO), ap-
proaching oracle alignment while maintaining similar vari-
ance. The GSPO improvement corresponds to +8.3% Pre-
cision@3 and a reduction in average rank swaps among
top candidates (2.20 → 2.13 per task). No system achieved
perfect top-3 agreement, underscoring the difficulty of fine-
grained ranking even when mean utility is well aligned.

Model–Rubric Pair Mean NDCG@8 Std.

No-Conv (Base) 0.7998 0.0807
SFT Rubric 0.8103 0.0881
GSPO Rubric 0.8722 0.0985

Table 2: Mean ± standard deviation of NDCG@8 between
rubric-induced and oracle rankings (U⋆). Higher is better.

Domain trends. Improvements are strongest for sub-
jective, language-heavy domains: content/communication
(+11.5%, NDCG = 0.905) and legal/compliance (+12.5%,
0.848), while operational tasks slightly regress (–8.1%,
0.830) and data-analysis tasks remain flat (+1.9%, 0.822).
We conjecture that reinforcement fine-tuning excels where
quality is multi-dimensional and hard to specify a priori—in
content and legal work, rubrics capture nuanced aspects
(tone, completeness, regulatory alignment) that benefit from
learned discriminative features. Thus, reinforcement fine-
tuning is most valuable when quality is subjective and de-
composable.

Interpretability (RQ3) Are learned rubrics compact, leg-
ible, and auditable by practitioners?

Metrics. We assess (1) number of generated criteria,
(2) tokens per criterion, and (3) criteria weight distribu-
tions—the variance of point allocation across criteria in the
Gate, Verification, and Quality stages, where higher entropy
implies more balanced structure. We supplement quantita-
tive measures with qualitative comparison of the Oracle and
GSPO rubrics in Appendix D.

Results. Table 6 shows that SFT and GSPO rubrics nearly
match the Oracle standard: ∼12 criteria per rubric and 17–18
tokens per description. GSPO rubrics are marginally shorter
(–1 token, –5.5 %), allocate +14 % more weight value to cri-
teria specifically measuring quality, and exhibit lower vari-
ance (3.5 vs 4.2). These patterns indicate that reinforcement
fine-tuning yields more consistent phrasing and stage bal-
ance without verbosity or collapse. Appendix D.1 compares
representative criteria from the Government – Recreation

Workers task. GSPO rubrics retain the structure of the Or-
acle while adopting shorter, imperative phrasing (e.g., “de-
tects duplicates,” “confirms preferences handled”) and stable
point distributions (Gate ≈ 6 %, Verification ≈ 52 %, Qual-
ity ≈ 42 %). Fine-tuning therefore improves linguistic regu-
larity without distorting semantics.

We can see on inspection that GSPO produces rubrics
with evaluation criteria that remain transparent, auditable,
and faithful to human intent. Together with RQ1–RQ2, these
results demonstrate that learned rubrics are useful, faithful,
and interpretable.

6 Conclusion

We presented ARCANE, a rubric-based framework for inter-
pretable and configurable alignment of agents to stakeholder
preferences. By explicitly modeling latent stakeholder pref-
erences as structured rubrics and training a manager agent to
elicit and synthesize rubrics through dialogue with the stake-
holder, ARCANE provides both theoretical grounding (Ap-
pendix A) and practical method for test-time alignment. This
enables steerability without retraining and improves utility
on complex tasks requiring multi-step reasoning. Our ex-
perimental results indicate that learned rubrics can reliably
guide worker policies, approximate oracle ranking, and re-
main compact and auditable.

Limitations. Our experiments evaluate a manager coor-
dinating a single worker; while the framework extends to
multiple workers (Section 3), we have not validated multi-
worker coordination dynamics. GDPVal tasks, though re-
quiring multi-step tool use, are discrete episodes—stronger
long-horizon evidence would require evaluation on extended
deployments, such as in complex multi-agent workflows re-
quiring manager orchestration (Masters et al. 2025). Our No
Rubric baseline uses an RLHF-trained worker (Qwen-3),
demonstrating that training-time alignment alone does not
provide test-time adaptability; however, direct comparison
to alternative test-time methods such as Generative Reward
Models would help to characterize tradeoffs between inter-
pretability and performance. Finally, GSPO’s reward shap-
ing is flexible (we include terms for cost and latency), but
we lack structural regularizers against spurious criteria. The
manager agent could learn criteria that correlate with utility
without being causally meaningful; incorporating causal or
invariance penalties into rubric learning could improve the
faithfulness to true preferences.

Future Work. Promising directions include: (1) dynamic
rubric maintenance through adaptive revision during execu-
tion and bidirectional feedback from workers flagging am-
biguous or conflicting criteria; (2) systematic comparison
with alternative test-time alignment methods (e.g., GenRM,
GRAM) and extension to multi-agent settings with multiple
coordinating workers; and (3) scaling to large-scale hetero-
geneous preference data to improve coverage and general-
ization on long-tail domains.
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Agent Reinforcement Learning: Foundations and Modern
Approaches. MIT Press.
Anghel, C.; Craciun, M. V.; Pecheanu, E.; Cocu, A.; Anghel,
A. A.; Iacobescu, P.; Maier, C.; Andrei, C. A.; Scheau, C.;
and Dragosloveanu, S. 2025. CourseEvalAI: Rubric-Guided
Framework for Transparent and Consistent Evaluation of
Large Language Models. Computers, 14(10): 431.
Arora, R. K.; Wei, J.; Hicks, R. S.; Bowman, P.; Quiñonero-
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A Operator Calibration of Supervision
(On-Support)

In our experiments, we show the efficacy of our reinforce-
ment fine-tuning procedure for learning rubrics from gold
rubrics. In this Appendix we show that no matter how the
stakeholder utility is observed (pointwise scores, pairwise
wins, listwise picks), if we (i) define the right target for that
supervision, (ii) train with a strictly proper loss, and (iii)
stay on the same decoding support we use at test time, then
the learned scorer gϕ matches the supervision target on that
support and therefore induces the same ordering as the latent
utility U∗.

Setup Let U∗(y | x) be the latent stakeholder utility. At in-
ference we draw a candidate multiset C ∼ C(x); its support
S = supp(C) is the decoding support (where we actually
look). An observation operator O(U∗) is a stochastic mech-
anism emitting a supervision signal Z given an instance I
(the information the operator conditions on). Examples of I



for different types of obvervations would be: I = (x, p, y)
for pointwise exemplar policies, (x, yi, yj) for pairwise pref-
erences, and (x,C) for listwise preferences.

The model maps instances to a score gϕ(I), then applies
a link h (identity / logistic / softmax) to produce a prediction
Tϕ(I) = h(gϕ(I)) that is compared to a target functional
T ∗(U∗)(I) via a strictly proper loss L.

Assumptions. (A1) Coverage. Training and decoding use
the same sampler; guarantees hold a.s. on S = supp(C).

(A2) Composite realizability (on S). There exists ϕ0

with h(gϕ0
(I)) = T ∗(U∗)(I) a.s. for I ∈ S.

(A3) Properness. L is strictly proper for (O, T ∗): for each
I, the conditional Bayes risk t 7→ E[L(Z, t) | I] is uniquely
minimized at t = T ∗(U∗)(I).

Theorem (Operator calibration on the decoding sup-
port). Let R(ϕ) = E

[
L
(
Z, h(gϕ(I))

)]
be the population

risk. Under (A1)–(A3), any minimizer ϕ⋆ ∈ argminϕ R(ϕ)
satisfies

h(gϕ⋆(I)) = T ∗(U∗)(I) for a.s. I ∈ S.

In particular, gϕ⋆ and U∗ induce the same order on S when-
ever h and T ∗ are strictly monotone in the relevant score/u-
tility differences (identity, logistic, softmax). Examples of
such cases are given in Table 3 and later Corollaries.

Proof sketch (1) Bayes risk. We Define Rϕ(I) =
E[L(Z, h(gϕ(I))) | I] and R∗(I) = inft E[L(Z, t) | I].
Strict properness gives Rϕ(I) ≥ R∗(I) with equality iff
h(gϕ(I)) = T ∗(U∗)(I).

(2) Pointwise ⇒ global. Taking expectations over I ∼ S,
R(ϕ)− E[R∗(I)] = E[Rϕ(I)−R∗(I)] ≥ 0, with equality
iff the pointwise equality holds a.s.

(3) Realizability. By (A2) there exists ϕ0 attaining equal-
ity, hence any global minimizer ϕ⋆ must also achieve equal-
ity a.s. on S.

Corollary (Listwise / InfoNCE). For listwise I = (x,C)
with oracle q∗(y | C) ∝ exp{βU∗(y)}, link qϕ(y | C) =
softmax(gϕ(y)/τ), and log loss,

E[L] = E
[
H(q∗, qϕ)

]
= E

[
H(q∗) +DKL(q

∗∥qϕ)
]
,

so minimizing E[L] minimizes the KL divergence between
oracle and model listwise distributions. If qϕ = q∗ on C,
then gϕ⋆(y)−gϕ⋆(y′) = τβ [U∗(y)−U∗(y′)] for all y, y′ ∈
C: scores are identifiable up to per-group positive scale and
additive shift (which do not affect selection).

Corollary (Pairwise / logistic). For I = (x, yi, yj) with
target T ∗

pw = σ(β(U∗(yi) − U∗(yj))), link h(gϕ) =
σ(gϕ(yi) − gϕ(yj)), and Bernoulli log-loss, any risk mini-
mizer satisfies σ(gϕ⋆(yi)−gϕ⋆(yj)) = T ∗

pw a.s. on S. Hence
sign
(
gϕ⋆(yi)−gϕ⋆(yj)

)
= sign

(
U∗(yi)−U∗(yj)

)
on S (or-

der equivalence; only differences matter).

Notes and scope. (i) On-support guarantee. All state-
ments hold on the decoding support S induced by your sam-
pler; changing K, τ , or the sampler at test time alters S and

can change behavior.
(ii) Temperature/scale. With softmax, utilities are identifi-
able only up to affine transforms within a group; selection
and ranking are invariant to these transforms.
(iii) Bandit/off-policy. With logged propensities, inverse-
propensity or doubly-robust estimators consistently estimate
R(ϕ) under standard overlap; without overlap, unbiased es-
timation is impossible.

Connection to GSPO This theorem calibrates the evalu-
ator gϕ via a strictly proper loss so that it orders candidates
like U∗ on S. Separately, the manager (rubric generator) is
trained with GSPO on returns U∗ − λC under a trust region
KL(πmgr,new∥πmgr,ref) ≤ δ over rubric token sequences;
PPO-style arguments yield non-decreasing expected return
up to O(δ + ϵ2).

B Gold Rubric Construction
Gold rubrics R⋆ consist of three stages: Gate (20–30%,
checking structure/completeness), Verification (40–50%,
validating correctness), and Quality (20–30%, assessing
polish and stakeholder alignment). Each rubric contains 9–
12 criteria total.

Criterion design principles: (1) Specificity—avoid
vague criteria like “output is good”; instead specify ob-
servable properties (e.g., “report contains 3–5 recommen-
dations”). (2) Verifiability—each criterion is checkable via
code or LLM judge with high reliability. (3) Independence—
minimize redundancy across criteria. (4) Partial credit—
allow graduated scoring where appropriate.

Verifier types: Code-based verifiers handle deterministic
checks (file format, field presence, arithmetic). LLM judges
(GPT-4o, temperature 0.3) handle semantic criteria (tone,
factual consistency, argument quality). We prefer code when
possible for objectivity and cost.

Example rubric (Healthcare Financial Report):
• Gate (25 pts): Valid DOCX (10); required sections

present (10); includes chart/table (5). All code-based.
• Verification (50 pts): Revenue totals match source (20,

code); figures internally consistent (15, LLM+code); cor-
rectly identifies top-3 revenue/expense categories (15,
LLM).

• Quality (25 pts): Professional tone (10, LLM); action-
able recommendations (10, LLM); polished formatting
(5, LLM).

Inter-annotator reliability (20 dual-annotated tasks):
Cohen’s κ = 0.82 on criterion inclusion; mean absolute dif-
ference of 3.2 points on weights; 91% agreement on verifier
type selection. Disagreements resolved by senior annotator
adjudication.

C Worker Descriptions
All workers were run using GPT-5 (check pointed as of
25/10/2025, tool access, and decoding parameters tempera-
ture 0.7, seed 42). Workers have access to 40 tools organized
into 8 functional categories. All file operations are scoped
to task-specific directories; workers cannot access external



Table 3: Example supervision operators, targets, links, and strictly proper losses.

Supervision Instance I Obs. Z Target T ∗(U∗) Link h(gϕ) Loss L
Pointwise (x, y) r E[r |x, y] gϕ(y) MSE
Pairwise (x, yi, yj) 1[yi≻yj ] σ

(
β(U∗(yi)−U∗(yj))

)
σ
(
gϕ(yi)−gϕ(yj)

)
Bernoulli NLL

Listwise (x,C) y⋆∈ C q∗(y |C) ∝ eβU
∗(y) softmax

(
gϕ(y)/τ

)
− log t(y⋆)

APIs or network resources. A definitive list of Tools can be
found in Table 4.

Table 4: Worker tool categories and capabilities.

Category # Description

File I/O 9 read/write file,
read/write xlsx,
read/write docx,
read/write pdf, list files.
Excel via pandas; Word/PDF text extrac-
tion and generation.

Python Exec 2 python exec(code),
python eval(expr). Sandboxed
with pandas, numpy, matplotlib,
scipy, scikit-learn, seaborn,
plotly. Network disabled; 60s timeout.

Data Analysis 6 aggregate, filter data,
sort data, merge data,
pivot table,
describe statistics. Operate
on pandas DataFrames.

Visualization 6 plot line, plot bar,
plot scatter, plot histogram,
plot pie, save plot. Generate mat-
plotlib/plotly charts.

Doc Rendering 3 render docx/pdf/xlsx to image.
Convert documents to images (150 DPI)
for GPT-4o vision model input.

Retrieval 3 rag query, bm25 query,
embed text. Dense and keyword-
based search over task-provided corpora.

OCR 2 ocr image, ocr pdf. Extract text from
images and scanned PDFs.

PDF Manip. 4 pdf merge, pdf split,
pdf extract pages,
pdf add watermark.

Validation 5 validate json, validate email,
validate url, validate date,
validate schema. Check formats and
constraints.

D Rubric Interpretability Examples
D.1 Oracle vs GSPO Rubric Comparison
Table 5 contrasts representative criteria from the Govern-
ment – Recreation Workers task. Each row pairs a criterion
from the human-authored gold rubric with its nearest learned

counterpart from the GSPO rubric within the same stage.
The comparison highlights how reinforcement fine-tuning
preserved structure and evaluability while producing more
concise, imperative phrasing.

D.2 Rubric Structure Summary
Table 6 summarizes aggregate weights and average token
lengths per stage for the same task.

Stage Gold Weight (%) GSPO Weight (%) Tokens/Rule (Gold→ GSPO)

Gate 5 6 22→ 18
Verification 53 52 26→ 19
Quality 42 42 16→ 14

Table 6: Per-stage weight and token-length comparison for
the same task. reinforcement fine-tuning maintains near-
identical point distribution while shortening criteria and reg-
ularizing phrasing across stages.

Observation. Across stages, GSPO preserves the same
structural decomposition as the gold rubric, retains measur-
able criteria, and avoids redundant wording. The learned
phrasing replaces passive descriptions with active checks
(“detects,” “confirms,” “assesses”), reflecting consistent
translation of human evaluation intent into machine-
auditable form.

E Reproducibility and Experimental
Configuration

Training with Group Sequence Policy Optimization
(GSPO) described in Section 4 ran for two epochs,
each lasting approximately thirteen hours on a single
NVIDIA H100 (80 GB) GPU. Each batch contained four
rollouts, with a batch size of four and eight gradient-
accumulation steps, giving an effective update batch size
of 128 rollouts. All model variants shared the same worker
policy, verifier design, and tool environment; only the
source of rubric generation differed between baselines
(none, SFT, GSPO, or oracle).

Training used the Qwen3-8B model with low-rank adap-
tation (LoRA rank r = 16, α = 16). Roughly ninety-
four million parameters (0.67% of the full model) were
trainable. The worker model was GPT--5 for all reported
experiments, while Claude-4.5-Haiku was evaluated
in limited runs and produced similar qualitative results,
with main differences arising from API throughput con-
straints. The verifier large language model was GPT--4.1.
All experiments were implemented using PyTorch 2.13,



Stage Gold Rubric Criterion (Reference) GSPO Learned Criterion (Concise)

Gate “Verify the candidate produced a single Excel workbook
with required sheets and clearly labeled tables/columns
that enable verification.”

“Checks workbook structure: single workbook, required
sheets present, labeled tables, parsable for verification.”

Verification
(Code)

“No table number should be assigned to more than one
vendor across the layout.”

“Detects duplicate table assignments; each table ID
unique across vendors.”

Verification
(LLM)

“Location preferences, electricity needs, and adjacency
requests are honored where feasible, or deviations are jus-
tified.”

“Confirms vendor preferences handled or justified; high-
lights unmet adjacency/electricity requests.”

Quality (LLM) “Formatting, labeling, and layout are professional and
accessible for city staff and vendors.”

“Assesses professionalism and accessibility of layout for
staff and vendors.”

Quality (LLM) “Evidence of contingencies for common risks (no-shows,
power issues, last-minute changes).”

“Checks inclusion of contingency notes for expected op-
erational risks.”

Table 5: Side-by-side comparison of representative criteria from the Government – Recreation Workers task. GSPO rubrics
mirror gold structure and coverage but use shorter, imperative phrasing (˜5–6 tokens fewer on average), improving legibility
and auditability without loss of specificity.

TRL, Unsloth, and VLLM (October 2025 releases). Mixed-
precision training was performed in BF16, and NF4 quanti-
zation was applied for single-GPU training to reduce mem-
ory usage. Optimization employed AdamW with β1 = 0.9,
β2 = 0.99, and a weight decay of 0.01. The learning rate
was set to 5 × 10−6 with a 10% linear warm-up and cosine
decay.

The dataset comprised a subset of the GDP-Val bench-
mark, with 175 training tasks (700 rollouts) and 44 held-out
evaluation tasks. Evaluation used a hybrid verifier combin-
ing static code checks with LLM-judge criteria (both imple-
mented with GPT-4.1). The primary evaluation metric was
the maximum true return per worker within each rollout,
maxi U

∗(yi). All experiments were run with a fixed random
seed of 42, and reported values include 95% bootstrap con-
fidence intervals.

Supervised Fine-Tuning Baseline. Before GSPO train-
ing, we conducted a supervised fine-tuning (SFT) stage to
establish a strong non-RL baseline. SFT was performed on
Qwen3-8B (32k context) using LoRA with rank r = 16 and
α = 16, matching the adapter configuration used in GSPO.
The learning rate was set to 2 × 10−5, with a batch size of
four per device and four gradient-accumulation steps, yield-
ing an effective batch size of 16. One epochs of SFT was
run with no gradient warmup. The optimizer was AdamW
with the same β-values and decay as GSPO. This SFT model
served as the initialization for the SFT baseline reported in
Section 5.

GSPO and Cost Penalties. All RL runs used β = 0.05
for KL regularization, PPO clipping parameter ϵ = 0.2, and
a group size of K = 4. Two additional cost coefficients
governed the reward shaping: λcost = 0.01 (verifier com-
pute cost) and λburden = 0.05 (stakeholder clarification bur-
den), with BURDEN SCALE=15.0 for logarithmic saturation
of clarification penalties. Under this scheme, one clarifica-
tion incurred roughly an 18% reward penalty, five clarifica-
tions 42%, and ten clarifications 60%.

Cost-Time Weighting for Parallel Rubrics. The com-
pute cost term Ccompute(Rk) in Eq. 15 decomposes into
two components: monetary cost (API expenses) and time
cost (wall-clock execution time). To encourage rubrics that
enable parallel execution and reduce latency, we weighted
these components as wcost = 0.3 and wtime = 0.7, prior-
itizing rubrics that minimize execution time over those that
minimize API costs.

Optimization Settings. A warmup fraction of 10%
was applied, the KL coefficient β was tuned between
{0.02, 0.05, 0.1} in pilot runs, and β = 0.05 provided the
most stable learning. Batch size per device was one, with
gradient accumulation of eight for an effective batch of 32.
Each prompt generated K = 4 rubric-conditioned rollouts
per update.

Compute and Environment. Single-GPU training con-
sumed approximately twenty-six GPU-hours (two epochs
at thirteen hours each), with average memory usage of
62 GB using NF4 quantization. Experiments were run on
Ubuntu 22.04 LTS with CUDA 12.2. Progress and replay
buffers were tracked using Weights & Biases, recording per-
epoch returns and rollout statistics.

Determinism and Verification. To ensure reproducibil-
ity, all random seeds were fixed and deterministic
PyTorch operations enabled. Ablation sweeps confirmed
that λcost ∈ {0, 0.001, 0.01, 0.1, 1.0} and λburden ∈
{0, 0.01, 0.05, 0.1, 0.2} yield monotonic trade-offs between
utility and compute burden. Substituting GPT-5 with GPT-
4.5-Haiku preserved overall learning trends, indicating
model-agnostic behaviour across same-scale LLMs.


