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ABSTRACT

Establishing accurate dense 3D correspondences between diverse shapes stands as
a pivotal challenge with profound implications for computer vision and robotics.
However, existing self-supervised methods for this problem assume perfect input
shape alignment, restricting their real-world applicability. In this work, we intro-
duce a novel self-supervised SO(3)-invariant 3D correspondence learner, dubbed
LSTNet, that learns to establish dense correspondences between shapes even un-
der challenging intra-class variations. Specifically, LSTNet learns to dynami-
cally formulate an SO(3)-invariant local shape transform for each point, which
maps the SO(3)-equivariant global shape descriptor of the input shape to a lo-
cal shape descriptor. These local shape descriptors are provided as inputs to our
decoder to facilitate point cloud self- and cross-reconstruction. Our proposed self-
supervised training pipeline encourages semantically corresponding points from
different shape instances to be mapped to similar local shape descriptors, enabling
LSTNet to establish the dense point-wise correspondences. LSTNet demonstrates
state-of-the-art performances on 3D semantic keypoint transfer and part segmen-
tation label transfer given arbitrarily rotated point cloud pairs, outperforming ex-
isting methods by significant margins.

1 INTRODUCTION

Establishing dense 3D correspondences between different shapes is foundational to numerous appli-
cations across computer vision, graphics, and robotics (Saxena et al., 2006; Miller et al., 2003; Hao
et al., 2013; Zeng et al., 2020). This task, however, remains challenging due to the high dimension-
ality and intricacy of 3D shape representations. One of the primary challenges hindering advance-
ments in this domain is the difficulty of annotating dense inter-shape correspondences, which limits
the leverage of strongly-supervised learning paradigms.

Recently, self-supervised learning methods have been proposed to address this issue (Liu &
Liu, 2020; Cheng et al., 2021), showing promising directions for 3D correspondence estimation.
Nonetheless, a significant limitation in current self-supervised learning approaches is their stringent
assumption about the alignment of input shape pairs; these methods strongly assume that the input
point cloud pair to establish correspondences between are precisely aligned. This assumption is
rarely met in practice, where object scans and shape instances can be arbitrarily oriented. We find
that the performance of existing methods degrades significantly when confronted with rotated input
shapes, restricting their real-world applicability.

To address this challenge, we introduce a novel self-supervised learning approach, dubbed LSTNet,
designed to reliably determine dense SO(3)-invariant correspondences between shapes via local
shape transform (LST), irrespective of their rotational orientation. In essence, LSTNet learns to for-
mulate SO(3)-invariant local shape transform for each point in a dynamic, input-dependent manner.
Each point-wise local shape transform can map the SO(3)-equivariant global shape descriptor of the
input shape to a local shape descriptor, which is passed to the decoder to reconstruct the shape and
pose of the input point cloud. By training LSTNet in a self-supervised manner via self- and cross-
reconstruction of input shapes, true semantically corresponding points are trained to yield similar
local shape descriptors, enabling us to determine dense shape correspondences.

LSTNet demonstrates state-of-the-art performance on 3D semantic matching when evaluated on the
KeypointNet dataset (You et al., 2020). In particular, significant improvements over existing base-
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lines are observed when our method is applied to randomly oriented shape pair inputs. Furthermore,
our approach also proves to be more effective compared to existing methods at part segmentation
label transfer when evaluated on the ShapeNet dataset (Chang et al., 2015). This showcases not only
the applicability of LSTNet across a diverse range of tasks but also its potential to be utilized for ef-
ficient dense annotation of 3D shapes. These results highlight the efficacy of LSTNet in addressing
the challenges posed by real-world scenarios where existing methods fail to perform effectively.

The main contributions of our work can be summarized as follows:

• We introduce LSTNet, a novel self-supervised approach for determining dense SO(3)-
invariant correspondences between arbitrarily aligned 3D objects.

• We propose to formulate the local shape information of each point as a novel function
called local shape transform with dynamic input-dependent parameters, which effectively
maps the global shape descriptor of input shapes to local shape descriptors.

• LSTNet achieves state-of-the-art performance on 3D keypoint transfer and part segmenta-
tion label transfer under arbitrary rotations, indicating its potential for application in a wide
range of practical tasks in computer vision and beyond.

2 RELATED WORK

Point cloud understanding via self-supervised learning. While traditional methods for point
cloud processing involving hand-crafted features (Tombari et al., 2010; Salti et al., 2014) have
shown impressive performance, with the advent of deep learning, substantial research efforts have
been directed towards developing learning-based algorithms capable of effectively processing and
understanding point clouds (Qi et al., 2017a;b; Zhao et al., 2021; Choe et al., 2022). Due to lim-
ited large-scale datasets with rich annotations, self-supervised learning approaches emerged as a
viable alternative. One of the most prominent directions to learn point cloud representations in an
self-supervised manner is learning through self-reconstruction (Yang et al., 2018; Zhao et al., 2019;
Pang et al., 2022) of the point cloud. Primarily inspired by the efficacy of point cloud reconstruction
as a self-supervised representation learning scheme, we train LSTNet to establish 3D correspon-
dences in a self-supervised manner via self- and cross-reconstruction of point clouds by leveraging
SO(3)-invariant dynamic local shape transform.

Equivariance and invariance to rotation. The conventional method to improve a neural network’s
robustness to rotation is by employing rotation augmentations during training or inference. How-
ever, this tends to increase the resources required for training and still shows unsatisfactory results
when confronted with an unseen rotation (Li et al., 2021a; Kim et al., 2023). In recent years, vari-
ous methods have been proposed to yield point cloud representations which are equivariant (Cohen
et al., 2018; Thomas et al., 2018; Shen et al., 2020; Chen et al., 2021) or invariant (Sun et al., 2019;
Li et al., 2021b; Xiao & Wachs, 2021; Li et al., 2021a; Kim et al., 2023) to the rotation of the in-
put, demonstrating enhanced performances under arbitrary input rotations. To facilitate the rotation-
robust establishment of 3D dense correspondences, we utilize SO(3)-equivariant VNNs (Deng et al.,
2021) in building LSTNet, leveraging its SO(3)-equivariant and -invariant representations to guar-
antee robustness to rotation by design.

Establishing correspondences under intra-class variations. Finding correspondences between
images or shapes under intra-class variations - manifesting as differences in shape, size, and orienta-
tion within the same category of objects - poses significant challenges over photometric or viewpoint
variations. This task has been widely studied in the domain of images, where existing methods make
use of sparsely annotated image pair datasets to train their method in a strongly- or a weakly- super-
vised manner (Cho et al., 2021; Kim et al., 2022; Truong et al., 2022; Huang et al., 2022). However,
learning to establish dense yet reliable 3D correspondences between 3D shapes remains challenging,
as it is infeasible to label dense correspondence annotations across point cloud pairs with intra-class
variations. Self-supervised methods have been proposed to address this issue (Liu & Liu, 2020;
Cheng et al., 2021), but they strongly assume that the input point clouds are aligned, consequently
leading to considerable significant degradation when confronted with arbitrarily rotated point clouds.
To this end, we propose LSTNet to establish reliable 3D dense correspondences irrespective of the
input point clouds’ rotational orientation.
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Figure 1: Overview of self-supervised training of LSTNet. The input point clouds are inde-
pendently encoded to SO(3)-equivariant global shape descriptor Z and dynamic SO(3)-invariant
point-wise local shape transforms {fθi}. The local shape transforms map the global shape descrip-
tor to local shape descriptors by infusing local semantics and geometry, which are used as inputs to
the decoder for self-reconstruction. For cross-reconstruction, we apply the local shape transforms
formulated from another point cloud to reconstruct the point cloud, ensuring that the local shape
descriptors successfully capture generalizable local semantics and geometries. We supervise LST-
Net via penalizing errors in self- and cross- reconstructions. At inference, we can leverage the local
shape transforms for obtaining local shape descriptors, to identify the dense correspondences.

3 LSTNET FOR 3D SEMANTIC CORRESPONDENCE

In this section, we introduce the components of LSTNet and their functionalities, which come to-
gether to facilitate the end-to-end self-supervised training for 3D semantic correspondence estab-
lishment. The objective of 3D semantic correspondence is as follows; given two different point
clouds instances P1 ∈ RN×3 and P2 ∈ RN×3 belonging to the same semantic category, we aim
to find all semantically corresponding point pairs {pi,qi}Ni=1 such that pi ∈ P1 and qi ∈ P2. To
achieve this, we claim it is crucial to identify the local shape information i.e., local semantics and
geometry, which is generalizable across different instances within the same category.

Therefore, the main idea of LSTNet is to dynamically generate an SO(3)-invariant local shape
transform as a function for each point, such that each local shape transform can map the SO(3)-
equivariant global shape descriptor of the input point cloud to its respective local shape descriptor.
In the following, we elaborate on the network architecture of LSTNet, in particular how we lever-
age SO(3)-equivariant and invariant representations to facilitate the dynamic formulation of point-
wise SO(3)-invariant local shape transforms and the reconstruction of pose-preserved point clouds
(Sec 3.1). Subsequently, we introduce our self-supervisory objective function, which trains LST-
Net to self- and cross-reconstruct the input point clouds in a rotation-equivariant manner (Sec 3.2),
finally enabling the establishment of 3D dense correspondences (Sec 3.3) via corresponding local
shape descriptors. Figure 1 illustrates the outline of the training scheme of LSTNet.

3.1 NETWORK DESIGN OF LSTNET

3.1.1 PRELIMINARY: SO(3)-EQUIVARIANT VECTOR NEURON NETWORKS

One of the main motivations of LSTNet is to establish reliable and accurate 3D dense correspon-
dences given arbitrarily rotated shapes, a setting where existing work shows to be brittle. This
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requires our encoder to formulate the point-wise local shape transforms not only effectively to cap-
ture the local shape semantics and geometry, but also robustly against transformations in the SO(3)
space. To this end, we integrate Vector Neuron Networks (VNNs) (Deng et al., 2021) to function
as the SO(3)-equivariant layers of our network architecture1. In VNNs, a single neuron, which is
represented by a scalar-list of values, is lifted to a vector-list feature V ∈ RC×3, which is essen-
tially a sequence of 3D vectors. The layers of VNNs handle batches of such vector-list features such
that equivariance with respect to rotation R ∈ SO(3) is satisfied i.e., f(VR) = f(V)R. Not only
can VNNs handle and yield SO(3)-equivariant representations, but they can also be used to obtain
SO(3)-invariant features. Performing a product of an equivariant vector-list feature VR ∈ RC×3

with the transpose of another consistently equivariant vector-list feature UR ∈ RC′×3 yields an
SO(3)-invariant output as follows: (VR)(UR)⊤ = VRR⊤U⊤ = VU⊤. We refer the readers to
the original paper (Deng et al., 2021) for further information and detailed formulations.

3.1.2 SO(3)-EQUIVARIANT ENCODER

We design our encoder architecture to take as input a point cloud P ∈ RN×3, and simultaneously
output an SO(3)-equivariant global shape descriptor and formulate point-wise SO(3)-invariant local
shape transforms.

SO(3)-equivariant global shape descriptor. Given a point cloud, we first aim to obtain the SO(3)-
equivariant global shape descriptor Z ∈ RC×3, which captures the pose and the global shape char-
acteristics of the input point cloud. We leverage VN-DGCNN (Deng et al., 2021) as our encoder
architecture, which consists of 4 edge convolutional VN-layers to capture local semantics at a pro-
gressively larger receptive field, and a FPN (Lin et al., 2017) to aggregate the multi-level features.
Then, we apply the global average pooling to the aggregated SO(3)-equivariant point-wise features
Vequi ∈ RC×3×N to encode SO(3)-equivariant global shape descriptor Z of the input point cloud.
The global shape descriptor can be used subsequently as the input for our SO(3)-invariant point-wise
local shape transform, to be mapped to their respective local shape descriptors, as shown in Figure 1.

Dynamic SO(3)-invariant point-wise local shape transform. Alongside the extraction of SO(3)-
equivariant global shape descriptors, we also formulate the SO(3)-invariant local shape transform
fθi : RC×3 7→ RC′×3 for each point pi ∈ R3 of the input point cloud P ∈ RN×3. The parameters
of each local shape transform θi ∈ RC′×C are input-dependent - thus, dynamic since they are
predicted by our encoder for the i-th point of the point cloud. To predict θi, we first obtain SO(3)-
invariant point-wise features Vin ∈ RC′×3×N as described in Sec. 3.1.1. Then, we transform each
vectorized SO(3)-invariant point-wise feature vec(vin

i ) ∈ R3C′
to the vectorized parameter of the

local shape transform vec(θi) ∈ RC′C by using a multi-layer perception. By reshaping vec(θi) to
θi ∈ RC′×C , we finally obtain the dynamic and SO(3)-invariant local shape transform fθi for the
point pi. The role of these local shape transforms is to map the SO(3)-equivariant global shape
descriptor Z ∈ RC×3 to their respective local shape descriptors v′

i := fθi(Z) ∈ RC′×3, which
is provided as the input to our decoder for reconstruction. Our self-supervised training scheme
encourages the point-wise dynamic local shape transform to encapsulate the local shape information
e.g., semantics and geometry, to enhance the reconstruction performance.

3.1.3 SO(3)-EQUIVARIANT DECODER

Our decoder aims to reconstruct the initial input shapes using the obtained SO(3)-equivariant global
shape descriptors Z and the SO(3)-invariant local shape transforms {fθi}Ni=1. To reconstruct the
point clouds aligned to their initial poses, we leverage SO(3)-equivariant layers as the building
blocks of our decoder architecture. We first train our decoder to perform self-reconstruction, us-
ing the local shape descriptors V′, i.e., P ↔ P′ := Decoder(V′) = Decoder({fθi(Z)}Ni=1).
We also train our decoder to perform cross-reconstruction, where we use the local shape de-
scriptors obtained using global shape descriptors and local shape transforms from different point
clouds. Specifically, assume we are given two point clouds P1,P2 ∈ RN×3, with SO(3)-
equivariant global shape descriptors Z1,Z2 ∈ RC×3 and SO(3)-invariant local shape transforms
{f1

θi
}Ni=1, {f2

θi
}Ni=1. We then can perform cross-reconstruction from P1 to P2 as follows: P2 ↔

1Note that while any other SO(3)-equivariant network can be used in theory, we choose VNNs (Deng et al.,
2021) for their simplicity and efficacy.
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P′
17→2 := Decoder({f1

θi
(Z2)}Ni=1). Intuitively, for the above cross-reconstruction to be carried out

successfully, the local shape transforms for points of a true correspondence should hold similar dy-
namic parameters, mapping global shape descriptors to similar local shape descriptors. By training
LSTNet to cross-reconstruct point clouds, we are supervising local shape transforms to map corre-
sponding points between shapes to similar local shape descriptors, which encode local semantics
and geometry that are generalizable across different instances within a category.

3.2 SELF-SUPERVISED OBJECTIVE

Due to the lack of annotated datasets for dense 3D inter-shape correspondences, we train LSTNet
in a self-supervised manner by penalizing inaccurate shape reconstructions. First, we supervise
LSTNet for self-reconstruction using the following loss:

LSR = λMSE MSE(P,P′) + λEMD EMD(P,P′), (1)

where MSE is the Mean Squared Error, EMD stands for the Earth Mover’s Distance, and both λMSE

and λEMD are weight coefficients. In essence, we are trying to minimize the difference between the
input and reconstructed point cloud. We also supervise LSTNet for cross-reconstruction as follows:
LCR = λCD CD(P1,P

′
27→1), where CD stands for the Chamfer distance, and λCD is a weight

coefficient. Finally, our total loss Ltotal is defined as: Ltotal = LSR + LCR. We omit the CD loss
from self-reconstruction, as we can directly use the input point cloud to provide supervision using
the MSE loss. We also omit the EMD loss from cross-reconstruction, as EMD tends to overlook
the fidelity of detailed structures (Wu et al., 2021), which is crucial in cross-reconstruction of shapes
under intra-class variations.

3.3 SO(3)-INVARIANT CORRESPONDENCE

In this section, given two randomly rotated point clouds P1 and P2, we elaborate on how our
LSTNet establishes the 3D dense correspondence from P1 to P2. As shown in Figure 1, we
first encode the SO(3)-equivariant global shape descriptor of P2, Z2 ∈ RC×3, and the SO(3)-
invariant local shape transform functions of P1, {f1

θi
}Ni=1. Then, we cross-reconstruct P2 as fol-

lows: P′
1 7→2 := Decoder({f1

θi
(Z2)}Ni=1). Finally, we define the 3D dense correspondence from P1

to P2 as the nearest point pairs among all possible pairs between P2 and P′
17→2. Since both encoder

and decoder are SO(3)-equivariant, the cross-reconstructed point cloud P′
17→2 is aligned to P2. As

a result, our LSTNet can predict 3D dense correspondences between randomly rotated point clouds,
while previous approaches (Cheng et al., 2021; Liu & Liu, 2020) experience a high rate of failure.

4 EXPERIMENTS

We present evaluations of LSTNet on the tasks of 3D semantic keypoint transfer and part segmenta-
tion label transfer, following prior work (Liu & Liu, 2020; Cheng et al., 2021). We mainly evaluate
under the I/SO(3) and SO(3)/SO(3) settings, where I/SO(3) refers to training with aligned shapes
while testing on arbitrarily rotated inputs, and SO(3)/SO(3) uses arbitrarily rotated inputs for both
training and testing. Note that Liu & Liu (2020); Cheng et al. (2021) both used the I/I settings,
where the inputs were perfectly aligned even at test time - which is an unrealistic setting in practice.

Datasets. We use the KeypointNet dataset (You et al., 2020) to evaluate LSTNet on the task of 3D
semantic correspondence. KeypointNet is a large-scale and diverse 3D keypoint dataset based on
ShapeNet models, containing 103,450 keypoints and 8,234 3D models from 16 object categories.
For the task of part segmentation label transfer, we use the ShapeNet part dataset (Chang et al.,
2015). Following CPAE (Cheng et al., 2021), we use the same pre-processed ShapeNet part dataset
provided by (Chen et al., 2019). For all datasets, we follow the original train/validation/test splits
provided by the authors of ShapeNet, and generate all pairs of shapes (given N shapes, NP2 pairs)
in the testing set as our test pairs. Note that we exclude shape pairs that do not share the same
keypoint or part label to avoid interference from non-existing correspondences.

Baseline methods. Throughout the evaluation section, we mainly compare LSTNet against
CPAE (Cheng et al., 2021), the state-of-the-art self-supervised method to establish 3D dense cor-
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Figure 2: Percentage of Correct Keypoints (PCK) for the 12 categories of KeypointNet dataset
under varying thresholds under the I/SO(3) and SO(3)/SO(3) settings. LSTNet consistently
outperforms CPAE on all classes and thresholds on both evaluation settings.

respondence by exploiting an intermediate UV canonical space. When open-sourced pre-trained
models are applicable, we also compare LSTNet with AtlasNetV2 (Deprelle et al., 2019), Fold-
ingNet (Yang et al., 2018) and Liu & Liu (2020). AtlasNetV2 proposes to represent shapes as the
deformation and combination of learnable elementary 3D structures, which can be extended to 3D
correspondence establishment. FoldingNet introduces a folding-based decoder to to ’fold’ a canon-
ical 2D grid into the 3D object surface, where the canonical 2D grid can be applied to identify
cross-shape correspondences. Liu & Liu (2020) formulates an implicit function to predict point-
wise part embedding vectors a part embedding vector for each 3D point, which can also be used to
establish correspondences.

Implementation details. We use VN-DGCNN (Deng et al., 2021) as our SO(3)-equivariant en-
coder, and VN-based multi-layer perception as our SO(3)-equivariant decoder. For a fair compar-
ison, we set the dimension, C, of SO(3)-equivariant global shape descriptor Z ∈ RC×3 as 170
(≈ 512/3) since CPAE (Cheng et al., 2021) use 512-dimensional global shape descriptors. Follow-
ing the training setup of CPAE (Cheng et al., 2021), we use λMSE, λEMD, and λCD as 1000, 1,
and 10, respectively. We supervise LSTNet with self- and cross-reconstruction simultaneously in
a single training stage, unlike previous methods (Liu & Liu, 2020; Cheng et al., 2021) which train
their method with heuristic curriculum learning (e.g., training self-reconstruction only for warm-
up). LSTNet is implemented in PyTorch, and is optimized with the Adam (Kingma & Ba, 2014)
optimizer at a constant learning rate of 1e−3.

4.1 3D SEMANTIC KEYPOINT TRANSFER

Following previous work (Cheng et al., 2021), we compute the distances from the transferred M
keypoints to the ground truth keypoints, and report PCK (Percentage of Correct Keypoints) of our
transferred keypoints, which is computed by:

PCK =
1

M

M∑
m=1

1[∥km − k̂m∥ ≤ τ ], (2)

where τ , km, and k̂ is a distance threshold, m-th ground truth keypoint, and m-th transferred key-
point. Therefore, a transferred keypoint is considered to be correct if its distance from the ground
truth keypoint is within the distance threshold τ . The results on the KeypointNet dataset are il-
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Figure 3: Keypoint transfer results for airplane, motorcycle and guitar categories of Keypoint-
Net. Each row contains a shape pair, each with ground-truth keypoints and the keypoint transfer
results. Note that the input shapes were arbitrarily rotated, but have been aligned for better visibility
of keypoint transfer results. LSTNet shows to transfer the keypoints more accurately.

Setting Method Airplane Cap Chair Guitar Laptop Motorcycle Mug Table Average

I/SO(3)
CPAE (2021) 21.0 38.0 26.0 22.7 34.9 14.7 51.4 35.5 30.5

LSTNet (ours) 52.1 54.5 58.3 75.0 56.5 48.6 75.0 41.3 57.7

SO(3)/SO(3)
CPAE (2021) 17.0 36.6 24.5 39.4 37.4 15.8 51.9 36.7 32.4

LSTNet (ours) 51.2 57.0 55.0 74.9 60.6 48.5 72.2 44.4 58.0

Table 1: Average IoU (%) of part label transfer for eight categories in the ShapeNet part
dataset. We used the eight overlapping categories KeypointNet and ShapeNet datasets for evalua-
tion. LSTNet outperforms CPAE on all classes on both evaluation settings.

lustrated in Figure 2 for varying distance thresholds τ . It can be seen that LSTNet consistently
outperforms CPAE on both settings of I/SO(3) and SO(3)/SO(3) for all classes, by up to 10x on
certain classes and thresholds. This substantiates LSTNet’s superior efficacy at establishing dense
3D correspondences between varying shapes. However, for certain classes such as Bathtub or Table,
the performance is noticeably low, outperforming CPAE only by a tight margin. We speculate this
to be due to the prevalent rotational symmetry of those classes, making it especially challenging
to establish accurate 3D correspondences under arbitrary rotations. The qualitative results of LST-
Net in comparison to baseline methods are presented in Figure 3. It can also be seen that LSTNet
can identify more accurate keypoint correspondences compared to CPAE under arbitrary rotations,
confirming the results presented in Figure 2.

4.2 PART SEGMENTATION LABEL TRANSFER

We evaluate LSTNet on the task of part segmentation label transfer on the ShapeNet part
dataset (Chang et al., 2015), for the overlapping classes of KeypointNet and ShapeNet datasets.
The qualitative results are presented in Table 1, where LSTNet outperforms CPAE on all classes by
a large margin, by up to 3.3 times on the I/SO(3) setting, and 3.1 times on the SO(3)/SO(3) setting.
We also provide the qualitative results of our part segmentation label transfer results in Figure 4.
Attributing to the SO(3)-invariant nature of correspondences established by LSTNet, we are able to
transfer part labels significantly more accurately given randomly rotated shape pairs.
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Figure 4: Qualitative results of part label transfer on the ShapeNet part dataset. The first row of
the target indicates the ground truth instance part labels, while the rest shows the label transfer results
via learned correspondences. Note that the input shapes were arbitrarily rotated, differently for each
target column, but have been aligned for better visibility of part label transfer results. LSTNet shows
to outperform CPAE (Cheng et al., 2021) consistently, showing high resemblance to ground truth
results.

4.3 ABLATION STUDY AND ANALYSES

We perform an ablation study to justify the design choice of LSTNet, and evidence the efficacy of
each component.

Self- and Cross- reconstruction. We train LSTNet in a self-supervised manner via penalizing
errors in self- and cross- reconstruction of input point clouds. We conduct an ablation study on
LSTNet’s reconstruction, providing comparative results for scenarios with and without its use. The
results are illustrated in the first graph of Figure 5. It can be seen that under both the I/SO(3)
and SO(3)/SO(3) settings, incorporating both self- and cross- reconstruction yields the best results.
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Figure 5: Ablation study on losses (the leftmost) and the components of model architecture (the oth-
ers); self-reconstruction loss (SR), cross-reconstruction loss (CR), equivariant decoder (ED), local
shape transform (LST), and local feature (LF). Omitting the equivariant decoder, local shape trans-
forms, or local features defaults to using an SO(3)-decoder, UV coordinates (Cheng et al., 2021), or
global features in encoding, respectively.

Removing self-reconstruction results in a much dramatic drop in performance; we conjecture this is
because without self-reconstruction, the dynamic local shape transform fails to capture the required
locality of its own point cloud in the first place, being unsuitable to establish correspondences.

Encoder outputs and SO(3)-equivariance. LSTNet uses VNNs as the SO(3)-equivariant layers
to facilitate 3D dense correspondence establishment between arbitrarily rotated point cloud pairs,
leveraging local shape transform to map global shape descriptors to local shape descriptors which
encode the pointwise semantics and local geometry. We perform an ablation study to demonstrate
the efficacy of local shape transforms and SO(3)-equivariant and -invariant representations in LST-
Net on the motorcycle class of the KeypointNet dataset. We start our comparison from the architec-
ture of CPAE (Cheng et al., 2021), given that they also employ an encoder-decoder architecture to
self-supervise their network via shape reconstruction. The results are presented in the two rightmost
graphs of Figure 5, showing the evaluation results under the I/SO(3) and SO(3)/SO(3) settings in or-
der. It can be seen that our design choice of using equivariant encoders and decoders show consistent
improvements over using an SO(3)-variant counterpart. Also, using UV coordinates as proposed in
Deng et al. (2021) performs worse compared to our dynamic local shape transform, evidencing the
comparatively better efficacy of transforming each point to their local shape descriptors via our dy-
namic SO(3)-invariant shape transform. While using local features as inputs to the encoder shows
varied trends across I/SO(3) and SO(3)/SO(3) settings, using point-wise local feature as input is a
key component which facilitates the learning of point-wise dynamic local shape transform that plays
a critical role in establishing the 3D correspondences in LSTNet.

5 CONCLUSION

In this work, we introduced LSTNet, a novel self-supervised 3D semantic matching learner to iden-
tify dense SO(3)-invariant 3D correspondences between different shapes of the same semantic cat-
egory even under arbitrary rotations. This robustness of LSTNet is facilitated by our novel use of
SO(3)-equivariant and -invariant representations to formulate point-wise dynamic SO(3)-invariant
local shape transform. Each local shape transform learns to map the global shape descriptor of a
point cloud to a local shape descriptor while preserving SO(3)-equivariance, which can be used to
reconstruct pose-preserved point clouds to finally establish dense SO(3)-invariant correspondences.
The significant performance improvement over existing methods given rotated shapes on tasks of
keypoint transfer and part label transfer broadens the applicability of 3D shape correspondences
to various real-world tasks across computer vision and robotics e.g., AR/VR and texture mapping.
Furthermore, the superior ability of LSTNet to transfer part labels across shape instances can en-
hance the efficiency and accuracy of point-wise annotations of point clouds for various tasks. A
promising direction for future research would be to promote the robustness and accuracy of dense
3D correspondences under real-world point cloud corruptions as well, such as occlusion or noise.
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Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
Guibas. Vector neurons: A general framework for so (3)-equivariant networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 12200–12209, 2021.

Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, and Mathieu
Aubry. Learning elementary structures for 3d shape generation and matching. Advances in Neural
Information Processing Systems, 32, 2019.

Qiang Hao, Rui Cai, Zhiwei Li, Lei Zhang, Yanwei Pang, Feng Wu, and Yong Rui. Efficient 2d-
to-3d correspondence filtering for scalable 3d object recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 899–906, 2013.

Shuaiyi Huang, Luyu Yang, Bo He, Songyang Zhang, Xuming He, and Abhinav Shrivastava. Learn-
ing semantic correspondence with sparse annotations. In European Conference on Computer
Vision, pp. 267–284. Springer, 2022.

Seungwook Kim, Juhong Min, and Minsu Cho. Transformatcher: Match-to-match attention for
semantic correspondence. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8697–8707, 2022.

Seungwook Kim, Chunghyun Park, Yoonwoo Jeong, Jaesik Park, and Minsu Cho. Stable and con-
sistent prediction of 3d characteristic orientation via invariant residual learning. In International
Conference on Machine Learning (ICML), 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Feiran Li, Kent Fujiwara, Fumio Okura, and Yasuyuki Matsushita. A closer look at rotation-invariant
deep point cloud analysis. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 16218–16227, October 2021a.

Xianzhi Li, Ruihui Li, Guangyong Chen, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. A
rotation-invariant framework for deep point cloud analysis. IEEE transactions on visualization
and computer graphics, 28(12):4503–4514, 2021b.

10



Under review as a conference paper at ICLR 2024

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117–2125, 2017.

Feng Liu and Xiaoming Liu. Learning implicit functions for topology-varying dense 3d shape
correspondence. Advances in Neural Information Processing Systems, 33:4823–4834, 2020.

Andrew T Miller, Steffen Knoop, Henrik I Christensen, and Peter K Allen. Automatic grasp plan-
ning using shape primitives. In 2003 IEEE International Conference on Robotics and Automation
(Cat. No. 03CH37422), volume 2, pp. 1824–1829. IEEE, 2003.

Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked au-
toencoders for point cloud self-supervised learning. In European conference on computer vision,
pp. 604–621. Springer, 2022.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017a.

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS), 2017b.

Samuele Salti, Federico Tombari, and Luigi Di Stefano. Shot: Unique signatures of histograms for
surface and texture description. Computer Vision and Image Understanding, 125:251–264, 2014.

Ashutosh Saxena, Justin Driemeyer, Justin Kearns, and Andrew Ng. Robotic grasping of novel
objects. Advances in neural information processing systems, 19, 2006.

Wen Shen, Binbin Zhang, Shikun Huang, Zhihua Wei, and Quanshi Zhang. 3d-rotation-equivariant
quaternion neural networks. In Computer Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XX 16, pp. 531–547. Springer, 2020.

Xiao Sun, Zhouhui Lian, and Jianguo Xiao. Srinet: Learning strictly rotation-invariant representa-
tions for point cloud classification and segmentation. In Proceedings of the 27th ACM interna-
tional conference on multimedia, pp. 980–988, 2019.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS),
2018.

Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique shape context for 3d data descrip-
tion. In Proceedings of the ACM workshop on 3D object retrieval, pp. 57–62, 2010.

Prune Truong, Martin Danelljan, Fisher Yu, and Luc Van Gool. Probabilistic warp consistency for
weakly-supervised semantic correspondences. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8708–8718, 2022.

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. Density-aware chamfer
distance as a comprehensive metric for point cloud completion. arXiv preprint arXiv:2111.12702,
2021.

Chenxi Xiao and Juan Wachs. Triangle-net: Towards robustness in point cloud learning. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 826–835,
2021.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via
deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Yang You, Yujing Lou, Chengkun Li, Zhoujun Cheng, Liangwei Li, Lizhuang Ma, Cewu Lu, and
Weiming Wang. Keypointnet: A large-scale 3d keypoint dataset aggregated from numerous hu-
man annotations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13647–13656, 2020.

11



Under review as a conference paper at ICLR 2024

Wang Zeng, Wanli Ouyang, Ping Luo, Wentao Liu, and Xiaogang Wang. 3d human mesh regression
with dense correspondence. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 7054–7063, 2020.

Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. Point transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule networks.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1009–1018, 2019.

12



Under review as a conference paper at ICLR 2024

A ADDITIONAL RESULTS ON KEYPOINTNET WITH I/I AND I/SO(3)

Figure 6: Correspondence accuracy for 12 categories in the KeypointNet dataset.

In this section, we provide the results of baseline methods (Deprelle et al., 2019; Yang et al., 2018;
Liu & Liu, 2020; Cheng et al., 2021) and ours evaluated on the KeypointNet dataset, but under
the I/I setting used by previous methods, as shown in Figure 6. Note that under the I/I setting, the
input shape pairs are perfectly aligned both at train and test time - which is an unrealistic setting
in practice. For CPAE Cheng et al. (2021) and ours, we also include the results under the I/SO(3)
setting to visualize the performance difference between the two evaluation settings. It can be seen
that while the drop in performance for CPAE from I/I to I/SO(3) setting is drastic, the difference
is negligible in LSTNet, demonstrating the robustness of our SO(3) correspondence establishment
scheme against arbitrary rotations. While LSTNet is not always competitive on all datasets, it is
impractical to expect perfectly aligned shapes in real-world situations; on the realistic setting of
SO(3) evaluation, LSTNet consistently shows the best results.

B ADDITIONAL QUALITATIVE RESULTS.

We provide additional qualitative results which were not included in our manuscript due to space
constraints, as shown in Figures 7, 8, and 9. It can be seen that under especially large intra-class
variation, part segmentation label transfer using LSTNet often yields unsatisfactory results.
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Figure 7: Qualitative results of part label transfer on the motorcycle class of the ShapeNet part
dataset. Note that the input shapes were arbitrarily rotated, differently for each target column, but
have been aligned for better visibility of part label transfer results. LSTNet shows to outperform
CPAE Cheng et al. (2021) consistently, showing high resemblance to ground truth results.
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Figure 8: Qualitative results of part label transfer on the guitar class of the ShapeNet part
dataset. Note that the input shapes were arbitrarily rotated, differently for each target column, but
have been aligned for better visibility of part label transfer results. LSTNet shows to outperform
CPAE Cheng et al. (2021) consistently, showing high resemblance to ground truth results.
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Figure 9: Qualitative results of part label transfer on the airplane class of the ShapeNet part
dataset. Note that the input shapes were arbitrarily rotated, differently for each target column, but
have been aligned for better visibility of part label transfer results. LSTNet shows to outperform
CPAE Cheng et al. (2021) consistently, showing high resemblance to ground truth results.
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