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Abstract

Although efficient at performing specific tasks, Machine Learning Systems (MLSs)
remain vulnerable to instabilities such as noise or adversarial attacks. In this work,
we aim to track the risk exposure of an MLS to these events. We formulate this
problem under the stochastic Partial Monitoring (PM) setting. We focus on two in-
stances of partial monitoring, namely the Apple Tasting and Label Efficient games,
that are particularly relevant to our problem. Our review of the practicality of exist-
ing algorithms motivates RandCBP, a randomized variation of the deterministic
algorithm Confidence Bound (CBP) inspired by recent theoretical developments in
the bandits setting. Our preliminary results indicate that RandCBP enjoys the same
regret guarantees as its deterministic counterpart CBP and achieves competitive
empirical performance on settings of interest which suggests it could be a suitable
candidate for our problem.

1 Introduction
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Figure 1: Machine Learning
System.

An increasing number of businesses and agencies have started using
Machine Learning Systems (MLSs) as they perform well on a wide
array of tasks (e.g. decision support in finance Dixon et al. [2020]
or healthcare Shailaja et al. [2018]). However, they are vulnerable
to instabilities such as noise or adversarial attacks Chakraborty et al.
[2021]. In this work, we propose to monitor the risk exposure of a
MLS to these instabilities.

We define a MLS as a stream of data points processed sequentially
by a black-box classifier (see Figure 1). The data points are originate
from a sensor that can accidentally produce noisy data points that
put the black-box at risk of performing a bad prediction. Our goal
is to design a controller that estimates accurately the proportion of
destabilized data points in the stream.

Existing methods Metzen et al. [2017] for the controller emerge from
an offline setting (i.e., the controller is trained before its deployment).
We propose instead a less studied approach Raginsky et al. [2012]
(denoted online setting) where the controller learns progressively
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over the succession of data points. The difficulty of this task lies in the necessity for the controller
to optimally trade-off between exploration and exploitation while only receiving partial feedbacks.
Indeed, verifying all the data points is usually impossible due to the amount of data [Henzinger et al.,
1998].

We formulate this problem under the partial monitoring (PM) [Bartók et al., 2014] setting as it enables
a general expression of the exploration-exploitation trade-off under various feedback scenarios. We
focus on two partial monitoring instances called the Label Efficient [Cesa-Bianchi and Lugosi, 2006]
and the Apple Tasting [Helmbold et al., 2000] games that are relevant to this problem and that are
less studied in the literature. We provide an analysis of the difficulty of each game and review the
practicality of existing approaches in these games. This motivates our new algorithm RandCBP, a
randomized variation of the Confidence Bound (CBP) algorithm [Bartok et al., 2012]. We show that
RandCBP enjoys the same regret guarantees as its deterministic counterpart CBP while demonstrating
better empirical performance.

2 Problem setting

Consider a MLS as defined in Figure 1 where a sensor produces a sequence of data points that are
subject to instabilities assumed to occur stochastically. The idea in this work is to design a controller
that samples efficiently the stream to estimate accurately the proportion of perturbed data points.

We formulate this problem as a finite partial monitoring (PM) [Bartók et al., 2014] game played
between the controller C and the sensor. Let K be the number of actions available to the controller and
M denote the number of available outcomes that follow a distribution p⋆. The game is structured by a
loss matrix L ∈ RK×M ∈ {0, 1} and a feedback matrix H ∈ ∈Σ. Both are known by the controller.
Note that Σ is the space of feedbacks is not necessarily numeric. The optimal action of this game is
i⋆ = argmini⟨L⊤

i , p
⋆⟩, where Li is the i-th column of L. Let δi = (Li−Li⋆)p

⋆ be the expected loss
difference and Ni(t) be the number of times action i was selected before step t. The controller’s goal
is to explore and exploit in order to minimize the regret: R(T ) =

∑T
t=1 δi(t) =

∑
i∈N δiNi(T + 1).

Therefore, at each step t, the controller aims to incur the smallest loss L[i(t), j(t)] while only
observing the feedback H[i(t), j(t)]. Notice that a PM game with L = H implies that the controllers
observes the loss at each step, which is a bandit game.

Partial monitoring games can have different levels of difficulty. To this end, Bartok [2012] proposed
a game classification with 4 categories: trivial with zero regret, easy with Θ̃(

√
T ) regret, hard with

Θ(T 2/3) regret and hopeless with linear regret. The difference between easy and hard games depends
on the local observability condition that can be verified for any game (see Appendix A).

3 Tracking the Risk of Machine Learning Systems

In the rest of this work, we focus on two specific games known in the literature as Label Efficient and
Apple Tasting games Cesa-Bianchi and Lugosi [2006]. Both are relevant to our application because
they admit two outcomes that could be identified as whether the data point is destabilized or not.

3.1 Relevant Partial Monitoring Games

Label Efficient game The Label Efficient game admits 3 actions (flag as anomalous, don’t flag,
ask an expert) and is structured as follows:

L =

[
1 1
1 0
0 1

]
, H =

[⊥ ⊙
∧ ∧
∧ ∧

]
This game is difficult because the controller receives an informative feedback only when they ask an
expert whether a specific data point is destabilized or not. Yet, asking the expert causes a large loss.
Hence, the controller must minimize the number of queries to the expert. This dynamic is relevant
for high volume streams where not all the data points can not be verified. The Label Efficient game is
classified as hard and admits a regret lower bound in Θ(T 2/3). However, it is a particularly ’harder’
game within the class of hard games because the only informative action is also the least optimal one
loss wise (see Appendix A.2).
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Apple Tasting game The Apple Tasting game differs from the Label Efficient one as it only admits
two actions (flag as anomalous, don’t flag). The loss and feedback matrices are:

L =

[
1 0
0 1

]
, H =

[
⊥ ⊥
⊥ ⊙

]
In this game, every flagged data point receives a feedback. This ultimately requires more expert
resources than the Label Efficient game and is typically relevant for streams with less data volume.
This game belongs to the class of easy games and thus admits a lower bound in Θ(

√
T ) (see Appendix

A.1).

3.2 Practicality of Existing Approaches
Existing stochastic partial monitoring approaches are either deterministic or bayesian. On the
bayesian side, BPM-Least [Vanchinathan et al., 2014] admits a regret guarantee in O(

√
log(T ))

for easy games and TSPM Tsuchiya et al. [2020] achieves a O(
√
T ) regret rate on easy games

only as well. Therefore, both BPM-Least and TSPM fail in hard games such as the Label Efficient
one. On the deterministic side, CBP [Bartok et al., 2012] achieves a O(

√
T ) regret rate on easy

games and O(T 2/3) rate on hard games. However, CBP achieves a O(
√
T ) regret rate for some hard

games under a favorable outcome distribution1. PM-DMED [Komiyama et al., 2015] achieves an
asymptotic O(log T ) regret rate yet, the empirical performance of PM-DMED relies on the tuning of
a distribution dependent parameter c.

4 Method: a Randomized Confidence Bound Algorithm

In this section, we present RandCBP, a randomized variation of the algorithm CBP. RandCBP is
inspired from recent theoretical developments in confidence based approaches in the bandit setting
Vaswani et al. [2020]. The aim is to bridge these developments to the partial monitoring setting.
Implementation details are available in Appendix B.

CBP In short, the algorithm works as follows. The algorithm estimates for all action pairs in N
the loss differences δ̃i,j and maintains a deterministic confidence bound ci,j over these estimates .
When there is enough confidence, the sign of the loss difference estimation indicates which action in
the pair is better allowing the elimination of sub-optimal actions. This procedure is repeated at each
time t, and yields a set of promising actions. However, in order to guarantee sufficient exploration
the algorithm must also select a few times sub-optimal actions for information seeking purpose.
Therefore, a set of rarely sampled actions R(t) is computed at each round and is added to the set
of promising actions. Finally, the selected action is the one that potentially reduces the confidence
bound the most within this larger set.

RandCBP We derive a randomized version of the deterministic algorithm CBP. We propose to use
stochastic confidence bounds zi,j instead of deterministic ones. More precisely, zi,j are proportional
to a value Zt sampled at each time t ≤ T from from a Gaussian N (0, σ) truncated over [0, αlog(t)].
This approach brings additional variability to trade off exploration and exploitation.

Regret guarantee of RandCBP In Appendix B.3, we show that RandCBP enjoys the same regret
guarantees as CBP. The change in the definition of the confidence intervals impacts the two lemmas
at the core of CBP’s regret proof [Bartok, 2012]. Our approach differs from the path used in Vaswani
et al. [2020] as we observe that zi,j(t) ≤ ci,j(t) is verified anytime whereas they reduce their proof
to a known results from the linear bandits literature.

5 Experiments

We track the risk of a MLS on synthetic streams. To measure the performance, we average the
expected regret over 100 sequences of 100k elements. A lower regret implies a better estimation
of the MLS risk. We consider simple instances with p⋆ = [panomaly, 1 − panomaly] is such that

1 This is occurs when p⋆ verifies the hilly property defined in Bartok [2012]. In the Label Efficient and Apple
Tasting games, the hilly property is verified when pspam ≤ 0.4.
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(b) Difficult instances

Figure 2: Apple Tasting game
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Figure 3: Label Efficient game

panomaly ∈ U [0, 0.2] which is coherent with our scenario. We also consider difficult instances where
panomaly ∈ U([0.4, 0.5]). See footnote 1 for a justification of the probability thresholds. A study of
RandCBP hyper-parameters is available in C.2.

Baselines We rely on 5 baselines. We consider a random selection policy, the bayesian approaches
BPM-Least and TSPM as well as the deterministic algorithms PM-DMED and CBP. These four
approaches represent all existing approaches in stochastic PM.
Results on the Apple Tasting game From Figure 2, we observe that RandCBP achieves a lower
regret than CBP on both simple and difficult instances on the Apple Tasting game. Over 100 trials,
RandCBP achieved or lower or equal regret than CBP 74 (resp. 93) times on simple (resp. difficult)
instances.A well tuned PM-DMED is the best strategy on difficult and easy apple tasting games.
However, on simple games, the performance gap between PM-DMED and RandCBP is narrower and
the greater time and implementation complexity of PM-DMED over RandCBP should be taken into
consideration.
Results on the Label Efficient game As expected, bayesian approaches such as TSPM and BPM-
Least fail in the Label Efficient game. Again, the RandCBP’s regret is lower CBP’s one on both
simple and difficult instances of the Label Efficient game. Over 100 trials, RandCBP achieved or
lower or equal regret than CBP 90 (resp. 72) times on simple (resp. difficult) instances. In the simple
case, the best realizations of PM-DMED ( with c = 5) under-perform RandCBP but are narrow. In
the difficult case, PM-DMED (with c = 100) is the most efficient strategy. However, as can be seen
in C.3, this is due to PM-DMED randomly selecting actions over the 1000 first data points which
corresponds to an explore-the-commit behavior that could not be appropriate in some applications
whereas RandCBP explores over a longer time span.

6 Conclusion
Our preliminary results show that RandCBP enjoys the same regret guarantees as CBP and has better
empirical performance. RandCBP is also the best approach in simple Label Efficient games which are
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particularly relevant for our application. Our next steps are to extend the approach to the contextual
setting where the controller has access to the data points contained in the stream to inform its actions
which makes sense in practice. We also plan to investigate the adversarial setting to generalize to the
presence of state-of-the-art adversaries Mladenovic et al. [2022].
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.
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Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] We don’t

see any negative societal impact in a technology that aims to identify possible
instabilities in a stream of data points.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [No]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] Our work does not use existing assets.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [No]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [No]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] Our work does not use crowdsourcing or
human subjects.

A Analysis of Partial Monitoring games

In this Section, we provide a detailed analysis of the Apple Tasting and Label Efficient games, using
the theoretical framework developed in Bartok [2012]. These in depth analysis are valuable for the
implementation of partial monitoring algorithms and understanding the difficulty of these games. We
point the reader to the appendix of Grant and Leslie [2021] and Lattimore and Szepesvári [2019] for
higher level analyses.
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A.1 Analysis of the Apple Tasting game

Let us consider the Apple Tasting problem defined by the following loss (L) and feedback (H)
matrices:

L =

[
1 0
0 1

]
, H =

[
⊥ ⊥
⊥ ⊙

]
This problem includes a set of 2 possible actions and 2 possible outcomes (denoted A and B).

Signal Matrices: The signal matrices as defined in Bartok [2012] associated to this problem are
such that S1 ∈ {0, 1}1×2 and S2 ∈ {0, 1}2×2. More precisely, they verify:

S1 = [1 1] , S2 =

[
1 0
0 1

]
To illustrate the properties of the signal matrices, let us consider an instance of the problem where the
outcome distribution p⋆ is such that p⋆(A) = 0.8 and p⋆(B) = 0.2. Let us define ⟨·, ·⟩ as the scalar
product between matrices. We express the probability of obtaining each symbol of H given a specific
action:

• ⟨S1, p⟩ = 1, indeed there is only one observation induced by action one therefore the
probability of seeing this observation can only be one.

• ⟨S2, p⟩ =
[
1 0
0 1

] [
0.8
0.2

]
, therefore the probability of seeing outcome B is 0.8 and the

probability of seeing outcome A is 0.2.

Cells: This game has 2 actions, we can characterize these actions by a sub-space of the probability
simplex noted cell in Bartok [2012]:

• For action 1, we have: C1 = {p ∈ ∆M∥∀j ∈ N, (ℓ1 − ℓj)
⊤p ≤ 0}. This probability space

corresponds to the following constraints:

C1 =

[
ℓ1 − ℓ1
ℓ1 − ℓ2

]⊤
p =

[
0 0
1 −1

]⊤
p ≤ 0

The first constraint ((ℓ1−ℓ1)⊤p ≤ 0) is always true. The second constraint ((ℓ1−ℓ2)⊤p ≤ 0)
implies p1 − p2 ≤ 0.

• For action 2, we have: C2 = {p ∈ ∆M∥∀j ∈ N(ℓ2 − ℓj)
⊤p ≤ 0}. This probability space

corresponds to the following constraints:

C2 =

[
ℓ2 − ℓ1
ℓ2 − ℓ2

]⊤
p =

[
−1 1
0 0

]⊤
p ≤ 0

The second constraint ((ℓ2−ℓ2)⊤p ≤ 0) is always true. The first constraint ((ℓ2−ℓ1)⊤p ≤ 0)
implies p2 − p1 ≤ 0.

Therefore, for action 1 to be optimal the outcome distribution needs to verify p1 − p2 ≤ 0 whereas it
is the opposite for action 2 to be optimal.

Pareto optimal actions: From the analysis of the cells, we have that both actions are Pareto optimal
according to the definition in Bartok [2012] because their respective cells are neither empty, neither
included one in another.

Neighboring actions: In this paragraph, we will determine whether action 1 and 2 constitute a
neighboring pair, i.e if dim(C1 ∩ C2) = M − 2 = 0.

C1 ∩ C2 =

{
p1 − p2 ≤ 0

p2 − p1 ≤ 0

The only point in this vector space is [0.5 0.5]. Therefore, dim(C1 ∩ C2) = 0. Therefore, action 1
and action 2 are neighboring action pairs according to the definition in Bartok [2012].
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Observability of the game: In this paragraph we will determine whether this game is globally
and/or locally observable according to the definition in Bartok [2012]. Let’s calculate Im(S1) and
Im(S2):

• For Im(S1) we have:
[
1
1

]
[x] =

[
x
x

]
= x

[
1
0

]
+ x

[
0
1

]
• For Im(S2) we have:

[
1 0
0 1

] [
x
y

]
=

[
x
y

]
= x

[
1
0

]
+ y

[
0
1

]

We have Im(S1) = Im(S2) = Span(

[
1
0

]
,

[
0
1

]
). In conclusion, we have: Im(S1)

⊕
Im(S2) =

Span(

[
1
0

]
,

[
0
1

]
)

Finally, the action pair {1, 2} is locally observable because ℓ1 − ℓ2 =

[
1
−1

]
can be expressed as the

sum of the canonic vectors in Im(S1)
⊕

Im(S2). Since this also applies to the action pair {2, 1},
we can conclude that the game is globally and locally observable. Therefore, it can be classified as an
easy game with a bound on the regret in Θ̃(

√
T ).

A.2 Analysis of the Label Efficient game

Let us consider the Label Efficient game [Cesa-Bianchi and Lugosi, 2006] defined by the following
loss and feedback matrices:

L =

[
1 1
1 0
0 1

]
, H =

[⊥ ⊙
∧ ∧
∧ ∧

]

This problem includes a set of 3 possible actions and 2 possible outcomes (denoted A and B).

Signal Matrices: The signal matrices [Bartok, 2012] associated to this problem are such that
S1 ∈ {0, 1}2×2, S2 ∈ {0, 1}1×2 and S3 ∈ {0, 1}1×2. We have:

S1 =

[
0 1
1 0

]
, S2 = [1 1] , S3 = [1 1]

Cells: This game has 3 actions, each associated to a sub-space of the probability simplex called
cell. We will now characterize the cell of each action in the Label Efficient game:

• For action 1, we have: C1 = {p ∈ ∆M ,∀j ∈ N, (ℓ1 − ℓj)
⊤p ≤ 0}. This probability space

corresponds to the following constraints:

C1 =

[
ℓ1 − ℓ1
ℓ1 − ℓ2
ℓ1 − ℓ3

]⊤

p =

[
0 0
0 1
1 0

]⊤

p ≤ 0

The first constraint ((ℓ1−ℓ1)⊤p ≤ 0) is always true. The second constraint ((ℓ1−ℓ2)⊤p ≤ 0)
implies p2 ≤ 0 and the third constraint ((ℓ1 − ℓ3)

⊤p ≤ 0) implies p1 ≤ 0. Therefore, there
exist no probability vector in ∆M satisfying this constraint.

• For action 2, we have: C2 = {p ∈ ∆M ,∀j ∈ N(ℓ2 − ℓj)
⊤p ≤ 0}. This probability space

corresponds to the following constraints:

C2 =

[
ℓ2 − ℓ1
ℓ2 − ℓ2
ℓ2 − ℓ3

]⊤

p =

[
0 −1
0 0
1 −1

]⊤

p ≤ 0
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The second constraint ((ℓ2 − ℓ2)
⊤p ≤ 0) is always true. The first constraint ((ℓ2 − ℓ1)

⊤p ≤
0) implies −p2 ≤ 0 ⇐⇒ p2 ≥ 0. The third constrain ((ℓ2 − ℓ3)

⊤p ≤ 0) implies
p1 − p2 ≤ 0 ⇐⇒ p1 ≤ p2.

• For action 3, we have: C3 = {p ∈ ∆M ,∀j ∈ N(ℓ3 − ℓj)
⊤p ≤ 0}. This probability space

corresponds to the following constraints:

C3 =

[
ℓ3 − ℓ1
ℓ3 − ℓ2
ℓ3 − ℓ3

]⊤

p =

[−1 0
−1 1
0 0

]⊤

p ≤ 0

The third constraint ((ℓ3− ℓ3)
⊤p ≤ 0) is always true. The second constraint ((ℓ3− ℓ1)

⊤p ≤
0) implies −p1 + p2 ≤ 0 ⇐⇒ p2 ≥ p1. The first constraint ((ℓ3 − ℓ1)

⊤p ≤ 0) implies
−p1 ≤ 0 ⇐⇒ p1 ≥ 0.

Pareto optimal actions: From the analysis of the cells, we have C1 = ∅. Therefore, action 1 is
dominated according to the definition in [Bartok, 2012]. The remaining action 2 and 3 are Pareto
optimal because their respective cells are not included in one another.

Neighboring actions: In this paragraph, we will determine whether action 2 and 3 constitute a
neighboring pair, i.e if dim(C2 ∩ C3) = M − 2 = 0.

C1 ∩ C2 =


p2 ≥ 0

p1 ≤ p2
p2 ≤ p1
p1 ≥ 0

The only point in this vector space is [0.5 0.5]. Therefore, dim(C1 ∩ C2) = 0. Therefore, {2, 3} is
a neighboring action pair.

Observability of the game: In this paragraph we will determine whether this game is globally
and/or locally observable. Let’s calculate Im(S1), Im(S2) and Im(S3):

• For Im(S1) we have:
[
1 0
0 1

] [
x
y

]
=

[
x
y

]
= x

[
1
0

]
+ y

[
0
1

]
• For Im(S2) = In(S3) we have:

[
1
1

]
[x] =

[
x
x

]
= x

[
1
0

]
+ x

[
0
1

]

We have Im(S1) = Im(S2) = Span(

[
1
0

]
,

[
0
1

]
). In conclusion, we have: Im(S1)

⊕
Im(S2) =

Span(

[
1
0

]
,

[
0
1

]
)

The action pair (2,3) is not locally observable. We can conclude that the game is not locally observable.
Howver, the action pair (1,2) is globally observable. Therefore, it can be classified as an hard game
with a bound on the regret in T 2/3.

A.3 Instances of Label Efficient game with variable difficulty

Note that there exist instances of label efficient game where the informative action is not dominated.
Let us consider the expected loss of each action obtained from a general label efficient game:

⟨

[
a a
b 0
0 c

]
, p⟩ =

[
p1a+ p2a

p2b
p1c

]

Therefore, it would take the cost a to satisfy p1a+ p2a ≤ p2b⇒ a ≤ p2b. This would imply that
the expected cost of playing the informative action is lower than the expected loss of action 2. The
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other option would be to satisfy p1a+ p2a ≤ p1c⇒ a ≤ p1c. This implies that the expected loss for
playing the informative action is lower than the expected loss of playing action 3.

In practice, such combinations of the problem are not very realistic, since the goal is to play the least
possible times the costly yet informative action. Therefore, such instances are less susceptible to be
found in real world applications.

B More details on CBP and RandCBP

In this Section, we provide more details and code2 on the proposed RandCBP. RandCBP is a
randomized variation of the algorithm CBP. The development of RandCBP is inspired from a recent
breakthrough on confidence-based approaches in the bandits setting [Vaswani et al., 2020]. The aim
is to bridge these theoretical developments and empirical improvements to the partial monitoring
setting and make sure that the optimality guarantees hold in this setting as well.

B.1 Instanciation of CBP and RandCBP

The difference between RandCBP and CBP is a change in the confidence interval definition. In CBP,

the confidence interval is deterministic and defined as ci,j(t) = ∥vijk∥∞
√

α log(t)
nk(t−1) . On the other

hand, in RandCBP, the confidence interval is stochastic and defined as zi,j(t) = ∥vijk∥∞Zt

√
1

nk(t−1)

where Zt ∼ N (0, σ) and is truncated between [0,
√

α log(t)]. The differences between both algo-
rithms are highlighted in purple in Algorithm 1. For both algorithms, we set α = 1.01 and the pa-
rameter η = W 2/3. The set of rarely sampled actions is defined asR(t) = {k ∈ N̄ : nk(t) ≤ f(t)}
with f(t) = α1/3t2/3 log(t)1/3. More details can be found in Bartok et al. [2012] and Bartok [2012].

B.2 The sampling distribution

We consider a discrete distribution for Z on the interval [0,
√

α log(t)], supported on M points. The
samples Z1, Z2, ...ZT are i.i.d and have the same distribution as Z. Let ρ1 = 0, ..., ρM =

√
α log(t)

denote M equally spaced points. If M = 1 and the interval is a single point
√

α log(t), then we recover
CBP algorithm. If the interval is instead [0,

√
α log(t)] split over M points, then we obtain RandCBP.

Let p1, ..., pM denote the probability of sampling each ρ1, ..., ρM value. The pm values correspond
to Gaussian distribution truncated in the [0,

√
α log(t)] interval and has tunable hyper-parameters

ϵ, σ > 0. The former is the constant probability to be put on the highest point: ρM =
√

α log(t)
with pM = ϵ. For the remaining M − 1 points, we use a discretized Gaussian distribution; formally,
for 1 ≤ m ≤M − 1, let pm := exp(−ρ2m/2σ2) and let pm denote the normalized probabilities, that
is, pm := (1 − ϵ)pm/(

∑
m pm). The above choice can be viewed as a truncated (between 0 and

α log(t)) and discretized (into M points) Gaussian distribution. We refer the reader to Vaswani et al.
[2020] for more details on the sampling procedure.

B.3 Regret of RandCBP

The key to extend to the stochastic case is to observe that zi,j(t) ≤ ci,j(t) is verified anytime.
We include the complete proof for completeness and write in the purple the changes made to the
original proof. The modifications are located in the two lemmas at the core of the proof Bartok [2012].

In this section we provide individual and minimax upper bounds on the expected regret of RandCBP.
The first theorem is an individual upper bound on the regret.

Theorem 1 (Individual regret bound). Let G = (L,H) be an N by M partial-monitoring game.
For a fixed opponent strategy p⋆ ∈ ∆M , let δi denote the difference between the expected loss
of action i and an optimal action. For any time horizon T , algorithm RandCBP with parameters
α > 1, ηk = W 2/3, f(t) = α1/3t2/3 log1/3(t) has expected regret

2https://anonymous.4open.science/r/attack-detection-DF70
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Algorithm 1: CBP and RandCPB
input : P,N , α, η, f(·),M, σ, ϵ

1 n← 0, ν ← 0
2 N ← length(A)
3 for t ≤ N do
4 Choose It = t, observe Yt, nIt = 1, νIt = Yt

5 for t > N do
6 Zt ∼ N (0, σ) , truncated between [0, αlog(t)] according to Section B.2
7 for each {i, j} ∈ N do
8 δ̃i,j ←

∑
k∈Vi,j

v⊤i,j,k
νk

nk

9 ci,j ← ∥vi,j,k∥∞
√

αlog(t)
nk

10 zi,j ← ∥vi,j,k∥∞Zt

√
1
nk

11

12 if |δ̃i,j |≤ ci,j zi,j then
13 Halfspace(i, j)← sign(δ̃i,j)
14 else
15 Halfspace(i, j)← 0

16 P(t),N (t)← GetPolytope(P,N ,Halfspace)
17 N+(t)←

⋃
i,j∈N (t)N

+
i,j

18 V(t)←
⋃

i,j∈N (t) Vi,j
19 R(t)← {k ∈ N̄ : nk(t) ≤ f(t)
20 S(t)← P(t) ∪N+(t) ∪ (V(t) ∩R(t))
21 Choose It = argmaxi

W 2
i

ni
, observe Yt

22 nIt = nIt + 1, νIt = νIt + Yt

E[RT ] ≤
∑

{i,j}∈N

2|Vi,j |(1 +
1

2α− 2
) +

N∑
k=1

δk +

N∑
k=1,δk>0

4W 2
k

d2k
δk

α log(T ) +
∑

k∈VN+

δk min(4W 2
k

d2k
δk

α log(T ), α1/3W
2/3
k T 2/3 log1/3(T )) +∑

k∈VN+

δkα
1/3W

2/3
k T 2/3 log1/3(T ) + 2dkα

1/3W 2/3T 2/3

(1)

where W = maxk∈N Wk, V = ∪{i,j}∈NVi,j , N+ = ∪{i,j}∈NN+
i,j and d1, ...dN are game-

dependent constants.

Proof. We use the convention that, for any variable x used by the algorithm, x(t) denotes the value
of x at the end of time step t. For example, ni(t) is the number of times action i is chosen up to and
including time step t.

The proof is based on two lemmas. The first lemma shows that the estimate δ̃i,j(t) is in the vicinity
of δi,j with high probability.

Lemma 1. For any {i, j} ∈ N , t ≥ 1, we have that:

P(| δ̃i,j − δi,j |≥ ci,j(t)) ≤ 2 | V +
i,j | t

1−2α

If for some t, i, j, the event whose probability is upper-bounded in Lemma 1 happens, we say that the
confidence interval fails. Let Et be the event that some confidence interval fails in time step t. An

12



immediate corollary of Lemma 1 is that the sum of the probabilities that some confidence interval
fails is small:

T∑
t=1

P(Et) ≤
T∑

t=1

∑
{i,j}∈N

2|Vi, j|t−2α ≤
∑

{i,j}∈N

2|Vi, j|(1 +
1

2α− 2
)

Let k(t) = argmaxi∈P(t)∪V (t) W
2
i /ni(t− 1). When k(t) ̸= It, this happens because k(t) /∈ N+(t)

and k(t) /∈ R(t) i.e. the action k(t) is a purely information seeking action that has been sampled
frequently. When this holds we say that the decaying exploration rule is in effect at time step t. The
corresponding event is denoted by Dt = {k(t) ̸= It}. Using the notation in Bartok [2012], we can
recycle the definition of di; and redefine these values using observer sets instead of neighborhood
action sets:

di = max
(P′,N ′)∈Ψ,i∈P′

min
π∈Bi(N ′),π=(i0,...,ir)

r∑
s=1

|Vis−1,is |

Now we can state the following lemma:

Lemma 2. Fix any t ≥ 1.

1. Take any action i. On the event Ect ∩ Dt, from i ∈ P(t) ∩N+(t) it follows that

δi ≤ 2di

√
α log(t)

f(t)
max

Wk√
ηk

2. Take any action k. On the event Ect ∩ Dc
t , from It = k it follows that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2j
δ2j

α log(t)

We are now ready to start the proof. By Wald’s identity, we can rewrite the expected regret as follows:

E[RT ] = E[
T∑

t=1

L[It, Jt]]−
T∑

t=1

E[L[i⋆, J1]] (2)

=

N∑
k=1

E[nk(T )]δi (3)

=

N∑
k=1

E[
T∑

t=1

1{It=k}]δk (4)

=

N∑
k=1

E[
T∑

t=1

1{It=k,Et}]δk +

N∑
k=1

E[
T∑

t=1

1{It=k,Ec
t }]δk (5)

(6)

13



Now, because δk ≤ 1,

N∑
k=1

E[
T∑

t=1

1{It=k,Et}]δk ≤
N∑

k=1

E[
T∑

t=1

1{It=k,Et}] (7)

= E[
T∑

t=1

N∑
k=1

1{It=k,Et}] (8)

= E[
T∑

t=1

1{Et}] (9)

=

T∑
t=1

P(Et) (10)

(11)

Hence,

E[RT ] ≤
T∑

t=1

P(Et) +
N∑

k=1

E[
T∑

t=1

1{It,Ec
t }]δk

Here, the first term can be bounded using the result from Lemma 1. Let us thus consider the elements
of the second sum:

(12)

E[
T∑

t=1

1{It=k,Ec
t }]δk ≤ δk +

E[
T∑

t=N+1

1{Ec
t ,Dc

t ,k∈P(t)∪N+(t),It=k}]δk +

E[
T∑

t=N+1

1{Ec
t ,Dc

t ,k/∈P(t)∪N+(t),It=k}]δk +

E[
T∑

t=N+1

1{Ec
t ,Dt,k∈P(t)∪N+(t),It=k}]δk +

E[
T∑

t=N+1

1{Ec
t ,Dt,k/∈P(t)∪N+(t),It=k}]δk

First term: The first δk corresponds to the initialization phase of the algorithm when every action
is chosen once.

The next paragraphs are devoted to upper bounding the remaining four expressions. Note that, if
action k is optimal, that is, if δk = 0 then all the terms are zero. Thus, we can assume from now on
that δk > 0.

Second term: Consider the event Ect ∩ Dc
t ∩ {k ∈ P(t) ∪N+(t)}. We use case 2 from Lemma 2

with the choice i = k. Thus, from It = k, we get that i = k ∈ P(t) ∪N+(t) and so the conclusion
of the lemma gives

nk(t− 1) ≤ Ak(t) = 4W 2
k

d2k
δ2k

α log(t)
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Therefore, we have
T∑

t=N+1

1{Ec
t ,Dc

t ,k∈P(t)∪N+(t),It=k} (13)

≤
T∑

t=N+1

1{It=k,nk(t−1)≤Ak(t)} +

T∑
t=N+1

1{Ec
t ,Dt,k/∈P(t)∪N+(t),It=k,nk(t−1)>Ak(t)}

(14)

=

T∑
t=N+1

1{It=k,nk(t−1)≤Ak(t)} (15)

≤ Ak(T ) = 4W 2
k

d2k
δ2k

α log(T ) (16)

≤ 4W 2
k

d2k
δk

α log(T ) (17)

Third term: Consider the event Ect ∩ Dc
t ∩ {k /∈ P(t) ∪N+(t)}. We use case 2 of Lemma 2. The

Lemma gives that:

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2j
δj

α log(T )

We know that k ∈ V(t) =
⋃

{i,j}∈N (t) Vi,j . Let Φt be the set of pairs {i, j} in N (t) ⊆ N such that
k ∈ Vi,j . For any {i, j} ∈ Φt, we also have that i, j ∈ P(t) and thus if l′{i,j} = argmaxl∈{i,j} δl
then

nk(t− 1) ≤ 4W 2
k

d2l′i,j
δ2l′i,j

α log(t)

Therefore, if we define l(k) as the action with

δl(k) = min{δl′i,j : {i, j} ∈ N , k ∈ Vi,j}

Then, it follows that:

nk(t− 1) ≤ 4W 2
k

d2l(k)

δ2l(k)
α log(t)

Note that δl(k) can be zero and thus we use the convention c/0 = ∞. Also, since k is not in
P(t) ∪N+(t), we have that nk(t− 1) ≤ µkf(t). Define Ak(t) as:

Ak(t) = δk min(4W 2
k

d2l(k)

δ2l(k)
α log(t), ηkf(t))

Then, with the same argument as in the previous case ( and recalling that f(t) is increasing), we get

E[
T∑

t=N+1

1{Ec
t ,Dc

t ,k/∈P(t)∪N+(t),It=k}] ≤ δk min(4W 2
k

d2l(k)

δ2l(k)
α log(t), ηkf(t))

We remark that without the concept of rarely sampled actions, the above ter, would scale with 1
δ2
l(k)

,

causing high regret. This is why the vanilla version fails on hard games.

Fourth term: Consider the event Ect ∩Dt ∩ {k ∈ P(t) ∪N+(t)}. From Lemma 2 we have that

δk ≤ 2dk

√
α log(T )

f(t)
max
j∈N

Wj√
νj

. Thus,

E[
T∑

t=N+1

1{Ec
t ,Dt,k∈P(t)∪N+(t),It=k}] ≤ dk

√
α log(T )

f(T )
max
l∈N

Wl√
νl
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Fifth term: Consider the event Ect ∩Dt∩{k /∈ P(t)∪N+(t)}we know that k ∈ V(t)∩R(t) ⊆ R(t)
and hence nk(t− 1) ≤ µkf(t). With the same argument as in the first and second term, we get that:

E[
T∑

t=N+1

1{Ec
t ,Dt,k/∈P(t)∪N+(t),It=k}] ≤ δkνkf(T )

To conclude the proof of Theorem 1 we set νk = W
2/3
k , f(t) = α1/3t2/3 log1/3(t) and, with the

notation W = maxk∈N Wk, V =
⋃

i,j∈N Vi,j , N+ =
⋃

i,j∈N N+
i,j , we write

(18)

E[RT ] ≤
∑

{i,j}∈N

2|Vi, j|(1 +
1

2α− 2
) +

N∑
k=1

δk +

N∑
k=1,δk>0

4W 2
k

d2k
δ2k

α log(T ) +

∑
k∈VN+

δk min(4W 2
k

d2l(k)

δ2l(k)
α log(T ), α1/3W

2/3
k T 2/3 log1/3(T )) +∑

k∈VN+

δkα
1/3W

2/3
k T 2/3 log1/3(T ) + 2dkα

1/3W
2/3
k T 2/3 log1/3(T )

The following corollary is an upper bound on the minimax regret of any globally observable game.

Corollary 1. Let G be a globally observable game. Then there exists a constant c such that the
excpected regret can be upper bounded independently of the choice of p⋆ as

E[RT ] ≤ cT 2/3 log1/3(T )

Theorem 2 (Minimax regret). Let G be a globally observable game. Let ∆′ ⊆ ∆M , be some subset
of the probability simplex such that its topological closure ∆̄′ ∩ Ci ∩ Cj = ∅ for every {i, j} ∈ NL.
Then, there exists a constant c such that for every p⋆ ∈ ∆′, algorithm CBP with parameters α > 1,
νk = W

2/3
k , f(t) = α1/3t2/3 log1/3(t) achieves

E[RT ] ≤ cdpmax

√
bT log T

where b is the size of the largest point-local game, and dpmax is a game dependent constant.

Proof. To prove this theorem, we use a scheme similar to the proof of Theorem 1. Repeating that
proof, we arrive at the same expression

(19)

E[
T∑

t=1

1It=k,Ec
t
]δk ≤ δk +

E[
T∑

t=N+1

1Ec
t ,Dc

t ,k∈P(t)∪N+(t),It=k]δk +

E[
T∑

t=N+1

1Ec
t ,Dc

t ,k/∈P(t)∪N+(t),It=k]δk +

E[
T∑

t=N+1

1Ec
t ,Dt,k∈P(t)∪N+(t),It=k]δk +

E[
T∑

t=N+1

1Ec
t ,Dt,k/∈P(t)∪N+(t),It=k]δk
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where Ect and Dc
t denote the events that no confidence intervals fail, and the decaying exploration

rule is in effect at time step t, respectively.

From the condition of ∆′ we have that there exists a positive constant ρ1 such that for every

neighboring action pair {i, j} ∈ NL,max(δi, δj) ≤ 4N
√

α log(t)
f(t) max(Wk′/

√
ν′k) = g(t). It

follows that if t > g−1(ρ1) then the decaying exploration rule can not be in effect. Therefore, third
and fourth terms can be upper bounded by g−1(ρ1). With the value ρ1 defined in the previous
paragraph, we have that for any action k ∈ VN+, l(k) ≥ ρ1 holds. Therefore, third term can be
upper bounded by

E[
T∑

t=N+1

1Ec
t ,Dt,k∈P(t)∪N+(t),It=k] ≤ 4W 2

k

4N2

ρ21
α log(t)

using that dk, defined in the proof of Theorem 1, is at most 2N . It remains to carefully upper bound
second term. For that, we first need a definition and a lemma. Let Aρ = {i ∈ N, δi ≤ ρ}
Lemma 3. Let G = (L,H) be a finite partial-monitoring game and p ∈ ∆M an opponent strategy.
There exists a ρ2 > 0 such that Aρ2

is a point-local game in G.

To upper bound the second term, with ρ2 introduced in the above lemma and γ > 0 specified later,
we write:

E[
T∑

t=N+1

1Ec
t ,Dc

t ,k/∈P(t)∪N+(t),It=k] = E[
T∑

t=N+1

1Ec
t ,Dc

t ,k∈P (t)∪N+(t),Tt=k]

≤ 1δk<γnk(T )δk + 1k∈Aρ2 ,δk≥γ4W
2
k

d2k
δ2k

α log(T )

+ 1k/∈Aρ2
4W 2

k

8N2

ρ2
α log(T )

≤ 1δk<γnk(T )δk

+ |Aρ2
|4W 2

d2pmax

γ
α log(T ) + 4NW 2 8N

2

ρ2
α log(T )

(20)

Now we can choose γ to be

γ = 2Wdpmax

√
bα log(T )

T
and we get

E[RT ] = c1 + c2 log(T ) + 4Wdpmax

√
bαT log(T )

B.4 Proofs of Lemmas

Lemma 4. For any {i, j} ∈ N , t ≥ 1, we have that:

P(| δ̃i,j − δi,j |≥ ci,j(t)) ≤ 2 | V +
i,j | t

1−2α

Proof. Recall that the confidence zi,j(t) is a random variable defined as

zi,j(t) =
∑

k∈V +
i,j

∥vi,j,k∥∞Zt

√
1

nk(t− 1)

where Zt ∼ N (0, σ) truncated over [0,
√
α log(t)].
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First, we use the triangle inequality and the union bound and the definition of zi,j(t):

P(| δ̃i,j − δi,j |≥ zi,j(t)) ≤
∑

k∈V +
i,j

P(| v⊤ijk
νk(t)

nk(t)
− vijkSkp

⋆ |≥ ∥vijk∥∞Zt

√
1

nk(t− 1)
)

(21)

≤
∑

k∈V +
i,j

t−1∑
s=1

1{nk(t−1)=s}P(| v⊤ijk
νk(t)

s
− vijkSkp

⋆ |≥ ∥vijk∥∞Zt

√
1

s
)

(22)

Using Hoeffding’s inequality, we obtain:

≤
∑

k∈V +
i,j

t−1∑
s=1

1{nk(t−1)=s}2 exp(
−2s∥vijk∥2∞Z2

t

√
1
s

2

a2
) (23)

≤
∑

k∈V +
i,j

t−1∑
s=1

1{nk(t−1)=s}2 exp(
−2∥vijk∥2∞Z2

t

a2
) (24)

Choosing a = ∥vijk∥∞, we simplify:

≤
∑

k∈V +
i,j

t−1∑
s=1

1{nk(t−1)=s}2 exp(−2Z2
t ) (25)

Since Zt ≤
√
α log(t) we have Z2

t ≤ α log(t):

≤
∑

k∈V +
i,j

t−1∑
s=1

1{nk(t−1)=s}2 exp(−2α log(t)) (26)

≤
∑

k∈V +
i,j

t−1∑
s=1

1{nk(t−1)=s}2 exp(log(t
−2α)) (27)

≤
∑

k∈V +
i,j

2t1−2α (28)

≤ 2 | V +
i,j | t

1−2α (29)

(30)

Lemma 5. Fix any t ≥ 1.

1. Take any action i. On the event Ect ∩ Dt, from i ∈ P(t) ∩N+(t) it follows that

δi ≤ 2di

√
α log(t)

f(t)
max
k∈N

Wk√
ηk

2. Take any action k. On the event Ect ∩ Dc
t , from It = k it follows that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2j
δ2j

α log(t)
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Proof. Recall that the confidence zi,j(t) is a random variable defined as

zi,j(t) =
∑

k∈V +
i,j

∥vi,j,k∥∞Zt

√
1

nk(t− 1)

where Zt ∼ N (0, σ) truncated over [0,
√
α log(t)]. Let ci,j(t) be the deterministic upper-bound of

zi,j(t) such that

ci,j(t) = ∥v,i,j,k∥∞Zt

√
α log(t)

nk(t− 1)

First we observe that for any neighboring action pair {i, j} ∈ N (t), on Ect , it holds that δi,j(t) ≤
2ci,j(t). Indeed, from i, j ∈ N (t) it follows by definition of the algorithm that δ̃i,j(t) ≤ zi,j(t). Now,
from the definition of Ect , we observe δi,j(t) ≤ δ̃i,j(t) + zi,j(t). Putting together the two inequalities,
we get δi,j(t) ≤ 2zi,j(t) ≤ 2ci,j(t).

Now, fix some action i that is not dominated. We define the parent action i′ of i as follows: If i is not
degenerate then i′ = i. If i is degenerate then we define i′ to be the Pareto-optimal action such that
δi′ ≥ δi and i is in the neighborhood action set of i′ and some other Pareto-optimal action. It follows
from Bartok [2012] that i′ is well-defined.

Consider case 1. Thus, It ̸= k(t) = argmaxj∈P(t)∪V(t)
W 2

j

nj(t−1) . Therefore, k(t) /∈ R(t), i.e.
nk(t)(t− 1) > νk(t)f(t). Assume now that i ∈ P(t) ∪N+(t). If i is degenerate, then i′ as defined
in the previous paragraph is in P(t) (because the rejected regions in the algorithm are closed). In any
case, there is a path (i0, ..., ir) in N (t) that connects i′ to i∗ (i∗ ∈ P(t) holds on Ect ). We have that:

δi ≤ δi′ =

r∑
s=1

δis−1,is (31)

≤ 2

r∑
s=1

zis−1,is (32)

Using the deterministic upper-bound ci,j(t) on the random variable zi,j(t)

≤ 2

r∑
s=1

cis−1,is (33)

≤ 2

r∑
s=1

∑
j∈Vis−1,is

∥vis−1,vis ,j
∥∞

√
α log(t)

nj(t− 1)
(34)

≤ 2

r∑
s=1

∑
j∈Vis−1,is

Wj

√
α log(t)

nj(t− 1)
(35)

≤ 2diWk(t)

√
α log(t)

nk(t)(t− 1)
(36)

≤ 2diWk(t)

√
α log(t)

νk(t)f(t)
(37)

(38)

Upper bounding Wk(t)/
√
νk(t) by maxk∈N Wk/

√
νk we obtain the desired bound.

Now, for case 2 take an action k, consider Ect ∩ Dc
t , and assume that It = k. On Dc

t , It =

k(t). Thus, from It = k it follows that Wk/
√

nk(t− 1) holds for all j ∈ P(t). Let Jt =
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argminj∈P(t)∪N+(t)
d2
j

δ2j
. Now, similarly to the previous case, there exists a path (i0, ..., ir) from the

parent action Jt′ ∈ P(t) of Jt to i⋆ ∈ N (t). Hence,

δJt
≤ δJ′

t
=

r∑
s=1

δis−1,is (39)

≤ 2

r∑
s=1

zis−1,is (40)

Using the deterministic upper-bound ci,j(t) on the random variable zi,j(t)

≤ 2

r∑
s=1

cis−1,is (41)

≤ 2

r∑
s=1

∑
j∈Vis−1,is

Wj

√
α log(t)

nj(t− 1)
(42)

≤ 2dJt
Wk

√
α log(t)

nk(t− 1)
(43)

(44)

This concludes the proof of the Lemma.

C Additional results

C.1 Experiment details

The experiments were run on a 8 cores GPU engine. The evaluation of RandCBP and all the baselines
takes approximately 48 hours. The most computational baselines are BPM-Least and PM-DMED.
The evaluation of PM-DMED over a set of 5 different hyper-parameters (c ∈ {0.1, 1, 5, 10, 100})
required a much longer time budget than evaluating RandCBP over 62 different hyper-parameter
configurations although we spent an equal amount of time optimizing both algorithms for fast
computation.

C.2 Hyper-parameters of RandCBP

In this Section, we show that the set of optimal hyper-parameters identified in Vaswani et al. [2020]
for randomizing bandit confidence bound algorithms is close to be optimal in the partial monitoring
setting. In both Figures 4 and 5 we evaluated RandCBP over sequences of 100k elements and
averaged the regret over 100 random seeds. We conducted the evaluation for ϵ ∈ {10−7, 0.1} but
we only show results from ϵ = 10−7 because we observed the performance was much better and
would provide more informative insights. This ϵ value corresponds to the one used in Vaswani et al.
[2020]. Similarly, we observed that the range of optimal values for hyper-parameter M is close
to the one studied in Vaswani et al. [2020]. As for hyper-parameter σ we considered the values
σ ∈ {1/8, 1/16, 1/32} which are the same as in Vaswani et al. [2020] but also considered σ = 1.
This latter value achieved the best regret performance (i.e, lowest regret and smallest variance) in
difficult instances of Apple Tasting and Label Efficient games with M = 10. For simple instances
of Apple Tasting and Label Efficient, the best hyper-parameters configuration was obtained with
M = 10 and σ = 1/8.

C.3 Logarithmic views of the experiments

In this Section, we provide a log-scale view of the experiments on the Label Efficient game. This
allows to better visualize how different or similar the evaluated approaches are to the random selection
strategy.
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Figure 4: Benchmarking of RandCBP on the Label Efficient game
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(a) Simple instances
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Figure 5: Benchmarking of RandCBP on the Apple Tasting game
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Figure 6: Apple Tasting game, log-scales
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Figure 7: Label Efficient game, log-scales

22


	Introduction
	Problem setting
	Tracking the Risk of Machine Learning Systems
	Relevant Partial Monitoring Games
	Practicality of Existing Approaches

	Method: a Randomized Confidence Bound Algorithm
	Experiments
	Conclusion
	Analysis of Partial Monitoring games
	Analysis of the Apple Tasting game
	Analysis of the Label Efficient game
	Instances of Label Efficient game with variable difficulty

	More details on CBP and RandCBP
	Instanciation of CBP and RandCBP
	The sampling distribution
	Regret of RandCBP
	Proofs of Lemmas

	Additional results
	Experiment details
	Hyper-parameters of RandCBP
	Logarithmic views of the experiments


