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Abstract—As the deployment of deep learning models contin-
ues to expand across industries, the threat of malicious incursions
aimed at gaining access to these deployed models is on the rise.
Should an attacker gain access to a deployed model, whether
through server breaches, insider attacks, or model inversion
techniques, they can then construct white-box adversarial attacks
to manipulate the model’s classification outcomes, thereby posing
significant risks to organizations that rely on these models
for critical tasks. Model owners need mechanisms to protect
themselves against such losses without the necessity of acquiring
fresh training data - a process that typically demands substantial
investments in time and capital.

In this paper, we explore the feasibility of generating multiple
versions of a model that possess different attack properties, with-
out acquiring new training data or changing model architecture.
The model owner can deploy one version at a time and replace
a leaked version immediately with a new version. The newly
deployed model version can resist adversarial attacks generated
leveraging white-box access to one or all previously leaked
versions. We show theoretically that this can be accomplished by
incorporating parameterized hidden distributions into the model
training data, forcing the model to learn task-irrelevant features
uniquely defined by the chosen data. Additionally, optimal choices
of hidden distributions can produce a sequence of model versions
capable of resisting compound transferability attacks over time.
Leveraging our analytical insights, we design and implement a
practical model versioning method for DNN classifiers, which
leads to significant robustness improvements over existing meth-
ods. We believe our work presents a promising direction for
safeguarding DNN services beyond their initial deployment.

I. INTRODUCTION

As deep learning models become increasingly prevalent

across various industries, the risk of malicious attacks attempt-

ing to breach access to these deployed models is growing.

When an attacker obtains access to a deployed model, via

many methods including server breaches, insider attacks, or

model inversion attacks, they can craft white-box adversarial

attacks to manipulate the model’s classification results. As the

classification results lose their reliability, the deployed ML

service becomes obsolete and needs to be replaced or removed.

For example, in the medical field, image classification faces

real-world attacks that aid insurance fraud. Some physicians

engage in overprescribing medications and misdiagnosing

conditions, prompting insurance companies to employ image

classification for diagnosis verification. Adversarial attacks

against these models are well-documented and raise significant

concerns [1], [2]. Another example is classifiers for image

content moderation on discussion boards and online platforms,

which are frequently attacked by bad actors seeking to bypass

content moderation with prohibited content [3], [4].

Unfortunately, replacing a breached model is a challenging

task. This is because, building powerful deep learning models

often involves acquiring and curating high quality training

datasets, a process that incurs significant investment in time

and capital, and can be difficult or impractical to repeat. For

example, a model identifying diseases like rare skin lesions

may take years to collect the training data, involving curation

by specialists and de-identification to comply with privacy

regulations [5]. Similarly, training data for content moderation

models is often extremely sensitive and difficult to procure, e.g.

images of extreme violence or abuse of minors. Obtaining and

labeling these challenging images require manual inspection

and careful supervision.

These observations motivate us to investigate how model

owners can protect themselves against model losses without

the necessity of acquiring new training data. Ideally, they

would like to train multiple versions of the target model

from the same training set, deploy one version at a time

and replace a leaked version with a new one. At the time

of its deployment, each new version i of the model should

resist adversarial attacks as if it were the sole model version

that had been deployed. That is, when attempting to attack

model i, an attacker would gain minimal or no advantage

by obtaining white-box access to any or all previous model

versions {j | j < i}. The longer the model sequence supports

this sequential (or compound) robustness, the stronger the

protection against repeated model leakages. We refer to this

problem as scalable and robust model versioning.

Unfortunately, solving this problem is difficult because

of two significant challenges. First is the well known phe-

nomenon of attack transferability: adversarial attacks gener-

ated on one model often succeed on similar models trained on

the same task, even when they use different architectures [6],

[7]. To date, few if any techniques provide the ability to

generate multiple (> 3) models on the same task with low

attack transferability between them, while maintaining normal

classification accuracy. Second, our problem must address

a novel but natural evolution of the white-box attack, a

sequential, compound transferability attack. As each leaked

model is retired, an attacker with no white-box access to

the new version i, can still utilize their white-box access

to prior versions (1 to i − 1) to orchestrate a strong attack

against version i. This new requirement and the need to

sequentially deploy/replace models make our problem distinct

from existing works (e.g., constructing robust ensembles [8],

[9], [10]), creating a new, open challenge.

To tackle these challenges, our work introduces a principled



approach for generating a sequence of robust model versions

from a single training dataset using a single model architecture.

Our method automatically curates and incorporates param-

eterized hidden data into the model training data, forcing

the model to learn task-irrelevant features that are distinctly

defined by the selected hidden data. More specifically, given

an original task, we curate synthetic data that are drawn

from some hidden distributions irrelevant to the task, and

augment the task’s original training data with the new hidden

data. Thus, the training data of a class now includes both

its original training data and new data drawn from a chosen

hidden distribution. Using the combined data, we train a model

version from scratch. And by varying the choices of hidden

distributions, we can produce different model versions.

Our hypothesis is that the above process, if well-designed,

can produce a diverse set of model versions. These model

versions would not only effectively accomplish the primary

task but also exhibit distinct attack properties, because they are

trained on varying hidden distributions that naturally introduce

diverse non-robust features into each model. Leveraging this

variability, the model trainer can carefully select, organize and

continuously deploy a sequence of model versions to withstand

compound transferability attacks over time.

We validate this hypothesis by first performing theoretical

analysis in a simplified setting. Our formal proof demonstrates

that optimizing the selection of hidden distributions signifi-

cantly reduces the transferability of compound attacks against

subsequent model versions. Additionally, effective hidden dis-

tributions are characterized by a single point in the feature

space, facilitating the parameterization process for efficient

optimization. Together, these analytical findings demonstrate

the importance and viability of optimizing the choices of

hidden distributions when constructing the model sequence.

This stands in contrast to an earlier work [11] that employed

randomly selected hidden data without any optimization.

Building on our analytical results, we develop a practi-

cal, greedy search-based algorithm for constructing hidden

distribution-based model versions for deep neural network

(DNN) classifiers. We implement and evaluate our method

using three image classification tasks that encompass different

image categories (objects, medical images, and faces) and

varying number of classes (7 to 1283). Our design significantly

outperforms alternative methods for model versioning, includ-

ing [11] and those designed to produce “orthogonal” models.

Summary of Contributions. To the best of our knowledge,

our work is the first to provide a principled investigation of

scalable and robust model versioning – a crucial task for

safeguarding DNN services beyond their initial deployment.

Our work makes three key contributions:

• We formally define the process of hidden distribution-based

training as a solution for model versioning (§III and §IV);

• We analytically demonstrate the critical impact of hidden

distributions on model versioning and develop a practical

algorithm for systematically selecting hidden distributions to

construct robust model versions (§V and §VI).

• We evaluate our design by building a sequence of model

versions for three image classification tasks. These models

achieve significantly higher robustness against attacks com-

pared to existing methods (§VII).

Finally, we discuss the limitations of our work and potential

future directions. We hope that our work can inspire further

research efforts in this critical yet underexplored area.

II. BACKGROUND AND RELATED WORK

To provide context, we briefly describe transferability of ad-

versarial example attacks, existing methods to restrict transfer-

ability between models, and those to produce model variants.

Transferability of Adversarial Examples. It is well-

known that adversarial examples generated for one model can

produce misclassification on other similar models [12], [13], a

phenomenon known as attack transferability. It is widely used

by attacks where attackers have no access to the internals of

the target model. One can also increase attack transferability

by modifying attack methodology [7], [14], gaining limited

query access to the target model [15] and leveraging learned

model features [16], [17]. When exploring conditions that

produce high attack transferability, Demontis et al. showed

that the alignment of input gradients between models and

the reduction of variability of the loss surface are critical

for high transferability [6]. Others found that transferability

between models correlates strongly with their semantic layer

similarity [18] or feature similarity [19].

Reducing (Pairwise) Attack Transferability. One can

apply adversarial training (e.g., [20]) to reduce a model’s

vulnerability to attacks, which may help reduce attack trans-

ferability from other models. However, doing so faces high

training cost and reduced task accuracy. Recent works (e.g.,

DVERGE [8] and TRS [9]) proposed to train an ensemble

of diverse models with low pairwise attack transferability, to

resist adversarial attacks against the entire ensemble. These

ensemble methods, like adversarial training, require iterative

optimization to simultaneously train the full ensemble at once.

The resulting optimization is computationally expensive, espe-

cially for ensembles with more than 3 models. For example,

DVERGE [8] reported a high pairwise attack transferability of

79% when training an ensemble of size 5.

Our work considers a very different problem. Rather than

training a set of models that operate as an ensemble to classify

inputs and resist attacks (where attackers know either all or

none of the models), we seek to produce a sequence of model

versions and deploy them one by one in a sequential order,

each triggered by a model leakage event. Each model version

i operates by itself to classify inputs and faces a new type of

black-box attacks constructed using all prior versions. That is,

while an attacker has no access to version i, it can leverage

white-box access to all prior versions (1 to i − 1) to build

a powerful “group-based” attack against version i. Previous

studies have not considered this novel form of attack, and

mitigating it cannot be achieved solely by reducing pairwise

attack transferability.



Model Versioning. In practice, deployed models often

evolve over time to adapt to changes in data or to incorporate

new training methods [21], [22], [23]. However, none of these

methods explicitly consider how to update a model after it is

leaked to attackers. The only known work on this topic is [11],

which randomly selects hidden distributions to produce model

variants. However, [11] does not consider reducing attack trans-

ferability, instead focusing on creating a separate input filter to

identify potential adversarial examples at run-time. Our work

is inspired by [11], but differs in two key aspects. First, we

study whether and how hidden distributions can be optimized

to minimize attack transferability against subsequent model

versions. We are the first to establish an analytical framework

to formally illustrate the critical impact and viable path for

optimizing the selection of hidden distributions. Notably, our

findings stand in contrast to [11]’s random selection decision.

Second, we develop a principled method for selecting hidden

distributions and organizing a sequence of model versions for

DNN classifiers. Experiments in §VII show that our method

significantly outperforms [11] both with and without the input

filter. Therefore, our study makes a tangible step forward in

tackling the challenging problem of model versioning.

Detecting Model/Server Breaches. One assumption made

by our work is that the model owner/deployer can detect

that the current model version has been breached, so that our

work can focus on the problem of finding replacement models.

This assumption is not unrealistic. Many years of research in

the computer security community has focused on intrusion

detection and on detecting when a server has been breached

(and when specific files are accessed), e.g., intrusion detection

systems, APT detection/analysis, and OS-level secure access

logs. In addition, classification systems rarely stand alone,

and often lead to downstream errors and negative outcomes.

Any attacker that uses the breached model to trigger negative

outcomes downstream can be detected, with the downstream

errors used to trace back to the compromised model, e.g., post-

attack forensic systems [24].

III. PROBLEM AND THREAT MODEL

In this section, we describe the problem of model version-

ing and its threat model. We focus our discussion on the

adversary’s capabilities once they have breached the deployed

model and the objectives of the model owner in responding to

and recovering from such a breach. We start from the simple

scenario of single (or one-time) model breach and then move

to the broader context of multiple (or repeated) model breaches.

With these considerations in mind, we also examine existing

solutions and their limitations.

For the rest of the paper, we consider the standard multi-

class classification model M : X ⊆ R
n → L. The classifica-

tion task is the main task where training data on the main task

is denoted as Dtrain and test data on the main task is Dtest.

A. One-time Breach

We first consider the simple case where a deployed model

M1 is breached by an attacker. Here our work assumes that

Fig. 1: Model versioning: after the deployed model Mi is

breached by the attacker, the model owner replaces it with a

new version Mi+1 to ensure uninterrupted service.

the model owner/deployer has detected the breach. To recover

from such loss and continue the model service, the model

owner replaces M1 with a new version M2.

Adversary Capabilities. In this case, the parameters of

M1 are, at some point, leaked or inferred by an attacker (see

Figure 1). While several threats to data privacy and security

could arise from such a leak, we focus on the particularly

pernicious one of white-box adversarial examples. Here we

assume the attacker is capable of constructing targeted adver-

sarial examples 1 with the knowledge ofM1’s architecture and

weights. Specifically, for a desired class lt ∈ L, the attacker

can generate x̃ = x+ δx such that

M1(x̃) = lt 6=M1(x)

with d(x, x̃) < ǫ, where lt is not the correct class of x and

d(·, ·) is a distance function (usually a p-norm). Finally, since

the attacker has no knowledge of the replacement modelM2,

they will generate white-box adversarial examples from M1

and leverage transferability to attack M2.

Model Owner’s Goal. To recover from the breach, the

model owner deploys a new modelM2 to replaceM1, where

• M2 maintains high performance on the main task assessed

by the test data Dtest;

• M2 is robust against white-box adversarial attacks com-

puted based on M1.

Robustness Measure. Here the threat to the model owner

is the leakage of M1, which the attacker can leverage to

craft white-box adversarial examples. Thus, we measure the

robustness of the model replacement by the directional attack

transferability from M1 to M2:

AT (M1 →M2).

This metric is directional, i.e., the sequential order of the model

deployment matters.

B. Multiple Breaches

In practice, model breaches can happen multiple times –

after replacingM1 withM2, the deployed modelM2 can be

breached, at some point, forcing the model owner to replace

it with M3, etc. (see Figure 1). And more importantly, after

breaching the deployed model multiple times, the attacker

has obtained more knowledge from the leaked models, and

can launch stronger adversarial attacks. Therefore, the model

1We focus on targeted adversarial examples for ease of exposition. All
results hold for untargeted adversarial examples as well.



owner requires a stronger notion of robustness than the one-

time breach case, and a scalable method to extend the sequence

of model deployment beyond the simple case ofM1 andM2.

In the following discussion, we consider a sequence of

modelsM1, ...,Mi that has been deployed and breached, with

Mi (i ≥ 2) being the most recent model that is breached. Now

the model owner needs to replace Mi with Mi+1.

Adversary Capabilities. We consider a powerful attacker

that has white-box access to all the breached models. With no

knowledge of the replacement modelMi+1, the attacker lever-

ages transferability to attackMi+1. The attacker is capable of

constructing targeted adversarial examples using knowledge of

M1, ...,Mi, i.e., generating x̃ = x+ δx such that, for at least

one j in {1, ..., i},

Mj(x̃) = lt 6=Mj(x), j ∈ {1, ..., i}

where d(x, x̃) < ǫ. We also consider “highly cautious” attack-

ers who only apply x̃ to attack Mi+1 if x̃ succeeds on all

prior versions (M1, ...,Mi).

Model Owner’s Goal. Besides having high performance

and robust against any model that is previously breached, the

model owner also needs

• a scalable approach to find the replacement model Mi+1;

• Mi+1 is robust against the strong attacker that has knowl-

edge of all previous models M1, ...,Mi.

Robustness Measure. We define a new notion of robustness

to characterize the strong attacker that has white-box access

to all previous model versions. This is measured by the attack

transferability under attacks generated using an ensemble of

M1, ...,Mi, namely the compound attack transferability:

AT ({Mj}ij=1 →Mi+1).

Correspondingly, the model owner needs a model ver-

sioning technique that produces a sequence of models

M1, ...,Mi,Mi+1 to minimize the compound attack trans-

ferability at each model version.

C. Design Challenges and Initial Solutions

We identify two unique challenges facing the design of

scalable and robust model versioning.

• Versioning uncertainty – The model owner cannot foresee

the exact number of model versions required beforehand, nor

can they anticipate the timing of a potential breach of the

deployed model. Yet the model owner must promptly identify

a replacement model once a breach is detected.

• Continuous expansion of attacker knowledge – With

each occurrence of model leakage, the attacker gains more

information about the models, making it hard to maintain

low compound attack transferability while simultaneously

ensuring high performance on the primary task. On the other

hand, the model owner’s lack of access to new training

data hinders their ability to gather additional knowledge for

constructing new models and defending against attacks.

Initial Solutions. Drawing upon existing literature, we

identify several initial solutions to perform model versioning.

We also explore their limitations, which motivate our work.

• Varying model initialization – One might consider generat-

ing model variants by varying the model initialization before

training. However, since these models are trained using the

same dataset, they tend to converge with a high likelihood

and share high attack transferabilities. Later, we validate this

projection both theoretically and empirically.

• Varying training batch order – Similarly, one can produce

model versions by injecting “randomness” to the order of

training data. Yet since the training data remains unchanged,

these models also tend to converge with a high probability.

• Varying model architecture – One can employ distinct

model architectures across model versions. Yet this method

faces two critical limitations. First, the available model archi-

tectures for a given task are often limited, especially for high-

performance models tailored to complex tasks. Second, the

mere use of different architectures does not assure a reduction

in transferability in a principled manner.

• Generating model ensemble – Ensemble-based model

optimization a(e.g., TRS [9]) trains a fixed ensemble of

models before deployment, aiming to improve ensemble

robustness by reducing pairwise attack transferability among

models in the ensemble. This approach is ill-suited for our

specific problem due to the two distinct challenges outlined

earlier: version uncertainty and continuous expansion of

attack knowledge. The ensemble methods require knowledge

of the exact number of model versions in advance, and once

the ensemble is trained, there is no method for generating

additional model versions. Furthermore, ensemble methods

tend to be computationally expensive and primarily focus on

reducing pairwise attack transferability among models. We

confirm these via empirical experiments later on.

• Detecting attack inputs – As discussed in §II, recent

work [11] develops a method to generate model variants by

adding randomly generated images to model training data.

Rather than reducing attack transferability, [11] focuses on

creating a separate input filter to detect transferability-based

adversarial examples at run-time. Consequently, as more

model versions are leaked, the attack transferability remains

high (e.g., 90%) while the input filter loses its effectiveness.

Our experiments also confirm this observation.

The above discussion shows that none of the existing solutions

effectively address the challenges facing scalable and robust

model versioning. In the following section, we introduce our

proposed solution that significantly improves over existing so-

lutions by utilizing optimized hidden training to continuously

generate robust model versions over time.

IV. PROPOSED SOLUTION: OPTIMIZED HIDDEN TRAINING

We propose a new approach to model versioning, uti-

lizing the novel concept of “optimized hidden training” to

continuously produce model versions that exhibit resilience

against compound transferability attacks. Next, we present the



intuition behind our solution, followed by the formal definition

and optimization process for configuring hidden training.

A. Design Intuition

Augmenting Model Training Using “Hidden Data.” We

propose to create distinct model versions by introducing care-

fully planned variability into the model training data. At a

broad level, our solution aligns with the concept of “training

data augmentation.” However, what sets our approach apart

is the automatic self-curation of additional training data for

each model version, all without the necessity of acquiring new

training data. In the following, we refer to this supplemental

training data, which is unique to each model version, as

“hidden data” because it is constructed internally with a focus

on maintaining secrecy.

Curating Hidden Data from a Single Feature Point. An-

other distinctive contribution of our work is the novel concept

of curating hidden data from a single feature point, which

represents a parameterized, hidden distribution that is irrele-

vant to the classification task. By varying the choice of this

feature point, we seek to naturally introduce variability to the

loss surface and the non-robust features learned by the models.

Later in §V, we analytically validate this design decision.

Specifically, we first establish the task feature space by

training an original model Mori solely on the task training

data Dtrain. We denote the task feature space Fori. Next, we

select a solitary feature point hi within Fori for the ith model

version, and then create the associated data, which possesses

a feature corresponding to hi concerning Mori. Given that

each model version i has its own hidden data aligned with its

unique hi, we can apply hidden training to generate multiple

model versions that excel at the same task while exhibiting

distinct attack characteristics.

The question that naturally arises is why we opt for using a

single feature point to construct the hidden data. We argue that

this approach offers the following two significant advantages.

• Adding unique “distortions” to decision boundary – In-

corporating hidden data into the training process is expected

to have an impact on the model’s decision boundary within

the feature space. Our strategy of concentrating all efforts on

a single feature point is designed to efficiently “adjust” the

decision boundary in the direction defined by that particular

feature point. In contrast, if we were to generate hidden

data from multiple feature points (similar to the conventional

augmentation method), their effects on the decision boundary

might counterbalance each other. This would not only lead

to more subtle changes in the decision boundary but also

diminish the uniqueness of those changes. In Figure 2, we

present several illustrative examples where the single-point-

based method introduces version-specific modifications to the

decision boundaries, unlike the multi-point-based method.

• Maintaining original task performance – Including non-

task data during training may increase the training complexity.

When adding multiple feature points to a class, it is likely that

the added training data disturbs the model performance on

Fig. 2: Impact of hidden training on models. By generating

hidden data from a single feature point, one can introduce

unique modifications to model decision boundaries. But when

generating hidden data from multiple feature points, both the

extent and uniqueness of the modification decrease.

this class. Therefore, adding just a single feature point helps

maintain high performance of the model without introducing

high complexity to model training, making the training

process as efficient as the original model.

B. Formal Definition

We now formally define the formulation of hidden data and

the process of hidden training to create new model versions.

Definition IV.1. (Parameterized Hidden Data) Let h be

a point in Fori, where Fori represents the feature space of

the model trained solely on the task training data Dtrain. For

x ∈ R
n, we abuse the notation to let Fori(x) denote the

corresponding feature value of x in the feature space Fori.

Let Xh be data in the input space R
n such that ∀x ∈ Xh,

d(Fori(x), h) < ǫh, where d(·, ·) is a distance metric for Fori.

To protect a specific class lt against adversarial examples, we

label all x ∈ Xh as lt, producing the following hidden data

for this class:

Dhidden = {(x, lt) | x ∈ Xh}.
Definition IV.2. (Hidden Training) Given the hidden dataset

Dhidden, the hidden training process is to train a new model

from scratch utilizing the merged training data, Dtrain∪Dhidden.

This newly trained model is denoted as MDtrain∪Dhidden
.

In practice, one can implement the hidden training process via

three consecutive steps:

1. Using Algorithm 1 to select a set of feature points {h} from

the feature space Fori, one for each class to be protected. To

maintain high performance on the original task, they should

avoid overlapping with the feature areas of Dtrain.

2. Using Algorithm 2 to construct the hidden data Dhidden

based on {h} to ensure that the feature values of Dhidden

closely match each of h. Here the data curation employs

a technique reminiscent of computing adversarial examples,

wherein an input data is perturbed to adjust its feature value

towards the target feature point h.

3. Train a new model from scratch using Dtrain ∪Dhidden.

Following this process, model owners can generate mul-

tiple model versions without acquiring new training data.

By choosing N different sets of points in the task feature

space, i.e., {h}1, ..., {h}N , they can produce N different

sets of hidden training data Dhidden1, ..., DhiddenN , and cor-

respondingly, N different variants of the original model:



MDtrain∪Dhidden1
, ...,MDtrain∪DhiddenN

. For ease of notation, we

hereby refer to those models as M1, ..., MN . This model

versioning process is efficient and scalable, and there is no

need to fix N a priori. Generating additional model versions

beyond N is achieved by selecting new hidden feature points

and repeating the hidden training process.

To our knowledge, we are the first to present a formal

definition of the robust model versioning problem where h is

the key parameter. None of the previous work, including [11],

seek to understand impact of the choice of h on (compound)

attack transferability against subsequent models.

C. Optimizing Hidden Training for Robustness

Using hidden training, model owners can generate a se-

quence of model variants capable of performing the original

classification task while resisting transferability-based attacks.

For a sequence of N model versions, the level of robustness

is contingent on the selection of h1, ..., hN used to curate

hidden training data for each model version. In this work, we

consider two methods for selecting hidden features: random

selection and greedy optimization. In §V and §VI, we explore,

both analytically and experimentally, their effectiveness in

producing a robust sequence of model versions.

• Random selection – The simplest method is to randomly

select a new feature point when generating a new model

version [11]. One might assume that the randomness in

h1, ..., hN would naturally introduce diversity among the

resulting model versions. However, we demonstrate through

both analytical and empirical results that the randomness in

feature point selection does not necessarily diminish attack

transferability. This becomes particularly true as the value of

N increases since the attacker accumulates more knowledge

about the models with each successful model breach.

• Greedy optimization – To resist compound transferability

attacks, the model owner can leverage their own access and

understanding of previous (and leaked) models to strategi-

cally choose the hidden feature points for the subsequent

replacement model. This selection is greedy as the model

owner does not know how many additional model versions

they need to generate a priori. To recover from the loss of

model version i, we pre-train the next version i + 1, based

on all previously breached versions M1, ...,Mi. We defer

the in-depth discussion of the algorithm to §VI, as it relies

on the insights derived from the analytical study of hidden

training to be presented in §V.

V. ANALYTICAL STUDY OF HIDDEN TRAINING

In this section, we present an analytical case study on

model versioning using parameterized hidden training. Our

goal is to demonstrate the importance of carefully selecting

hidden features when producing the sequence of robust model

versions. Our analysis focuses on binary classification tasks

utilizing linear Support Vector Machine (SVM) models. We

examine how the choice of h impacts the model’s decision

boundary and explore different configurations of h to create a

sequence of model versions that resists direct and compound

transferability attacks over time. We also discuss ways to

generalize our analysis to more complex settings.

A. Preliminaries

We consider a binary classification task with two classes

over input space X ⊆ R
2. Let X+ and X− denote the task data

of class + and class −, respectively. Let Dtrain+ and Dtrain−
denote the task training data of the two classes, respectively.

The detailed configuration of these datasets are shown in

Table I. The task here is to train linear SVM model versions

to classify points from X to {+,−}, using the task training

data Dtrain+, Dtrain−, and the chosen hidden data Xh.

Input Space = Feature Space. We note that in the

linear SVM setting, the input space and the feature space are

identical, i.e., {h} = Xh. Thus, to streamline our discussion,

we directly use the chosen hidden feature {h} to represent Xh.

However, this statement does not hold in general, specifically

for DNN models where the feature space is considerably

different from the input space.

Hidden Training in SVM. An SVM model M : R2 →
{+,−} is a function that takes data from R

2 as input and

outputs the class label. We assume that the class to be

protected, i.e., the class that will be targeted by the attacker,

is class +. Hidden training involves choosing hidden data h

and the target class +, and adding it to the training data set.

Our analysis of hidden training starts from the following

theorem and the definition of attackable region.

Theorem V.1. (Hidden Training Determines SVM). When h

is in {(x, y) ∈ R
2 | |x| < c− 1, |y| ≤ ylim}, h determines the

decision boundary of the trained SVM model.

As defined by Table I, c is the x-axis center of the training

data’s feature cluster for + class and ylim bounds the y-axis

of the feature space. The proof of Theorem V.1 can be found

in Appendix A.

This theorem shows that, in the two-dimensional space,

the optimal linear SVM classifier is the one that bisects the

shortest connection between the convex hulls of the training

data in the classes [25]. When h is not in Dtrain+, h determines

the convex hull of Dtrain+ ∪Dhidden. A properly chosen h can

also determine the SVM classifier when it changes the shortest

connection between the convex hulls. Thus, Theorem V.1

characterizes the region in R
2 where the SVM is determined

by the hidden data added to class +.

Attackable Region. Given a model version Mi, we define

its attackable region to identify the subspace of R2 where any

adversarial attacks targeting class + can appear. This region

contains all possible attacks generated by the strongest adver-

sary, one who operates without any limitations on perturbation

budgets or computational resources. We use ARi to denote the

attackable region of Mi.

Definition V.2. (Attackable Region) For an SVM modelMi,

we define its attackable region for the target class + as

ARi = {(x, y) ∈ X− | Mi(x, y) = +}.



Task data
(X+, X−)

Data in X+ and in X− are symmetrically distributed
about the y-axis. For an input (x, y) ∈ X , we have
(x, y) ∈ X+ if x ≥ δ or −δ < x < 0 where δ >
0. Otherwise, (x, y) ∈ X−. Moreover, we bound the
space such that for all (x, y) ∈ X , |y| ≤ ylim. Figure 3
illustrates the setup. In this setting, no SVM model
achieves perfect accuracy on X . However, there exists
SVM models that can linearly separate our training
data, defined as below.

Task training data
(Dtrain+, Dtrain−)

Data in Dtrain+ is uniformly distributed in a unit circle
centered at (c, 0) and Dtrain− in a unit circle centered
at (−c, 0) where c ≫ δ. We use Dtrain to denote the
clean training data where Dtrain = Dtrain+ ∪ Dtrain−.
Therefore, X is not linearly separable but Dtrain is.

TABLE I: Configuration of task data and training data.

The attackable region of model Mi contains all input data

that should be categorized as class − but wrongly classified

as class + by the model. That is, any possible attack directed

towards class + that an attacker can construct using onlyMi

falls within ARi. Beyond ARi, the data is either correctly

classified by the model or bears a ground truth label of +.

B. Impact of Hidden Data Choice: One-time Breach

Next, we study how the choice of hidden data h affects

the robustness of model versions, starting from the case

of one-time breach. For this simple case, the robustness is

measured by the directional attack transferability fromM1 to

M2. Our analysis focuses on modeling the directional attack

transferability using the area of the attackable region. For two

models M1 and M2 trained with different hidden data, all

transferable attacks exist in the intersection of AR1 and AR2.

Definition V.3. (Directional Attack Transferability) Let S :
R

2 → R be a function that computes area of a subspace in

R
2. The directional attack transferability from M1 to M2,

denoted as AT (M1 →M2), is computed as:

AT (M1 →M2) =
S(AR1 ∩ AR2)

S(AR1)

When the two models share no attackable region (i.e., AR1 ∩
AR2 = ∅), the directional attack transferability becomes zero.

The following theorem defines a condition on the choice of

h1 and h2 to meet such condition.

Theorem V.4. (Nullifying Directional Attack Transferability)

For two model versions M1 and M2 produced from hidden

training, we have AT (M1 → M2) = 0 when decision

boundaries of M1 and M2

(1) have opposite signs of slope, and;

(2) intersect at (xI , yI) with xI > δ.

The proof of Theorem V.4 is in Appendix B. In the proof, we

also illustrate how to find qualified h1 and h2 to achieve zero

transferability. We first exclude any linear separator that is not

achievable by adding hidden data {h,+} to Dtrain. Next, given

an achievable linear separator, we reconstruct the coordinates

of h by finding the connection between the two convex hulls

bisecting by the separator. After identifying an achievable

linear separator with hidden data h1 that intersects the x-axis

Fig. 3: Illustration of SVM decision boundaries after hidden

training using (h1,+) and (h2,+), respectively. The two

resulting modelsM1 andM2 share zero attack transferability

because their attackable regions do not overlap.

at a point > δ, we select h2 as the coordinate symmetrical to

h1 along the x-axis, and use it to trainM2. Figure 3 illustrates

a specific scenario where the two models have no overlap in

their attackable regions, resulting in zero attack transferability.

Additional Observations. Theorem V.4 leads to three addi-

tional findings, which later inform our approach in designing

practical algorithms for selecting hidden features (§VI).

• Random h values can rarely produce SVMs with low

attack transferability – Theorem V.4 demonstrates that h1

and h2 must be located on opposite sides of the x-axis to

minimize directional attack transferability. Yet if h1 and h2

are randomly selected, there is a 50% chance that both fall

on the same side of the x-axis, resulting in a high attack

transferability between the two model versions.

• Varying training parameters does not lower attack trans-

ferability – In the SVM setting, adjusting model training

parameters such as initialization and training batch order

has no impact on the trained model. Therefore, in practice,

such variations are unlikely to result in model versions with

reduced attack transferability.

• Separation between hidden data and task data – Effective

hidden data is often situated at a considerable distance from

the training data in the feature space. Thus, we look for

candidates of hidden features in outliers within each class.

C. Impact of Hidden Data Choice: Repeated Breaches

We now consider a sequence of N (N > 2) model

versions (M1, ...,MN ). Within this sequence, after launching

Mi, an attacker, who has white-box access to M1, ...,Mi−1

but not Mi, can attack Mi using a combined knowledge

of all previous model versions, i.e., launching a compound

transferability attack. We first establish a theoretical model for

the compound attack transferability in the SVM case, utilizing

the attackable region concept. All potential compound attacks

are found in the union ofAR1, . . . ,ARi−1, and the successful

ones against Mi are situated in the intersection of ARi and

the aforementioned union.



Definition V.5. (Compound Attack Transferability) The

compound attack transferability from M1, ...,Mi−1 to Mi,

denoted as AT ({Mj}i−1
j=1 →Mi), is computed as:

AT ({Mj}i−1
j=1 →Mi) =

S(ARi ∩ (∪i−1
j=1ARj))

S(∪i−1
j=1ARj)

Definition V.5 allows us to compute the attack transferability

against any model version within a sequence of model versions.

In this model, we characterize the strongest attacker that can

utilize all attackable regions of previous leaked versions. That

is, any attack generated from an ensemble of the previous

versions is included by the union of attackable regions.

Next, we show that one can employ greedy search to

construct a sequence of model versions, where the compound

attack transferability within the sequence is upper bounded.

Theorem V.6. (Greedy Search Can Upper Bound Compound

Transferability) Using greedy search, we can construct a

sequence of model versions M1, ...,MN such that,

max
i,i≤N

AT ({Mj}i−1
j=1 →Mi) ≤ αN

where αN increases with N .

The detailed proof is in Appendix C. Here we briefly sketch

the greedy search process. First, we construct M1 and M2,

leveraging Theorem V.4 to identify h1 and h2 such that

AT (M1 → M2) = 0, and their combined attackable

region AR1 ∪ AR2 is sufficiently large to minimize overlap-

ping portion with subsequent model versions. In our design,

∪ij=1ARj = AR1 ∪ AR2 for any i ≥ 2 and the decision

boundaries of M1 and M2 are approximately orthogonal.

Next, we select h3 so that the decision boundary of M3

is in parallel to that of M1 but shifted to create a much

smaller attackable region. Since AR3∩(AR1∪AR2) is small,

the compound attack transferability AT ({M1,M2} → M3)
is low. Similarly, we select h4 so that M4 has a decision

boundary parallel to M2, while AR4 is much smaller than

AR2. Also, the decision boundaries of M3 and M4 are

approximately orthogonal. Following this alternating strategy,

we can progressively deploy the subsequent model versions,

yet each time we gradually increase the attackable region. As

a result, the decision boundaries ofMi andMi+2 are parallel

while those of Mi and Mi+1 are approximately orthogonal.

Our strategy applies greedy optimization to find the best

model version for the current version i, and does not assume

the knowledge of N when choosing Mi. The maximum

compound transferability maxi,i≤N AT ({Mj}i−1
j=1 →Mi) is

zero at N = 2 and gradually increases with N , because the

intersection of attackable regions with the previous versions

increases with N . As an example, Table II shows the upper

bound αN value as a function of N , under a specific configu-

ration of data parameters (i.e., those defined by Table I). Here

αN increases gracefully with N , demonstrating the robustness

of model versioning using hidden training.

N 2 4 6 8
αN 0 0.17 0.37 0.4

TABLE II: A realization of the model sequence and the corre-

sponding upper bound on the compound attack transferability.

The upper bound increases with length of model sequence N .

D. Generalizing the Analysis

While our theoretical analysis targets two-dimension binary

classification settings utilizing linear SVMs, it offers insights

that can be applied to construct robust model versions for

more complex classification tasks. Next we discuss directions

in which our analysis can be expanded to those settings.

High Dimensional Settings. Extending our proof to binary

classification in higher dimensions is relatively straightforward.

In a d-dimensional space, the corresponding hidden features

lie in a (d − 2)-dimensional space, e.g., in 3-D settings, the

effective hidden features are confined to a line. We can apply

similar methods used by the proofs of Theorems V.1 and V.4

to find the optimal hidden features.

Multi-class Settings. Extending our analysis to multi-class

SVM is much more challenging. There exist two main methods

to reason about multi-class SVMs, One versus One (OVO)

and One versus Rest (OVR). For OVO, our proof naturally

extends when considering protecting one class (l1) against

another class (l2), by deriving the corresponding attackable

regions. If the goal is to protect l1 against all other classes

(l2, l3, etc.), the attackable region will be the union of all

the attackable regions against l1. However, since this region

is hard to quantify analytically, it is hard to find a closed

form derivation of the optimal h. For OVR, our proof directly

applies if we can assume that all data belonging to the rest

of the classes lies on one side of the (y = 0) line, i.e., we

consolidate them into a single class. If the other classes are

not linearly separable from l1, then we need to employ soft-

SVMs, which do not have a closed form solution.

Complex Feature Extractors. Our analysis can be extended

to models that employ complex feature extractors such as

DNNs and Kernel SVMs. For this we formulate the theoretical

problem where the linear SVMs (used in our analysis) operate

on the feature space instead of the input space. Thus, our

analysis directly models the hidden features (h) that can reduce

attack transferability. Here we need to make two assumptions.

First, there exists an inversion process to create data in the

input space that realizes the chosen hidden features. In fact,

our empirical algorithm for DNN models does use such

an inversion process in Algorithm 2. Second, the kernel or

feature mapping of the input space must satisfy the properties

described in Table I. The latter may not hold in practice exactly,

but our empirical results show that the same insights do apply.

VI. GENERATING DNN MODEL VERSIONS

Our analysis in §V establishes the theoretical foundation

for the task of model versioning, but also suggests design

principles for developing practical versioning algorithms for



DNN models. We now present these principles and our de-

tailed algorithm design.

A. Design Principles

Our theoretical analysis produces three key guidelines for

selecting hidden features.

• Theorem V.1 shows that a single h (per protected class) is

not only adequate but also serves as a preferred optimization

factor for perturbing feature space and altering attack land-

scape. We follow this format to choose h as the anchor for

generating hidden data in the input domain.

• Theorem V.4 shows that effective hidden data exists outside

the convex hull of the training data and is relatively distant

from the training data. Thus, in our practical algorithm, we

set the requirements that h does not overlap with features of

the task training data and must keep a minimum distance to

the center of training data in the feature space.

• Both Theorem V.4 and V.6 show that optimizing the choices

of h can effectively reduce attack transferability compared

to random selection. Furthermore, the optimal locations of

hidden features do not solely depend on their distance to

the original feature clusters but exhibit a complex geometric

relationship. This leads us to design a greedy-search based

optimization method for locating the right h values.

B. Detailed Algorithm Design

We now present the detailed algorithm for DNN model

versioning. Previously, Definition IV.2 already outlines the

three sequential steps for creating a model version after

selecting a feature point h (per protected class). Thus, our

discussion below focuses on how to select the set of feature

points in Fori, one set for each model version. To streamline

our presentation, we assume a single class is being protected,

i.e., one h value per model version. The complete process for

protecting one or more classes is listed in Appendix D.

Choosing h. Conceptually, one might expect that opting for

hi values displaying greater distance from h1, ..., hi−1 in the

feature space would produce a more distinct model version

Mi. Similarly, choosing hi far from the feature clusters of

the target class would also improve the model robustness.

However, our empirical experiments show that there is no

meaningful correlation between such distances2, for either

the attack transferability or the normal classification accuracy.

These findings align with the third design principle in §VI-A.

Driven by these findings, we develop a greedy search

approach for selecting hidden features from a predefined candi-

date pool. To build this candidate pool, we first identify a few

“edge” points within each class’s feature cluster and rescale

the feature vectors of these edge points to move them farther

away from the class cluster. This ensures a sufficient gap

between the hidden data and any task-specific data, following

the second design principle in §VI-A. Next, we train models

2We used three different distance metrics: averaged pairwise ℓ2 distances,
averaged pairwise cosine distances and the Earth Mover’s distance (also
known as 1-Wasserstein). The results are consistent across all three metrics.

using these feature point candidates, producing a pool of

candidate models. Finally, we choose the sequence of model

versions, one model at a time, from this model pool. Each time,

we first generate instances of compound transferability attacks

based on Projected Gradient Descent (PGD), leveraging white-

box access to all previous model versions. Then, we select,

from the pool, the model candidate that has the lowest attack

success rate as the subsequent model version in the sequence.

Online vs. Offline Model Generation. Our algorithm

for generating model versions adopts a greedy approach, i.e.,

generating models one by one. Yet it presents the model owner

with two options: (i) waiting to train a replacement model

only after detecting a breach in the current version, and (ii)

pretraining multiple model versions in advance. The second

option takes more computation power, but offers the key

advantage of immediate model replacement. This is because

once a model is known to be breached, leaving it active is

clearly undesirable. Similarly, taking the system offline while

training a new model version is also undesirable. Swapping

in a pretrained model version minimizes security risk and

downtime, and is particularly important for large models that

take a long time to train. Finally, for our algorithm, pretraining

(e.g., N ) models does not restrict the model owner from

generating additional model versions beyond N .

Curating Hidden Data. As discussed in Definition IV.2,

we curate hidden data by choosing a set of initial images

and perturbing them using the technique proposed by [26]

so that their features in the task feature space Fori closely

match h. The choice of initial images is flexible. For our

implementation, we use a well-trained GAN model [27], [28]

to generate initial images. Appendix F shows samples of

hidden data (i.e., perturbed GAN images) produced by our

experiments. We emphasize here that the key property of the

hidden data is not what it looks like in the input space, but

rather how close its representations are to the chosen feature

point in the feature space.

VII. EMPIRICAL STUDY

In this section, we evaluate our hidden training method on

DNN models, using three image classification tasks. We also

compare our method to alternative methods to version models.

A. Experiment Setup

Datasets and Architectures. We consider three image

classification tasks.

• CIFAR10 [29] is widely used to evaluate adversarial attacks

and defenses. The task is to classify 10 objects with 50, 000
training images and 10, 000 testing images. The default

model architecture is ResNet-18 [30], and the number of

classes is 10. We also experiment with VGG-16 [31].

• SkinCancer [5] consists of 10, 000 dermatoscopic images

collected over 20 years. The task is to recognize 7 types of

skin cancer with 8, 912 training images and 1, 103 testing

images. The model architecture is Densenet-121 [32].



Original Hidden Training

CIFAR10 92.1% 91.4± 0.2%
SkinCancer 88.7% 90.5± 0.5%
YouTubeFace 98.9% 98.6± 0.4%

TABLE III: Performance of original and hidden trained mod-

els on clean inputs.

• YouTubeFace [33] contains face images of 1, 283 people

(587, 137 training images and 6, 4150 testing images). The

task is to perform face recognition. The model architecture

is ResNet-50 [30] and the number of classes is 1283.

Attack Configurations. We consider three well-known

white-box adversarial attacks: Projected Gradient Descent

(PGD) [34], Carlini & Wagner attack (CW) [35], and Elastic-

net Attack (EAD) [36]. We use them to build both directional

and compound transferability attacks. By default, we show

results of PGD since it leads to the highest attack transferabil-

ity. For PGD attacks, the L∞ perturbation budget is 0.03 for

CIFAR10, 0.05 for SkinCancer, and 0.25 for YouTubeFace.

In our experiments, the attacker only submits an attack

instance against the target model if it has succeeded on prior

model(s). Thus, the attack success rate equals the attack trans-

ferability defined in §III. Specifically, to launch directional

transferability attacks against Mi, the attacker has white-box

access to only one prior model version Mj , runs a standard

white-box attack to create 1000 attack instances that succeed

onMj , and applies them toMi. For compound transferability

attacks against Mi, we use the ensemble attack from Tramèr

et. al. [37] that leverages white-box knowledge of all previous

model versions to create 1000 attack instances, ensuring that

they succeed on at least one previous model version. We also

consider a “cautious” attacker who only launches an attack

instance againstMi if it succeeds on all prior model versions.

For all cases, we report the attack transferability (and thus the

attack success rate) as the fraction of attack instances launched

against the target model Mi that actually succeed on Mi.

Training Configuration. In hidden training, by default, we

use hidden data that is 20% of the original training data of the

target class. Later in §VII-D we show that varying this ratio

between 10% and 30% leads to the same conclusion. We set

the model pool size to 50. Additional details of training and

attack configurations are in Table VII in Appendix E.

B. Performance of Hidden Training

We evaluate the effectiveness of hidden training by normal

classification accuracy, scalability, and robustness to attacks.

Normal Classification Accuracy. One of the objectives

of hidden training is to develop models whose normal model

accuracy is on par with the original model (without any

hidden training). To verify this, for each classification task,

we generate 50 model versions using hidden training and an

original model without hidden training. In Table III, we report

the normal classification accuracy of all 50 model versions

for each task, in terms of mean and standard deviation, along

with that of the original model. We see that the models trained

AT = AT (M1 → Mi) AT < 0.2 AT < 0.3 AT < 0.4
# of qualified model versions 25 45 49

TABLE IV: Richness of replacement model pool.

using hidden training achieve a normal accuracy comparable

to that of the original model.

Interestingly, for SkinCancer, hidden training achieves a

higher mean normal accuracy than the original model. This is

likely because SkinCancer’s limited training sample size and

large sparsity of the training images. In this case, the hidden

data injected during training essentially functions as a type of

data augmentation, which enhances model generalizability.

Richness of Replacement Models. When a deployed model

is breached by attackers, the model owner quickly recovers

by deploying another model version that shares low attack

transferability from the breached one(s). It is important to

ensure that the set of qualified replacement models is rich

enough so that the adversary cannot easily enumerate through

the space to predict/construct the replacement model version.

We evaluate the richness of replacement models as follows.

Given the 50 model versions generated by hidden training,

we pick a model whose average attack transferability to the

other 49 models is low, and set it as the breached model to

be replaced. We then examine the rest 49 models and study

their directional attack transferability from the breached model.

Table IV presents the results for CIFAR10, where for 25 of

the 49 models, the directional attack transferability from the

breached model is less than 0.2.

Robustness against Attacks. Next, we evaluate the robust-

ness of the model sequence created by hidden training. For

each task and the pool of 50 model versions generated by

hidden training, we apply the greedy search method proposed

in §VI to build a sequence of N = 8 models.

(1) Directional Transferability Attacks – Figure 4-6 plot,

for the three classification tasks, the heatmap views of the

directional attack transferability from a source model j to a

target model i for the sequence of 8 models. As previously

mentioned, in our experiments, the attack transferability equals

the attack success rate.

We see that the model versions maintain a low directional

transferability, even though our method aims at reducing the

compound attack transferability. The mean directional trans-

ferability is low: 19% for CIFAR10, 13% for SkinCancer

and 2% for YouTubeFace. It is worth noting that, for all

three tasks, there is no obvious monotonicity in the directional

transferability as the model sequence grows. This means that

the attacker is unable to “optimize” the choice of model j

(j < i) to be used to attack model i.

(2) Compound Transferability Attacks – Next we

evaluate how the sequence of 8 models resists the much

stronger compound transferability attacks, implemented using

the ensemble attack proposed in [37].

We start from the case where the attacker launches an

attack instance against the target model if it succeeds on at

least one prior model. Figure 7 plots, for each of the three



Fig. 4: Directional attack transfer-

ability within the model sequence

(CIFAR10, PGD). Mean=0.19.

Fig. 5: Directional attack transfer-

ability within the model sequence

(SkinCancer, PGD). Mean=0.13.

Fig. 6: Directional attack transfer-

ability within the model sequence

(YouTubeFace, PGD). Mean=0.02.

Fig. 7: Success rate of PGD-based com-

pound transferability attacks against a

sequence of N=8 model versions.

Fig. 8: Success rate of PGD-based com-

pound transferability attacks, ours (Hid-

denTrain) vs. [11] (CIFAR10).

Fig. 9: Success rate of PGD-based com-

pound transferability attacks under dif-

ferent versioning methods (CIFAR10).

classification tasks, the attack success rate for each model

version in the sequence, which grows gracefully with the

model version count. This trend aligns with our analytical

findings in §V. Moreover, we find that 90% of attack instances

generated using the ensemble attack already succeed on all

previous model versions, demonstrating the powerfulness of

the ensemble attack and the effectiveness of our method.

Next we consider “cautious” attackers who only deploy

attack instances that succeed on all prior versions. Table VIII

(Appendix F) shows that they only produce a minor increase

in the compound attack transferability. Such increase can be

effectively suppressed by combining hidden training with run-

time input filtering proposed by [11] (discussed next).

(3) Hidden Training + Run-time Detection – As a

training-time defense, hidden training can be combined with

run-time attack detection systems to improve resilience against

compound transferability attacks. To illustrate this, we imple-

ment, for each model version, the input filter proposed by [11]

to identify whether an input is an attack generated from any of

the previous model versions and block any recognized as such.

Under our scenario, these detected attack inputs now carry zero

transferability. Figure 8 plots the attack success rate (in terms

of transferability) with and without the filter, for CIFAR10.

The combined defense effectively suppresses the attack, e.g.,

for model version 8, the attack success rate reduces drastically

from 75.2% to 22.5%!

To evaluate the “contribution” of hidden training to this

combined defense, we plot in the same figure the results

of the model versioning proposed by [11] with and without

the input filter. We note that [11] does not pick hidden

features but randomly selects a set of GAN-generated images

as the additional data to train model versions. The large gain

over [11] demonstrates the effectiveness of our hidden data se-

lection process in building a more robust model sequence. The

increased diversity of models in the sequence also contributes

to enhancing the effectiveness of real-time attack detection.

(4) Comparison to Alternatives – We compare hidden

training with baseline techniques presented in §III-C: varying

model initialization, varying training batch order, comput-

ing model ensembles (TRS [9]), and the random selection

method [11]. Here we implement TRS [9] assuming that the

model owner needs to train 8 models. Due to the extreme high

training cost of TRS (see §VII-C), we were only able to train

the TRS models for CIFAR10. Results in Figure 9 show the

success rate of compound transferability attacks. Here we can

clearly observe the advantage of hidden training in generating

a robust model sequence.

C. Computation Overhead

We examine computation overhead for hidden training and

model versioning. Compared to training the original model,

generating a sequence of N = 8 models requires (1) producing



hidden data required to train a pool of 50 models, (2) training

50 models, and (3) running the greedy algorithm to select a

sequence of 8 models from the model pool. We find that the

computation overhead is dominated by model training.

Original Hidden Training TRS
Model (1 Model) (50 Models) (8 Models)

CIFAR10 34.6 s 34.8 s 29 min > 100 min
SkinCancer 193.5 s 334 s 4.6 hr > 30 hr
YouTubeFace 62.1 s 112.5 s 1.5 hr > 16 hr

TABLE V: Time spent to train a single epoch.

Table V lists the time required to train a single epoch for

the three classification tasks, using a Titan RTX GPU. We

also provide the training time for the original model and for

TRS [9], assuming that the model owner sets up TRS to

train 8 models as an ensemble. These results show that our

method consumes significantly less time compared to TRS,

even when creating a pool of 50 models. For both SkinCancer

and YouTubeFace, we encountered convergence issues when

attempting to produce 8 models using TRS, as each training

epoch exceeded 16 hours in duration.

Generate Hidden Data Optimizing Sequence

CIFAR10 70.8 s < 6 min
SkinCancer 824.8 s < 15 min
YouTubeFace 173.6 s < 15 min

TABLE VI: Computation overhead beyond model training.

Table VI lists the additional overhead required beyond

model training, including time taken to generate and perturb

2000 images for a given feature point h, and average time

required to identify the next subsequent model. For latter,

the main overhead is to generate adversarial examples using

test data and estimate the compound attack transferability.

This table shows that the time for generating hidden training

data per model is comparable to 2 epochs of hidden training,

indicating that the overall overhead is still dominated by model

training. The optimization time to produce a sequence of N

models is less than 15 minutes×(N − 1), significantly less

than the time required to train N = 8 TRS models.

D. Ablation Study

Attack Configuration. So far we report results assuming

the attacker launch PGD based attacks, which are known to

carry strong transferability across models. We also evaluate

hidden training on two other white-box adversarial attacks:

CW [35] and EAD [36]. Figure 15 and 16 (Appendix F)

show the compound attack transferability of multiple model

versioning methods, for both attacks. Again, hidden training

is the most effective at producing robust model sequences.

Hidden Data Portion. We also implement hidden training

by varying the portion of hidden data (relatively to the task

training data) from 10% to 30%, with 20% being the default

configuration in our experiments. Results in Figure 17 (Ap-

pendix F) indicate that varying the proportion of hidden data

does not affect the effectiveness of hidden training in main-

taining a low compound attack transferability. Furthermore,

all versions of the hidden-trained models consistently achieve

high normal classification accuracy comparable to that of the

original model (results omitted for brevity).

Impact of Model Architecture. In addition to ResNet-18,

we also conduct hidden training using VGG-16 [31]. Figure 18

(Appendix F), shows that hidden training yields the lowest

compound attack transferability, demonstrating its applicability

across multiple model architectures.

Protected Classes. We vary the number of protected classes

(see Appendix F) and obtain consistent results: model version-

ing via hidden training can protect multiple classes against

compound transferability attacks.

VIII. CONCLUSION AND LIMITATIONS

As classifiers are increasingly deployed in industrial settings,

data breaches will inevitably impact stored ML models, caus-

ing white-box model breaches. This motivates us to address

the pressing problem of robust model versioning to maintain

reliable ML services despite repeated model leakages. We

introduce model versioning via hidden training, and demon-

strate both theoretically and empirically that, when properly

configured, they can produce model versions robust against

multiple transferability-based attacks while achieving high task

accuracy. Compared to alternative methods such as random

seeding and model ensembles, our method achieves higher

robustness (against compound transferability attacks), high

scalability and low cost for training model versions.

Limitations and Future Directions. As the first work in this

area, our work faces several limitations that warrant additional

research efforts. First, our theoretical analysis considers linear

SVM models. Further work is necessary to extend it to

DNNs. Second, we propose a greedy method to progressively

construct DNN model versions from a pool of candidates,

demonstrating the feasibility and benefits of hidden training.

Yet the overhead for generating such pool of models can be

heavy, especially for large models and for protecting many/all

of the model classes simultaneously. Thus, we are unable to

evaluate our design on large datasets like ImageNet. Additional

efforts are needed to produce stronger and more efficient

optimization methods. Finally, our experiments consider a

loss-based, compound attack to produce adversarial examples,

defined by a prior work [37]. Follow-up research should

study the feasibility of stronger attacks and refine the model

versioning design to resist such attacks.
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In this appendix, we list the detailed proofs for the three theorems presented §V. We then present the hidden training

algorithm in Appendix D, and additional empirical results in Appendix F.

APPENDIX A

PROOF OF THEOREM V.1

In this proof, we explicitly compute the linear decision boundary of an SVM model in the presence of an added hidden data

h = (v, w). Without loss of generality, we assume 1− c < v < c− 1 and |w| ≤ z. We use Figure 10 to illustrate the notations

and the process of finding the SVM decision boundary described below. As stated earlier, in the SVM setting considered by

our analysis, the input space and the feature space are identical.

Fig. 10: Illustration of an SVM decision boundary.

We use R(p, q) to denote a unit circle centered at (p, q), i.e., R(p, q) = {(x, y) ∈ R
2|(x − p)2 + (y − q)2 ≤ 1}. As in

the problem setup, we have two classes, + and −. Training data for class +, denoted D+, is uniformly distributed in R(c, 0).
Training data D− is uniformly distributed in R(−c, 0). Let O1 denote a center (c, 0) and O2 denote the other center (−c, 0),
and we have c > 1.

In a two-dimensional space, the optimal classifier is the one bisecting the shortest connection between the convex hulls of

D+ and D− [25]. Therefore, we first find the convex hull with new training data h in class + and the other convex hull

R(−c, 0) is not affected by h. We know that the convex hull of D+∪{h} is enclosed by R(c, 0) and the line segments tangent

to R(c, 0) passing through h.

To compute the lines tangent to R(c, 0), we assume the line is of the form y = kx+ b. We then solve for k and b such that

Equation 1 only has one solution for x. Note that since 1− c < v < c− 1, no tangent line is of the form x = b.

{

(x− c)2 + y2 = 1

y = kx+ b.
(1)

This yields

(x− c)2 + (kx+ b)2 = 1 (2)

and the line being tangent indicates that the quadratic function in Equation 2 has only one solution for x. Therefore, we solve

for k using
{

(2kb− 2u)2 − 4(1 + k2)(u2 + b2 − 1) = 0

w = kv + b.

The tangent lines are denoted ℓ1 and ℓ2, have slopes k1 =
−w(c−v)+

√
(c−v)2+w2−1

(c−v)2−1 and k2 =
−w(c−v)−

√
(c−v)2+w2−1

(c−v)2−1 , and

have intercepts w − k1v and w − k2v respectively. Note that k1 > k2. Let P1 and P2 denote the tangent point on R(c, 0) by

line ℓ1 and ℓ2 respectively.

If w = 0, by symmetry of the convex hulls, the classifier is x = −c+v+1
2 .

If w > 0, the shortest connection can be found by finding the shortest distance between O2 and the line segment P2h. Any

point in the convex hull other than P2h has greater distance to R(−c, 0).
The orthogonal line to ℓ2 has slope − 1

k2

. Let the line pass through O2, we can then compute for its intercept. This line is

of the form y = − 1
k2

(x − c). Then we set the above computed line to intersect with ℓ2. We denote the intersection point by



Q2. Q2 has coordinates (
k2

2
v−k2w−c

k2

2
+1

, −k2c−k2v+w
k2

2
+1

). If
k2

2
v−k2w−c

k2

2
+1

> v then the Q2 is on the line segment P2h. In this case

O2Q2 is the shortest distance between O2 and the convex hull. Otherwise, the shortest distance is hO2.

If Q2 is on the line segment P2h, we find the point on R(−c, 0) that is intersected by O2Q2, denoted by R2. We solve the

equation
{

(x + c)2 + y2 = 1

y = − 1
k2

(x− c)

to get the coordinates of R2 to be ( −k2√
k2

2
+1
− c, 1√

k2

2
+1

). For the line bisecting Q2R2, it has the same slope as ℓ2. To find the

intercept, we let the line pass through the mid-point of Q2R2.

Otherwise, we let R2 be the point on R(−c, 0) that is intersected by O2h. We solve the equation
{

(x + c)2 + y2 = 1

y = w
c+v (x+ c)

to get the coordinates of R2 to be ( c+v√
(c+v)2+w2

− c, w√
(c+v)2+w2

). We then bisect the line segment R2h to get the decision

boundary.

Therefore,

• If
k2

2
v−k2w−c

k2

2
+1

> v, the shortest distance between the convex hulls is between (
k2

2
v−k2w−c

k2

2
+1

, −k2c−k2v+w
k2

2
+1

) and ( −k2√
k2

2
+1
−

c, 1√
k2

2
+1

). Bisecting the line, we can see that the decision boundary has slope K(h) = k2 and intercept B(h) =

−k2c+k2v−w−
√

k2

2
+1

2 .

• Otherwise, the shortest distance between the convex hulls is between (v, w) and ( c+v√
(c+v)2+w2

−c, w√
(c+v)2+w2

). Bisecting

the line, we can see that the decision boundary has slope −c−v
w and intercept

−c2+v2+w2+
√

(c+v)2+w2

2w .

When w < 0, by symmetry, we repeat the same analysis as in the case when w > 0. We omit some details in this case.

If w < 0, the shortest connection can be found by finding the shortest distance between O2 and the line segment with

slope k1. The orthogonal line to ℓ1 passing through O2 intersects ℓ1 at point Q1 with coordinate (
k2

1
v−k1w−c

k2

1
+1

, −k1c−k1v+w
k2

1
+1

).

If
k2

1
v−k1w−c

k2

1
+1

> v then the intersection is on the tangent line segment and O2Q1 is the shortest distance between O2 and the

convex hull. Otherwise, the shortest distance is O2P .

• If
k2

1
v−k1w−c

k2

1
+1

> v, the shortest distance between the convex hulls is between (
k2

1
v−k1w−c

k2

1
+1

, −k1c−k1v+w
k2

1
+1

) and ( k1√
k2

1
+1
−

c,− 1√
k2

1
+1

). Bisecting the line, we can see that the decision boundary has slope K(h) = k1 and intercept B(h) =

k1c−k1v+w−
√

k2

1
+1

2 .

• Otherwise, the shortest distance between the convex hulls is between (v, w) and ( c+v√
(c+v)2+w2

−c, w√
(c+v)2+w2

). Bisecting

the line, we can see that the decision boundary has slope K(h) = −c−v
w and intercept B(h) =

−c2+v2+w2+
√

(c+v)2+w2

2w .

APPENDIX B

PROOF OF THEOREM V.4

First, we will show that if two SVM decision boundaries have opposite signs of slope and intersect at (xI , yI) with xI ≥ δ,

then their attackable region has empty intersection. This yields zero directional attack transferability. We then explain how to

find the hidden data h that satisfies the desired property.

Without loss of generality, let M1 have the decision boundary y = k1x + b1 with k1 < 0 and M2 have the decision

boundary y = k2x+ b2 with k2 > 0. Then for any (x, y) ∈ AR1, we have y ≥ k1δ+ b1. Similarly, for any (x, y) ∈ AR1, we

have y ≤ k2δ + b2.

We can also compute the intersection of the two decision boundaries, where xI = b2−b1
k1−k2

. Since xI ≥ δ, we have

b2 − b1

k1 − k2
≥ δ

=⇒ b2 − b1 ≤ δ · (k1 − k2) since k1 < 0 < k2

=⇒ k2δ + b2 ≤ k1δ + b1.

Therefore, AR1 ∩ AR2 = ∅, which implies AT 1→2 = AT 2→1 = 0.

We now explain how to find h given a desired decision boundary y = kx+ b. Without loss of generality, we assume k > 0.



Fig. 11: Illustration of a SVM decision boundary.

By [25], we know that the decision boundary has to bisect the convex hull of the two classes. Moreover, the convex hull of

class − is the unit ball at (−c, 0). Therefore, we can find the function for the line that the decision boundary bisects, which

is R1Q1 in Figure 11: y = − 1
k (x+ c). Using this line, we can further find point R1 by solving the equations

{

(x + c)2 + y2 = 1

y = − 1
k (x+ c).

Solving the equations yields the coordinates of R1 : ( k
k2+1−c,− 1√

k2+1
). The mid point of R1Q1, which is also the intersection

of the decision boundary with R1Q1, has coordinates that satisfy
{

y = kx+ b

y = − 1
k (x+ c).

Therefore, the mid point is (−bk−c
k2+1 , b−ck

k2+1 ).
Using the coordinates of R1 and mid point, we can find the coordinates of Q1 because the mid point can also be found by

R1+Q1

2 . Thus, Q1 has coordinates (2(−bk−c)
k2+1 − k√

k2+1
+ c,

2(b−ck)
k2+1 + 1√

k2+1
).

If Q1 is a valid choice as h, then we can choose h = Q1 and the resulting decision boundary will be the desired y = kx+ b.

The constraints are:

1) 1− c <
2(−bk−c)

k2+1 − k√
k2+1

+ c < c− 1

2) | 2(b−ck)
k2+1 + 1√

k2+1
| ≤ ylim

3) k1 · − 1
k ≥ −1 where k1 is the larger slope of the line passing through Q1 and tangent to the unit ball of class +

The first two constraints enforce the h to be within the feasible region where we can add hidden data. The third constraint

ensures that with h = Q1, the decision boundary is indeed the desired one. If k1 · − 1
k < −1, then R1Q1 is not the shortest

distance between the convex hulls. Then the decision boundary would not bisect R1Q1. Therefore, we can check the feasibility

of the decision boundary using the constraints.

With the algorithm for checking feasibility, we can iteratively search through the space to find a feasible linear separator.

APPENDIX C

PROOF OF THEOREM V.6

In Appendix B, we discuss how we validate feasibility of an SVM decision boundary. In this section, we explain how we

construct a sequence of SVM models such that we can upper bound the maximum compound transferability of the sequence.

When N = 2: We build M1 by selecting some k > 0 such that y = k(x − δ) is a feasible decision boundary, using

the verification method discussed in Appendix B. Since y = k(x − δ) is a feasible decision boundary, then by symmetry,

y = −k(x − δ) is also feasible. Therefore, we can build M1 with decision boundary y = k(x − δ) and M2 with decision

boundary y = −k(x− δ). By Appendix B, we have AR1 ∩AR2 = so AT (M1 →M2) = AT (M2 →M1) = 0.

When N > 2: In this general case, we also start by finding a feasible decision boundary y = k(x − δ). Ideally, a larger

k results in a smaller attackable region. However, since we need to choose a sequence of models with large separations, the

chosen k cannot be too large. After selecting a feasible k value, we seek to find the largest b > 0 such that the decision



boundary y = kx− b remains feasible. We denote this maximum value of b as bmax. Here we observe that as k increases, the

value of bmax satisfying the above requirement decreases.

Next we set n = ⌈N2 ⌉ − 1 and b = bmax

n . We set M1 with decision boundary y = k(x− δ) and M2 with y = −k(x− δ).
For Mi (i > 2), if i is odd, we set its decision boundary to y = k(x− δ)− b · i−1

2 ; if i is even, we set its decision boundary

to y = −k(x− δ) + b · i−2
2 .

As i increases, ARi decreases under our construction. Moreover, ∪i−1
j=1ARj = AR1 ∪ AR2 for all i > 2. Therefore, the

compound transferability of the sequence is bounded by αN where αN = AT ({Mj}2j=1 →M3). This ends our proof.

Specific Realization Shown in Table 1. As an illustrative example, we assume c = 100, ylim = 30 and δ = 0.1. We choose

k = 7 and select bmax = 12. Note that actual bmax is slightly greater than 12, but we choose 12 to simplify the computation.

For an SVM with decision boundary y = kx − b satisfying k > 0, b > 0 and b−ylim

k < −δ, we have S(AR) =
(ylim−k·δ−b)2

2k + δ · (ylim − b+ kδ
2 ). This is computed by summing up the area of a triangle and a trapezoid, as shown in the

shadowed area in Figure 3. Given the above configuration, we have S(AR1) = S(AR2) = 61.39, with AR1 ∩AR2 = ∅.
Next, we compute αN for each given N value. When 3 ≤ N ≤ 4, we have b = 12 and αN = S(AR3)

2S(AR1)
= 0.17. When

5 ≤ N ≤ 6, we have b = 6 and αN = 0.32. When 7 ≤ N ≤ 8, we have b = 4 and αN = 0.37. And finally when 9 ≤ N ≤ 10,

we have b = 3 and αN = 0.4.

APPENDIX D

HIDDEN TRAINING ALGORITHM

In the following, we provide a detailed discussion on our hidden training algorithm, in the context of producing a sequence

of models. This is done in four steps.

Step 1: Selecting a candidate set of feature points (Algorithm 1). Our analytical study in Appendix B and Appendix C

shows that effective hidden feature points often lie at the edge of the classes. Therefore, we first examine the original feature

space and choose the feature vectors that are located at a distance from the center of each original class. Here we face two

constraints: (1) features in the original feature space that are too far from the original classes may not be realizable in the

input space, i.e., it is difficult to generate the corresponding input data, and (2) the chosen feature points should not overlap

with feature vectors of the task classes. These two considerations lead us to apply a feature-multiplier m to “drag” existing

feature vectors away from the original classes, and bound m by 1.1 < m < 1.5. As such, Algorithm 1 outputs a list of chosen

feature points.

Step 2: Generating hidden data in the input space (Algorithm 2). Next, we generate a set of hidden data (in the input

space) from each chosen feature point h and use them to train a model version parameterized by h. For this, we apply the

algorithm from [26], which perturbs a given input x to move its feature vector to the target feature vector in the original

feature space. Here we use a pre-trained GAN model [28] to generate a set of 2000 images as the initial inputs, and perturb

each input to reach the chosen h. For each h, we apply up to 100 perturbation iterations (without any perturbation budget)

to produce the corresponding hidden data. We then split the hidden data into training and testing sets, where the hidden data

used for training is 20% of the original training data. The testing hidden data is used to validate the model performance.

Later in Figure 12, 13 and 14, we provide sample images of the hidden data generated for the three classification tasks used

in our experiments. We would like to emphasize here that the key property of the hidden data is not what it looks like in

the input space, but rather how close its representations are to the chosen feature point in feature space. For other application

domains, the visual representation is a moot point.

Step 3: Training candidate model versions. Now given the hidden data produced in Step 2, we can run the usual model

training by adding these data to the training set. This step creates a set of candidate model versions, referred to as SM.

Step 4: Configuring the model sequence (Algorithm 3). Given the model pool SM, we apply a greedy search method

to choose the sequence of models M1,M2, ...Mi, .... The goal is to find M ∈ SM that has the lowest compound attack

transferability from M1, ...,Mi−1. Ideally, we would like to search the whole feature space to find the feature point hi that

minimizes compound transferability. However, such global optimization is very difficult because the impact of hi on the trained

model version cannot be explicitly formulated. Instead, we apply a practical, greedy search method to gradually choose from

the pool the next version i. The selection is driven by computing the compound transferability attacks and launching them

on the candidate models to estimate the compound transferability. The candidate model with the lowest transferability is then

selected. Therefore, the larger the pool size, the better the optimization. For our implementation, the pool size is 50 to achieve

a low computation overhead.



Algorithm 1 Finding Feature Points

Input: Original model Mori, test data Dtest, class labels L, distance metric d, distance threshold ǫd, multiplier m

Output: a list of N feature points

Feature points H ← {}
Fori ← feature extractor from Mori

for ℓ ∈ L do

Xℓ = {(x, c) ∈ Dtest | c = ℓ}
Fℓ = Fori(Xc)
hℓ = mean(Fℓ)
for h ∈ Fℓ do

if d(m ∗ h, hℓ) > ǫd then

Add m ∗ h to H
end if

end for

end for

Output H

Algorithm 2 Hidden Training

Input: Original modelMori, training data Dtrain, set of target classes LT , list of GAN images SG , list of feature points SH,

perturbation algorithm from [26] Perturb(.)
Output: a list of hidden trained model versions SM
Model list SM ← {}
Number of protected classes nt ← len(LT )
for i in (0, len(SH), nt) do

Dhiddeni ← {}
for j, lt in enumerate(LT ) do

g ← SG [i ∗ nt + j]
h← SH[i ∗ nt + j]
Xh ← Perturb(Mori, h, g)
Dhiddeni = Dhiddeni ∪ {(x, lt) | x ∈ Xh}

end for

Train Mi with Dtrain ∪Dhiddeni

Add Mi to SM
end for

Output SM

Algorithm 3 Forming Model Sequence by Greedy Search

Input: List of hidden trained models SM, list of breached models BM, adversarial example generating algorithm Adv,

transferability computation algorithm Trans(.), training data Dtest, set of target classes LT

Output: a model to be deployed

for lt in enumerate(LT ) do

Xadv = Xadv ∪ Adv(BM, Dtest, lt)
end for

M = argminMi∈SM,Mi /∈BM
Trans(Mi, Xadv)

Output M

APPENDIX E

TRAINING AND ATTACK CONFIGURATIONS

In this section, we add additional information on the training and attack configurations. The configurations are listed in

Table VII. We show the training configuration of the models in the original results and the attack configurations of PGD

attacks.



Fig. 12: Sample hidden data used for

CIFAR10.

Fig. 13: Sample hidden data used for

SkinCancer.

Fig. 14: Sample hidden data used for

YouTubeFace.

Training Attack

Architecture Epochs Batch Size Optimizer
Learning

Rate
Perturbation

Budget
Iterations α

CIFAR10 ResNet-18 20 512 SGD 0.5 0.03 30 0.01
SkinCancer Densenet-121 10 64 Adam 1e− 3 0.05 30 0.01
YouTubeFace ResNet-50 20 32 Adam 1e− 4 0.25 100 0.05

TABLE VII: Training and attack configurations.

APPENDIX F

ADDITIONAL RESULTS ON ROBUSTNESS

In this section, we provide additional results for ablation study on the impact of model architecture and the number of

protected classes.

Impact of Model Architecture We train VGG-16 models for the CIFAR10 dataset and study the compound attack

transferability for a sequence of 8 models. Figure 18 plots the success rate of compound transferability attacks, for both

hidden training and four alternative methods. Again hidden training outperforms its alternatives. This result is consistent with

prior results using ResNet18 models, demonstrating the applicability of hidden training across multiple model architectures.

Protected Classes. We also vary the number of protected classes when applying hidden training to create the model sequence.

In Table IX, we present the compound attack transferability experienced by the 8th model in the sequence. Maintaining

robustness at this model version is the hardest among the eight model versions, as the attacker now possesses white-box access

to all preceding seven models. Additionally, we also include the results when combining hidden training with run-time attack

detection and filtering, along with the results of using random hidden feature selection [11].

The results in Table IX show that protecting either 1 or 3 classes yields similar robustness performance. Furthermore,

combining hidden training with run-time attack detection is highly effective in sustaining robustness even when the requirement

is to protect a larger number of classes. As expected, hidden training largely outperforms random selection [11], with or

without run-time filtering. Together, these findings demonstrate the ability of hidden training to safeguard multiple classes

simultaneously.

Attack Aggressiveness. We also consider an attacker that choose to submit an attack instance to model Mi only if it

succeeds on all prior models. We consider such attacks as cautious attacks. In our original experiments, we consider attacks

that succeed on at least one previous models. When we examine the attack instances used by our original experiments, we

find that more than 90% of the instances already succeed on all previous models.

Table VIII shows the result of comparing compound transferability with attacks selected using the above described two

criteria. We see that the compound transferability of cautious attacks is slightly higher, especially at later model versions.

However, the change is minor, especially when compared to [11], whose transferability is more than 90% beyond version 2.



Fig. 15: Success rate of CW-based

compound transferability attacks

under different versioning methods

(CIFAR10)

Fig. 16: Success rate of EAD-based

compound transferability attacks

under different versioning methods

(CIFAR10).

Fig. 17: Success rate of PGD-based

compound transferability attacks un-

der different the portion of hidden

data (CIFAR10).

Fig. 18: Success rate of PGD-

based compound transferability at-

tacks under different versioning meth-

ods (CIFAR10, VGG16 model architec-

ture).

Attack

Instance

Selection

2 3 4 5 6 7 8

Without Filter

Succeed on

at least 1

prior model

0.07 0.26 0.35 0.51 0.61 0.71 0.75

Succeed on all

prior models
0.07 0.27 0.36 0.54 0.66 0.77 0.84

With Filter

Succeed on

at least 1

prior model

with Filter

0.01 0.07 0.10 0.20 0.25 0.25 0.22

Succeed on all

prior models

with Filter

0.02 0.06 0.10 0.21 0.25 0.27 0.28

TABLE VIII: Success rate of PGD-

based compound transferability at-

tacks from a “cautious” attacker, with

and without run-time attack detection

and filtering (CIFAR10).

Protect

1 class

Protect

3 classes

Random selection [11]

without Filter
99.93% 99.38%

Hidden Training

without Filter
75.22% 85.75%

Random selection [11]

with Filter
56.14% 49.14%

Hidden Training

with Filter
22.5% 26.95%

TABLE IX: Success rate of PGD-

based compound transferability at-

tacks against the 8th model version in

the sequence, under different number

of protected classes ( CIFAR10).
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