
Appendices629

A630

In this appendix we present the general version of Definition 3 allowing harm and benefit to be631

measured along specific causal paths.632

The path-specific counterfactual harm measures the harm caused by an action A = a compared to a633

default action A = ā when, rather than generating the counterfactual outcome by including all causal634

paths from A = ā to outcome variables Y , we consider only the effect along certain paths g. This is635

somewhat analogous to the path specific causal effect [5], as we are using the g-specific intervention636

A = ā on Y in the counterfactual world relative to reference A = a (the factual action).637

Definition 9 (Path-specific counterfactual harm & benefit). Let G be the DAG associated with model638

M and g be the edge sub-graph of G containing the paths we include in the harm analysis. The path639

specific harm caused by action A = a compared to default action A = ā is given by640

hg(a, x, y;M)=

Z

y⇤

P (Yā,Mg = y
⇤|a, x, y;M)max{0, U(ā, x, y⇤)�U(a, x, y)} (12)

=

Z

y⇤,e

P (Yā = y
⇤|e;Mg)P (e|a, x, y;M)max{0, U(ā, x, y⇤)�U(a, x, y)} (13)

Where Yā,Mg is the counterfactual outcome Y under intervention do(A = ā) in model Mg641

where Mg is formed from M by replacing the causal mechanisms for each variable f
i(pai

, e) !642

f
i
g(pai(g)⇤, e) = f

i(pai(g)⇤, pai(ḡ), e), where Pai(ḡ) is the set of parents of V (i) that are not linked643

to V
(i) in g and pai(ḡ) is the factual state of those variables. E = e is the joint state of the exogenous644

noise variables in M. Likewise, the expected benefit is645

bg(a, x, y;M)=

Z

y⇤

P (Yā,Mg = y
⇤|a, x, y;M)max{0, U(a, x, y)�U(ā, x, y⇤)} (14)

Note that if we following the construction of Mg in [5] we get that Mg is formed from M by i)646

partitioning the parent set for each variable V
(i) in M into Pai = {Pai(g), Pai(ḡ)} where Pai(g)647

are the parents that are linked to V
(i) in g and Pai(ḡ) is the complimentary set, ii) replacing the648

mechanisms for each variable with f
i(pai, ei) ! f

i
g(pai, ei) = f

i(pai(g)⇤, pai(ḡ), ei) where pai(ḡ)649

takes the value of PA
i(ḡ)z in M where A = z is the reference action. However, in (12) and (14)650

we condition on the state of all factual variables and assume no unobserved confounders, and the651

reference action is the factual action state. Therefore the state of PA
i(ḡ)a in M is equal to the factual652

state of these variables, giving our simplified construction for Mg .653

We give examples of computing the path-specific harm in Appendices B-C.654

B655

In this appendix we discuss the omission problem and pre-emption problem [13], and the preventing656

worse problem [15], and show how these can be resolved using our definition of counterfactual harm657

(Definition 3 and its path-specific variant Definition 9).658

Omission Problem: Alice decides not to give Bob a set of golf clubs. Bob would be happy if Alice659

had given him the golf clubs. Therefore, according to the CCA, Alice’s decision not to give Bob the660

clubs causes Bob harm. However, intuitively Alice has not harmed Bob, but merely failed to benefit661

him [13].662

Solution: The omission problem relies on the judgement that Alice does not have a ethical obligation663

to provide Bob with golf clubs, therefore her choice not to do so does not constitute harm to Bob. In664

our definition of harm, this judgement is encoded by Alice not giving Bob clubs by default, i.e. the665

desired harm query is the harm ‘compared to the world where Alice does not give Bob clubs’. To666

compute the harm we construct the model M comprising of two variables; Alice’s action A 2 {0, 1}667
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where A = 0 indicates ‘Bob not given clubs’ and A = 1 ‘Bob given clubs’, and outcome Y 2 {0, 1}668

where Y = 1 indicates ‘Bob has clubs’ and Y = 0 indicates ‘Bob does not have clubs’. By default,669

Alice is not expected to give Bob clubs, which is encoded by choosing the default action A = ā where670

ā = 0. The causal mechanism for Y is y = a, i.e. Bob has clubs iff he is given them. Whatever utility671

function describes Bob’s preferences, the action A = 0 causes no harm in this model (Lemma 3672

Appendix J) as P (Y0 = y
⇤|A = 0, Y = y) = �(y⇤ � y) (factual a and counterfactual ā are identical)673

and for non-zero harm we require y
⇤ 6= y.674

Note there are other reasonable scenarios where Alice’s actions would constitute harm. For example,675

if Alice was a clerk in a golf shop and Bob had pre-paid for a set of golf clubs, we could claim that676

‘the clerk Alice harmed Bob by not giving him golf clubs’. In this case, we would expect Alice to677

give Bob the clubs by default (she has a ethical obligation to do so) and the harm query we want678

(implied by our ethical assumptions about clerks) is where the default action is ā = 1. By choosing679

not to—A = 0—Alice causes harm to Bob. For example, if Bob’s utility is U(y) = y (i.e. 1 for680

clubs, 0 for no clubs), then the harm caused by Alice is P (YA=1 = 1|A = 0, Y = 0) = 1. So we681

can see that the choice of default action is vital for expressing these different normative assumptions.682

Preemption Problem: Alice robs Bob of his golf clubs. A moment later, Eve would have robbed683

bob of his clubs. Therefore, Alice’s action does not cause Bob to be worse off as he would have684

lost his clubs regardless of her actions, and so by the CCA Alice does not harm bob by robbing him.685

However, intuitively Alice harms Bob by robbing him, regardless of what occurs later [13].686

Let A = {1, 0} denote Alice {robbing, not robbing} Bob respectively, and similarly E = {1, 0} for687

Eve. B = {1, 0} denotes Bob {has clubs, does not have clubs}. Assume Bob’s utility is U(b) = b.688

The causal mechanisms are e = 1 � a (Eve always robs Bob if Alice doesn’t) and b = 1 � a _ e689

(Bob has no clubs if either Alice of Eve robs him). See Figure 3 for the causal model depicting these690

variables.
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Figure 3: SCM depicting the preemption problem.

691

Note that while Alice’s action is an actual cause of Bob not having clubs, it is also an actual cause of692

Eve not robbing Bob, which is an event equally as bad as Alice robbing Bob. Intuitively, when we693

claim that Alice robbing Bob was harmful, we are making a claim about the effects of Alice’s actions694

on Bob independently of their effect on Eve’s actions (independent of the effect that her action has695

mediated through Eves action, preventing Eve from robbing Bob), i.e we are concerned with the696

direct harm caused by Alice’s actions on Bob.697

The relevant harm query is the path-specific harm where we compare to the default action where Alice698

does not rob Bob, ā = 0. We want to determine the harm caused by Alice’s action independently of699

its effect on Eve’s action, which we do by blocking the path ḡ = {A ! E}. Applying Definition 9700

amounts to replacing the mechanism for E with f
E(a) ! f

E
g (A = 1) = 0, i.e. E is evaluated for701

the factual value of A. We then compute the harm using the counterfactual default action A = 0,702

giving the counterfactual B(A = 0, E = 0) = 1, which gives a counterfactual utility of 1 compared703

to a factual utility of 0. Therefore Alice directly harmed Bob by robbing him.704

Note we can also choose a different model where we explicitly represent the outcomes of the two705

agents decisions and the temporal order in which they occur (Figure 4). In this case the relevant harm706

query is essentially the same; the path specific harm where we determine the harm caused by Alice’s707

action independently of the effect it has on whether or not Eve robs Bob (i.e. ḡ = {RA ! RE}).708

Preventing worse: We provide two versions of the preventing worse problem [15] which have709

identical causal models but intuitively different harms attributed to Alice’s action.710

Case 1: Bob has $2. The thief Alice is stalking Bob in the marketplace and notices that Eve (a more711

effective thief) is also stalking Bob. Seeing Eve before Eve notices her, Alice decides to make her712
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Figure 4: SCM depicting the preemption problem explicitly representing the temporal asymmetry
between Alice and Eve’s actions effecting Bob.

move first. She steals $1 from Bob. Eve was going to steal $2 from Bob, but is incapable of doing so713

if someone else robs him first (e.g. Bob realizes he’s been robbed and call for the police, making714

further robbery impossible). Seeing that Bob was robbed by Alice she decides not to rob him.715

Case 2: Eve has captured Bob and intends to torture him to death. Alice sees this, and is too far away716

to prevent Eve from doing so. She has a line of sight to Bob (but not Eve) and can shoot him before717

eve has a chance to torture him to death, resulting in a painless death.718

The causal model describing both of these cases is depicted in Figure 5. Let E = {1, 0} denote719

if Eve is present or not, A 2 {1, 0} be Alice’s action (rob, shoot) or not, AB 2 {1, 0} denote the720

outcome following Alice’s action (Bob is robbed of $1 / bob is shot, or not) and let EB 2 {1, 0}721

denote Eves action on Bob (Bob is robbed of $2 / Bob is tortured, or not). Let Y 2 {0, 1, 2} denote722

Bob’s outcome, with 2 being the best (Bob has $2 in Case 1, Bob survives in Case 2), 1 being the723

second worst (Bob has $1 in Case 1, is killed painlessly in Case 2), and 0 the worst (Bob has $0 in724

Case 1, died painfully in Case 2). The causal mechanisms are a = e (e.g. Alice shoots/robs if Eve is725

present), ab = a (Alice’s bullet hits with certainty / successfully robs with certainty), eb = e(1� ab)726

(Eve tortures Bob if she is present and he is not shot / eve robs Bob if she is present and hasn’t been727

robbed already), and y = ab+ 2(1� ab)(1� eb) (Case 1: if Bob is shot he dies quickly, else if Eve728

tortures him he dies slowly, else he lives, Case 2: Bob has $2 if not robbed, $1 if robbed by Alice, $0729

if not robbed by Alice and robbed by Eve).730
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Figure 5: SCM depicting the preventing worse problem.

In Case 1, Alice intuitively harms Bob by robbing him. The argument supporting this is that Alice’s731

robbery caused Bob to lose $1, regardless of the fact that Alice’s action prevented a worse robbery732

by Eve. However, for Case 2 it is argued in [15] that Alice intuitively didn’t harm Bob. While Bob733

died due to Alice shooting him, this action was intended to prevent a worse outcome from occurring734

(Bob being tortured to death), which would have happened with certainty had Alice not shot him.735

However, these two scenarios are described by equivalent causal models—only the variables have736

been re-labeled. However, the ethical assumptions differ between Case 1 and 2.737

From this we conclude that to satisfactorily describe these two situations we need two different harm738

queries. In either case, one of these harm queries is the morally relevant one and the other is not, and739

to do this we use the path-independent and path-specific harms. This ‘path dependence’ of harm has740

been noted in psychology research, where people are more likely to attribute harm to cases where the741

agent is a direct cause of that harm rather than harm occurring as a side-effect of their actions [93].742

Note, this is no different than in causal analysis where in certain problems the casual effect is the743

desired query and in others the path-specific effect is the desired query [5]. For Case 1 we use the744

path-specific harm (Definition 9) to determine the harm caused by Alice robbing Bob independently745
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of what effect it had on Eve’s action. We block the path ḡ = {AB ! EB} and use the default746

action ā = 0. In the counterfactual world, this gives AB = 0 and EB = f
EB(A = 1, E = 1) = 0,747

and therefore Y = 2, and so the direct harm of Alice robbing Bob is 2 - 1 = 1 compared to not748

robbing him. For Case 2, we note that while Alice shooting Bob is arguably intrinsically harmful (as749

is captured by the direct harm of 1 caused by A = 1 if we calculate the path-specific harm as in Case750

1), this is not the morally relevant harm that we are referring to when we say that intuitively Alice did751

not harm Bob by shooting him. The reason Alice fired the shot was precisely because of its mediating752

effect on Y through Eve’s actions (preventing her from torturing him to death). From this we infer753

that the morally relevant harm in this case is the path-independent harm. This we calculate using754

Definition 3 and the default action ā = 0, which in the counterfactual world gives AB = 0, EB = 1,755

Y = 0 and hence U = 0, compared to the factual utility U = 1, giving the desired result that Alice756

did not harm Bob compared to not shooting him. Note that if we favoured the path-independent or757

path-dependent harm a priori this would either fail to detect harm in Case 1 or incorrectly attribute758

harm to Alice in Case 2.759

We argue from these two examples that there is no single causal formula for harm that is correct in all760

scenarios—in some the morally relevant measure of harm is path-specific (e.g. the direct harm), in761

others it is the path-independent harm. This is in contrast to other approaches to define harm with762

a single causal formula that applies to all scenarios, namely [8], and we discuss this approach and763

provide counterexamples to it in Appendix D764

C765

In this Appendix we discuss selecting and interpreting default actions, harmful events, and various766

edge cases not covered in the main body of our paper such as harmful default actions. Note that while767

the CCA (Definition 2) states ‘[the action] had not been performed’, this should not be interpreted as768

‘do nothing’, as doing nothing is often a valid action choice and should be included as an element of769

A. Instead, we argue that statements about harm often implicitly assume some default action, often770

following from ethical or normative assumptions (although this is not always the case). Indeed, in771

Appendix D we show in Example 3 that being able to enforce a unique default action is vital in some772

scenarios to give intuitive results.773

Our definition of harm treats the default action as an integral part of the harm query, just as a reference774

treatment is necessary when defining treatment effects [82]. These default-dependent measures of775

harm can be converted to default-independent measures if desired, e.g. by taking the max over all776

default actions, but in all of the examples we explore this is not desirable. We also note that while777

the examples outlined in the main text assume deterministic default actions, it is trivial to extend our778

definitions to non-deterministic default actions by replacing do(A = ā) in Defintion 3 with a soft779

intervention (e.g. [17]). For examples of how the default action resolves the omission problem, and780

when path-specific and path-independent harm should be used, see Appendix B.781

Default actions: In some cases harm is attributed to an agent by comparing to normative actions782

or policies, and so the default action is often implied by the situation or determined by normative783

assumptions (e.g. Example 1 below). For example, in a case of negligence a doctor’s actions may784

be compared to clinical guidelines, or in a randomized control trial the harm caused by a drug is785

typically determined by comparing to the outcomes that would have occurred if the trial participants786

had instead been given a placebo. This is not always the case however (Example 2). The relevant787

harm query can also compare to actions that the agent could never take (Example 3). While some788

have argued against comparative accounts on the grounds that it is not always clear which comparison789

is needed [35], this problem arises due to the ambiguity of statements about harm rather than due to a790

problem with its formal definition (note, we do not consider scenarios where the agent’s action alters791

the user’s utility function). Clearly, there is not a single universal comparison or default action that is792

suitable for all situations (this assumption leads to the omission problem, described in Appendix B),793

and the ability to explicitly choose the comparison is a feature rather than a fault with the CCA.794

Example 1: The claim ‘the doctor harmed the patient by not treating them’ and ‘the bystander with no795

medical training failed to benefit the patient by not treating them’ both tacitly assume different default796

actions. In the first, the doctor has an ethical obligation to treat the patient (e.g. the Hippocratic oath),797

and likewise the patient can expect to be treated by the doctor. Hence if they are not treated, harm798

can occur. In the second, the bystander may have no ethical obligation to help the patient (depending799
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on our ethical assumptions) and so the intuitive choice of default action is to not treat the patient. In800

both of these examples, the ‘correct’ default action depends on the situation and in these examples is801

informed by our assumptions as to the ethical obligations of the agent.802

Example 2: Consider a drug that a doctor is expected to provide to a patient which rarely causes803

severe side effects. For a given patient, those side effects occur, and clearly the drug has harmed804

the patient. Perhaps the most obvious harm measure to capture this would be the total harm caused805

by the treatment compared to the default action where the doctor did not treat the patient at all, or806

provided them with a different treatment. Each of these is a different but valid harm query, and the807

correct one will depend on the situation. For example if we are measuring the harm due to the doctors808

negligence, we should compare to the normative default action alone (and should find zero harm809

due to negligence as the doctor followed the correct protocol), whereas if we are trying to establish810

harm caused by the drug to this patient due to the side effects it caused, we should use the default ‘no811

treatment’.812

Example 3: How can we deal with cases where every action available to the agent is harmful? In813

this case harm is still measured compared to some default action, even if the action is idealized and814

not actually available to the agent. For example, if a doctor is forced at gun point to choose between815

administering two poisons that will harm the patient, we can still measure this harm compared to the816

counterfactual action where the doctor does not treat the patient, even if this action is not available to817

the doctor.818

Harmful events: Finally, we note that while we focus on harmful actions due to our focus on training819

ethical artificial agents, our results extend trivially to harmful events as actions are formally equivalent820

to events in the causal models we consider, and instead of default actions we can use default events.821

D Comment on Beckers et. al.822

In this appendix we discuss an alternative proposal for qualitatively defining harm [8], which was823

developed following the presentation of our preliminary results. We describe this definition (which824

we refer to as BCH) and three examples where BCH leads to counter-intuitive results (intuitively825

harmful actions being identified as not harmful or vice versa). First we present a simplified version of826

the BCH definition of harm where we restrict our attention to attributing harm to single actions.827

Definition 10. A = a rather than A = a
0 causes Y = y rather than Y = y

0 in the model M for828

exogenous noise state E = e iff;829

1. A(e) = a and Y (e) = y830

2. The exists a set of environment variables W with factual state W (e) = w such that831

YA=a0,W=w(e) = y
0832

3. A = a is minimal; There is no strict subset of the set of variables Ã ⇢ A such that for833

Ã = ã we can satisfy conditions 1. and 2.834

In the following we will focus on scenarios where we can consider single action variables alone and835

so we can ignore condition 3 in Definition 10.836

Definition 11 (BCH harm). A = a harms the user in model M and exogenous noise state E = e, if837

there exists an outcome Y = y an action A = a
0 such that,838

H1 U(y) < d where d is the default utility839

H2 9 Y = y
0 s.t. A = a rather than A = a

0 causes Y = y rather than Y = y
0 and840

U(y0) > U(y).841

H3 U(y)  U(y00) for the unique y
00 such that Ya0(e) = y

00842

If we restrict to deterministic models (i.e. P (E = e) deterministic), attempt to only determine if843

harm is non-zero rather than quantify how much harm is caused (i.e. map all non-zero harm values to844

1), and assume that the users utility function is independent of the agents action A and the context X845

given the outcome Y , then it is possible to directly compare our harm measure to that proposed in846

BCH. First, we present three problematic cases where the BCH gives counter-intuitive results. We847

then attempt to diagnose why our approaches give different answers in these cases.848
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Example 1: two thieves. (repeat of Case 1 in Appendix B). Bob has $2. The thief Alice is stalking849

Bob in the marketplace and notices that Eve (a more effective thief) is also stalking Bob. Seeing Eve850

before Eve notices her, Alice decides to make her move first. She steals $1 from Bob. Eve was going851

to steal $2 from Bob, but is incapable of doing so if someone else robs him first (e.g. Bob realizes852

he’s been robbed and call for the police, making further robbery impossible). Seeing that Bob was853

robbed by Alice she decides not to rob him. The causal model for this scenario is described below,854

AB EB

EA

Y

U

Figure 6: SCM depicting the two robbers problem. E 2 {1, 0} denote Eve {present, not present},
A = {1, 0} denotes Alice decides to {rob, not rob} Bob, AB 2 {1, 0} denotes Bob is{robbed, not
robbed} by Alice, EB = {1, 0} Eve attempts to {rob, not rob} Bob. Y denotes how much money
Bob has finally. Causal mechanisms a = e (Alice robs if Eve is present), ab = a (Alice always
succeeds in robbing Bob), eb = e(1� ab) (Eve robs Bob if she is present and he hasn’t been robbed
already), and y = ab+ 2(1� ab)(1� eb) (if Bob is not robbed at all he has $2, if Alice Robs him he
has $1, and if Eve robs him and Alice does not he has $0).

Intuitively Alice harmed Bob by robbing him, but by Definition 11 she did not. The only available855

counterfactual action for Alice is ā = 0. This counterfactual action (with no contingencies) leads856

to the counterfactual outcome YA=0(e) = 0, i.e. if Alice doesn’t rob Bob then Eve will, resulting857

in a lower utility U(Y = 1) > U(Y = 0). Therefore H3 is not satisfied and Alice did not harm858

Bob by robbing him. We discuss this problem further in Appendix B and argue that the morally859

relevant harm query in this scenario is the direct (path-specific) harm of Alice robbing Bob compared860

to not robbing him (ā = 0), independent of the benefit caused by preventing Eve from robbing him861

(blocking ḡ = {AB ! EB}). Applying Definition 9 it is simple to check the path-specific harm862

described is 1.863

Example 2: robber & Samaritan An intuitive property of harm is that the harms caused by one864

agent’s actions should not by default be cancelled out by the another agents beneficial actions—e.g.865

stabbing someone is harmful, regardless of whether or not a doctor will treat the wound in response.866

This ability to disentangle agent A’s harm from agent B’s benefit is vital for determining harm867

in complex scenarios involving multiple actions or events. For example: Bob has $1 and Alice868

steals it. Seeing this, Eve feels bad for Bob and later gifts Bob a dollar, restoring him to his initial869

funds. Intuitively we would say Alice harmed Bob and Eve benefited him, or at least it would be870

counter-intuitive to say that Alice robbing Bob was not harmful because at a later time Bob’s finances871

were restored by a second agent (Eve). The causal model describing this situation is depicted below,872

AR EG
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Figure 7: SCM depicting the preventing worse problem. Alice {robs, doesn’t rob} Bob (AR) is
denoted AR = {1, 0}. Eve gives (EG) Bob money if she sees he has been robbed (eg = ar). Bobs
money is his initial money, minus any theft and adding any gifts y = 1� ar + eg. Let U(y) = y.

The intuitive default utility for this scenario is d = 1 (Bob expects to have $1), but as the factual873

outcome is Y = 1 then H1 cannot be satisfied. To satisfy H1 we would need to choose a default874

utility d > 1 which amounts to Bob having by default more money than he would have regardless875

of Alice robbing him (e.g. assuming Bob can expect to become richer following a robbery). We876

therefore either recover a counter-intuitive answer (Alice did not harm Bob by robbing him), or have877
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to use a counter-intuitive default utility that is hard to justify beyond choosing whichever value gives878

the desired answer.879

Our approach is to measure the direct harm caused by A = 1 (Alice robs) compared to ā = 0 (Alice880

doesn’t rob), blocking the path ḡ = {AS ! EG}. This disentangles that harm caused by Alice881

robbing Bob from the benefit due to this action causing Eve to help Bob. It is simple to check that882

this results in a harm of 1. As described in Appendix B, this is the intutive choice of harm query883

as we are interested in the harm caused directly to Bob by Alice robbing him, independent of the884

indirect effect of causing Eve to benefit him. In other (causally equivalent) scenarios described in885

Appendix B, the intuitive harm query we desire if the total (path-independent) harm, and as with886

default actions this has to be implied from the context.887

Example 3: omission problem. In this example we present an extension of the omission problem888

that is violated by the BCH definition of harm. The Phoenicians are a moderately wealthy people,889

collectively owning $2. The Romans can decide to gift them an extra $2 or do nothing, and they have890

no moral obligation to give them anything. Unbeknownst to the Romans, the Carthaginians decide891

that if the Romans don’t give the Phoenicians anything they will attack them, stealing all of their892

money. But if the Romans do gift the Phoenicians $2, the Phoenicians will become too powerful and893

the Carthaginians wont attack. The Phoenician’s utility is equal to how much money they have.894

The Romans decide not to gift the Phoenicians anything, and they are attacked by the Carthaginians895

and have all their money stolen. Intuitively, the Romans didn’t harm the Phoenicians (any harm was896

caused by the Carthaginians)—instead the Romans failed to benefit them. However, by the BCH897

account the Roman’s harmed the Phoenicians.898

To see this, first note that if d  0 then the Carthaginians actions do not constitute harm, as the899

factual utility is equal to the default and H1 cannot be satisfied. This would be a counter-intuitive900

result, so we assume that d > 0. The Phoenicians end up with no money, so H1 is satisfied as901

U(y) < d. H2 is also satisfied by a simple but-for counterfactual because if the Romans had given902

the Phoenicians money, the Carthaginians wouldn’t have attacked and the Phoenicians would have $4903

which is more than their factual $0. Finally, H3 is satisfied by the same argument as H2. Therefore904

the Romans harmed the Phoenicians. Applying our methods, it is sufficient to note that the implied905

default action should be A = 0 (By default we do not expect the Romans to give money to the906

Phoenicians, reflecting the ethical assumptions implicit in the ‘failure to benefit’ assertion) and this907

gives a counterfactual harm of zero because the factual and counterfactual actions are identical.908

Analysis: Why do these issues arise? Firstly, the BCH account of harm proposes a single casual909

formula for harm that applies to all scenarios, allowing for any counterfactual action or contingency910

to establish harm much as is done in actual causality [34]. If H3 was not included, this could result in911

harm being attributed in cases of ‘preventing worse’ (as pointed out in [8] and described in Appendix912

B), but H3 is included to fix this by requiring that benefit does not occur in the case where no913

contingency is taken, which in these examples is the same as requiring that an action cannot be914

harmful if its total (path-independent) benefit is non-zero. But this is precisely the case in Example915

1, where Alice prevents a worse outcome but, intuitively, we would want to ascribe harm to her916

actions. By separating direct and indirect harm, we can see that her actions were indirectly beneficial917

(she prevented a worse robbery), but directly harmful, and in this scenario the morally relevant (i.e.918

‘intutive’) measure of harm is the direct harm. In the equivalent Case 2 example in Appendix B, the919

harm query we intuitively want is the total harm rather than the path-specific harm. This points to the920

conclusion that a one-size-fits-all harm query is not tenable, given that the intuitive measures of harm921

we desire are sometimes path-dependent and sometimes path-independent.922

Secondly, Example 2 suggests that approaches using default utilities are not tenable, because they923

preclude the possibility of the user being harmed by any action or event that occurred previously924

if, in the end, the user obtains the default utility. Clearly this is not the case in general—users can925

achieve the expected or default outcome (e.g. leaving the market with as much money as they came926

in with) and still have been harmed. The BCH therefore cannot robustly detect harm in cases where927

both benefit and harm occur unless we choose large values of d (essentially removing d from the928

analysis). But it is not clear how these default utility values can be justified beyond fixing a problem929

that they cause—seeing as these large values of d do not correspond to any utility the user can expect930

to have (e.g. in Example 2 it would require that the user can expect to be richer than they initially931

were following a robbery).932
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Thirdly, in Example 3 we see that by allowing for any default action the BCH account can end up933

misattributing harm in cases where the agent has no ethical duty to act (or by extension, has a duty934

to perform specific actions). This is because the BCH allows the counterfactual action to take any935

value—in this case, the Romans gifting the Phoenicians money. This can be avoided by by not936

attributing harm to the Romans using counterfactual actions that they could never be expected to take937

from an ethical standpoint (i.e. using default actions). Just by allowing the Romans to (in theory)938

give any positive amount of money, we could even make the harm they cause by not giving the939

Phoenicians anything arbitrarily large. In conclusion, by evaluating over all possible actions that the940

agent could take the BCH doesn’t allow normative assumptions about actions (e.g. to do with the941

ethical responsibility to act or not act) to be included in the harm query.942

E943

In this Appendix we prove Theorem 1. Noting that max{0, U(a, x, y) � U(ā, x, y)} �944

max{0, U(ā, x, y⇤)� U(a, x, y)} = U(a, x, y)� U(ā, x, y⇤), subtracting the expected harm from945

the expected benefit (Def 3) gives,946

E[b|a, x;M]� E[h|a, x;M] (15)

=

Z

y,y⇤

P (y, Yā = y
⇤|a, x;M)(U(a, x, y)�U(ā, x, y⇤)) (16)

=

Z

y

P (y|a, x)U(a, x, y)�
Z

y⇤

P (Yā = y
⇤|x)U(ā, x, y⇤) (17)

= E[U |a, x]� E[U |ā, x] (18)

F947

In this Appendix we derive the SCM model for the treatment decision task in examples 1 and 2, and948

calculate the average treatment effect and counterfactual harm.949

Patients who receive the default ‘no treatment’ T = 0 have a 50% survival rate. T = 1 has a 60%950

chance of curing a patient, and a 40% chance of having no effect, with the disease progressing as if951

T = 0, whereas T = 2 has a 80% chance of curing a patient as a 20% chance of killing them, due to952

some unforeseeable allergic reaction to the treatment.953

Next we evaluate this expression for our two treatment by constructing an SCM for the decision task.954

The patient’s response to treatment is described by three independent latent factors (for example955

genetic factors) that we model as exogenous variables. Firstly, half of the patients exhibit a robustness956

to the disease which means they will recover if not treated, which we encode as E1 2 {0, 1} where957

e
1 = 1 implies robustness with P (e1 = 1) = 0.5. Secondly, the patients may exhibit a resistance to958

treatment 1 indicated by variable E2, with e
2 = 1 implying resistance with P (e2 = 1) = 0.4. Finally,959

the patients can be allergic to treatment 2, indicated by variable E3 with e
3 = 1 and P (e3 = 1) = 0.2.960

Given knowledge of these three factors the response of any patient is fully determined, and so we961

define the exogenous noise variable as EY = E
1 ⇥ E

2 ⇥ E
3 with P (eY ) = P (e1)P (e2)P (e3).962

Next we characterise the mechanism y = f(t, eY ) = f(t, e1, e2, e3) where f(0, eY ) = [e1 = 1]963

(untreated patients recover if they are robust), f(1, eY ) = [e1 = 1] _ [e2 = 0] (patients with T = 1964

recover if they are robust or non-resistant) and f(2, eY ) = [e3 = 0] (patients with T = 2 recover if965

they are non-allergic), where [X = x] are Iverson brackets which return 1 if X = x and 0 otherwise,966

and _ is the Boolean OR.967

The recovery rate for T = 1 and T = 2 can be calculated with (1) to give P (Y1 = 1) = P (e1 =968

1_e
2 = 0) = 1�P (e1 = 0)P (e2 = 1) = 0.8, and likewise P (Y2 = 1) = P (e3 = 0) = 0.8. Hence969

the two treatments have identical outcome statistics (recovery/mortality rates), and all observational970

and interventional statistical measures are identical, such as risk, expected utility and the effect of971

treatment on the treated. Note as there are no unobserved confounders the recovery rate for action972

A = a is equal to E[Ya].973
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We compute the counterfactual expected harm by evaluating (4), noting that Y ⇤
0 (e) = 1 if e1 = 1,974

Y
⇤
1 (e) = 0 if e1 = 0 and e

2 = 1, and Y
⇤
2 (e) = 0 if e3 = 1. This gives P (Y1 = 0, Y ⇤

0 = 1) = 0,975

i.e. there are no values of eY that satisfy both Y1(e) = 0 and Y0(e) = 1, and therefore do(T1 = 1)976

causes zero harm. However, P (Y2 = 0, Y ⇤
0 = 1) = P (e1 = 1)P (e3 = 1) = 0.1, and so do(T2 = 2)977

causes non-zero harm. This is due to the existence of allergic patients who are also robust, and will978

die if treated with T = 2 but would have lived had T = 0.979

980

G981

In this Appendix we derive the policies of agents 1-3 in Example 3. We note that outcome Y is982

described by a heteroskedastic additive noise model with the default action ā (no action) corresponding983

to A = 1,K = 1. The expected harm is given by Theorem 5 with �(ā) = 100, �(A = 2) = 100,984

�(A = 3) = 0 and �(A = 1,K) = 100K. E[U |ā] = 100 E[U |A = 2] = 110, E[U |A = 3] = 80985

and E[U |A = 1] = 100K, where we have used Var(KY ) = K
2Var(Y ) and Var(Y + 10) = Var(Y )986

Agent 1 takes action 1 and the maximum value K = 20 as this extremizes E[U |a].987

Agent 2 chooses a = argmax
a

{E[Y |a]� Var(Y |a)} which for each action is given by,988

E[Y |A = 1]� �Var(Y |A = 1) = 100K � 1002K2
� (19)

E[Y |A = 2]� �Var(Y |A = 2) = 110� 1002� (20)
E[Y |A = 3]� �Var(Y |A = 3) = 80 (21)

For action 1 the optimal K = 1/200�, which gives E[Y |A = 1] � Var(Y |A = 1) = 1/4�. Note989

that 1/4� > 110� 1002� for � < 0.0032, which 80 > 1/4� for � > 0.003125. Therefore there is990

no value of � for which agent 2 selects action 2, choosing action 1 for � < 0.003125 and action 3991

otherwise.992

For agent 3 applying Theorem 5 gives,993

E[Y |A = 1]� �E[h|A = 1,K] = 100K � �


|100(K � 1)|p

2⇡
e
� 1

2 +
100(K � 1)

2

✓
erf

✓
sign(K � 1)p

2

◆
� 1

◆�

(22)

=

⇢
100K � 8.332(K � 1)�, K � 1
100K � 59.937(1�K)�, K < 1

(23)

E[Y |A = 2]� �E[h|A = 2] = 110 (24)

E[Y |A = 3]� �E[h|A = 3] = 80� �


100p
2⇡

e
� 202

2⇥1002 +
20

2

✓
erf

✓
20p

2⇥ 100

◆
� 1

◆�
(25)

Clearly, the agent will never take action 3 as its expected HPU is smaller than that for action 2 for994

all �. For action 1, for K < 1 the expected HPU is also smaller that that for action 2, for all �. For995

action 1 with K > 1, if � < 12.002 the optimal K = 20, otherwise it is 0. As a result, for � < 11.93996

the agent chooses action 1 with K = 20, and otherwise chooses action 2.997

H998

In this Appendix we derive an expression for the expected counterfactual harm in generalized additive999

models. To calculate the expected counterfactual harm we derive a solution for a broad class of1000

SCMs, heteroskedastic additive noise models, which includes our GAM (11),1001

Definition 12 (Heteroskedastic additive noise models). For Y , Pa(Y ) = A [ X , the mechanism1002

y = fY (a, x) is a heteroskedastic additive noise model if Y is normally distributed with a mean and1003

variance that are functions of a, x,1004

y = µ(a, x) + e
Y
�(a, x) , e

Y ⇠ N (0, 1) (26)
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In Appendix I we show that the dose response model (11) can be parameterised as a heteroskedastic1005

additive noise model and calculate the expected counterfactual harm using the following theorem,1006

Theorem 5 (Expected harm for heteroskedastic additive noise model). For Y = fY (a, x, eY ) where1007

fY is a heteroskedastic additive noise model (Definition 12) and default action A = ā, the expected1008

harm is1009

E[h|a, x] = |��|p
2⇡

e
� �U2

2��2 +
�U

2

✓
erf

✓
�Up
2|��|

◆
� 1

◆
(27)

where erf(·) is the error function, �U = E[U |a, x]� E[U |ā, x], �� = �(a, x)� �(ā, x).1010

Proof. Note that if eY ⇠ N (µ, V ) we can replace eY ! e
0Y = e

Y
/
p
V � µ and absorb these terms1011

into f(a, x) and �(a, x). Hence we need only consider zero-mean univariate noise. In the following1012

we use e
Y = " ⇠ N (0, 1) to denote the fact the the exogenous noise term is univariate normally1013

distributed. We also use the fact that there are no unobserved confounders between A and Y to give1014

P (y|a, x) = P (ya|x). Calculating the expected counterfactual harm using gives1015

E[h|a, x] =
Z

y

dy

Z

y⇤

dy
⇤
P (y, Yā = y

⇤
, |a, x)max (0, U(ā, x, y⇤)� U(a, x, y)) (28)

=

Z

y

dy

Z

y⇤

dy
⇤
P (Ya = y, Yā = y

⇤|x)max (0, U(ā, x, y⇤)� U(a, x, y)) (29)

=

Z

"

P (")d"

Z

y

dy

Z

y⇤

dy
⇤
P (Ya = y, Yā = y

⇤|", a, x)max (0, U(ā, x, y⇤)� U(a, x, y))

(30)

=

Z

"

P (")d"

Z

y

dy

Z

y⇤

dy
⇤
P (Ya = y|", a, x)P (Yā = y

⇤
, |", a, x)max (0, U(ā, x, y⇤)� U(a, x, y))

(31)

Substituting in U(a, x, y) = y and P (y|", a, x) = �(y � f(a, x)� "�(a, x)) gives,1016

E[h|a, x] =
Z

d"P (")max {0, f(ā, x)� f(a, x) + " (�(ā, x)� �(a, x))} (32)

=

Z
d"P (")max (0,� (E[U |a, x]� E[U |ā, x])� " (�(a, x)� �(ā, x))) (33)

where we have used the fact that E[U |a, x] =
R
d"P (") (f(a, x) + "�(a, x)) = f(a, x). For ease1017

of notation we use �U = E[U |a, x] � E[U |ā, x], �� = �(a, x) � �(ā, x). Next, we remove the1018

max() by incorporating it into the bounds for the integral. If �U > 0 and �� > 0, this is equivalent1019

to " < ��U/�� and hence,1020

E[h|a, x] =
Z

"<��U/��

d"P (") (��U � "��) (34)

= ��U

��U/��Z

�1

P (")d"���

��U/��Z

�1

"P (")d" (35)

(36)

Using the standard Gaussian integrals1021
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Z b

a
P (")d" =

1

2


erf(

bp
2
)� erf(

ap
2
)

�
(37)

Z b

a
"P (")d" = P (a)� P (b) (38)

where P (") = e
�"2/2

/
p
2⇡ and erf(z) is the error function, we recover1022

E[h|a, x] = ��U

2


erf(

��Up
2��

)� erf(�1)

�
��� [P (�1)� P (��U/��)] (39)

=
�U

2


erf

✓
�Up
2��

◆
� 1

�
+

��p
2⇡

e
� �U2

2��2 (40)

where we have used erf(�z) = �erf(z) and P (�z) = P (z). Similarly, if �U > 0, �� < 0 then1023

the max() in (33) can be replaced with a definite intergral over " > �U/�� giving,1024

E[h|a, x] =
Z

">�U/��

d"P (") (��U � "��) (41)

= ��U

1Z

��U/��

P (")d"���

1Z

��U/��

"P (")d" (42)

= ��U

2


erf(1)� erf(

��Up
2��

)

�
���


P (

��Up
2��

)� P (1)

�
(43)

=
�U

2


erf

✓
�Up
2|��|

◆
� 1

�
+

|��|p
2⇡

e
� �U2

2��2 (44)

Next, if �U < 0 and �� > 0 we recover the same integral as (35), and if �U < 0 and �� < 0 we1025

recover the same integral as (41). Hence the general solution for all �� is (44).1026

1027

I1028

In this Appendix we present the GAM dose response model including parameter values, and show1029

that it corresponds to a heteroskedastic additive noise model and calculate the expected harm for a1030

given dose.1031

We follow the set-up described in [18], where outcome Y denotes the level of improvement in the1032

symptoms of schizoaffective patients following treatment and compared to pre-treatment levels,1033

measured in terms of the Positive and Negative Syndrome Scale (PANSS) [44]. The response of Y1034

w.r.t dose A (Aripiprazole mg/day) is determined using a generalized additive model fit with a cubic1035

splines regression and random effects,1036

y = ✓1a+ ✓2f(a) + "0 (45)

where the parameters ✓i are random variables ✓i ⇠ N (✓̂i, Vi), "0 ⇠ N (0, V0) is the sample noise,1037

and the spline function f(a) is given by,1038

f(a) =
(a� k1)3+ � k3�k1

k3�k2
(a� k2)3+ + k2�k1

k3�k2
(a� k3)3+

(k3 � k1)2
(46)
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where k1, k2, k3 are the knots at a = 0, 10 and 30 respectively, with (u)+ = max{0, u}. In the1039

following we assume for simplicity that ✓1 and ✓2 are independent. This hierarchical model can be1040

expressed as an SCM with the mechanism for Y given by,1041

y =
⇣
✓̂1a+ ✓̂2f(a)

⌘
+ "1a+ "2f(a) + "0 (47)

where "i ⇠ N(0, Vi). We will now reparameterise this as an equivalent SCM that is an additive1042

heteroskedastic noise model. Using the identifies Z = kY , Y ⇠ N (0, 1) =) Z ⇠ N (0, k2),1043

and Z = X + Y , X ⇠ N (0, VX), Y ⇠ N (0, VY ) =) Z ⇠ N (0, VX + VY ) (where VX is the1044

variance of X and likewise for VY , Y ), we can replace "1a+ "2f(a) ! "g(a) where " ⇠ N (0, 1)1045

and g(a) =
p
a2V1 + f(a)2V2. We can therefore reparameterise the mechanism for Y as1046

y = E[U |a] + g(a)"+ "0 (48)
where we have used U(a, x, y) = U(a, y) = y and the fact that ", "0 are mean zero to give1047

E[U |a] = ✓1a+ ✓2f(a). Finally, we note that the sample noise term "0 cancels in the expression for1048

the harm,1049

E[h|a] =
Z

y

dy

Z

y⇤

dy
⇤
P (y, Yā = y

⇤
, |a)max (0, U(ā, y⇤)� U(a, y)) (49)

=

Z

y

dy

Z

y⇤

dy
⇤
P (Ya = y, Yā = y

⇤)max (0, U(ā, y⇤)� U(a, y)) (50)

=

Z

"

P (")d"

Z

"0

P ("0)d"0

Z

y

dy

Z

y

dy
⇤
P (Ya = y, Yā = y

⇤|", "0, a)max (0, U(ā, y⇤ā)� U(a, y))

(51)
1050

=

Z

"

P (")d"

Z

"0

P ("0)d"0

Z

y

dy

Z

y⇤

dy
⇤
P (y, |", "0, a)P (Yā = y

⇤
, |", "0)max (0, U(ā, y⇤)� U(a, y))

(52)

Substituting in P (Ya = y|", "0) = �(y � f(a) + g(a)"+ "0) gives,1051

E[h|a] =
Z

"

P (")d"

Z

"0

P ("0)d"0 max (0, f(ā) + g(ā)"+ "0 � f(a)� g(a)"� "0) (53)

=

Z

"

P (")d"

Z

"0

P ("0)d"0 max (0, f(ā)� f(a) + (g(ā)� g(a))") (54)

=

Z

"

P (")d"max (0, f(ā)� f(a) + (g(ā)� g(a))") (55)

Therefore we can ignore the sample noise term when calculating the expected harm, instead calcu-1052

lating the expected harm for the model Y = f(a) + g(a)". This is a heteroskedastic additive noise1053

model, and therefore by Theorem 5 the expected harm is,1054

E[h|a] = �U

2


erf

✓
�Up
2��

◆
� 1

�
+

��p
2⇡

e
��U2/2��2

(56)

where �U = E[U |a]� E[U |ā], �� = g(a)� g(ā) and g(a) =
p
a2V1 + f(a)2V21055

The resulting curves prefented in Figure 2 are calculated using (56) and the parameter values1056

taken from [18] (Table 1), which are fitted in a meta-analysis of the dose-responses reported in1057

[19, 43, 59, 72, 91].1058
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Table 1: Parameters for the hierarchical generalized additive dose-response model reported in [18]
Parameter Value
✓̂1 0.937
✓̂2 �1.156
V1 0.03
V2 0.10

J1059

In this Appendix we present proofs of Theorems 2, 3 and 4. First, we prove Theorem 2.1060

1061

Theorem 2: For any utility functions U , environment M and default action A = ā the expected1062

HPU is never a harmful objective for � > 0.1063

Proof. Let amax = argmaxa{E[U |a, x] ��E[h|a, x;M]}. If 9 a
0 6= amax such that E[U |a0, x] �1064

E[U |amax, x] and E[h|a0, x;M] < E[h|amax, x;M], then E[U |amax, x] + �E[h|amax, x;M] <1065

E[U |a0, x] + �E[h|a0, x;M] 8 � > 0 and so amax 6= argmaxa{E[U |a, x]� �E[h|a, x;M]}.1066

Next, we prove theorems 3 and 4 by example, constructing distributional shifts that reveal if an1067

objective function is harmful. To do this we make use of a specific family of structual causal1068

models—counterfactually independent models.1069

Definition 13 (counterfactual independence (CFI)). Y is counterfactually independent in with respect1070

to A in M if,1071

P (y⇤a⇤ , ya|x) =
⇢
P (ya|x)�(ya � y

⇤
a⇤) a = a

⇤

P (y⇤a⇤ |x)P (ya|x) otherwise
(57)

Counterfactually independent models (CFI models) are those for which the outcome Ya is independent1072

to any counterfactual outcome Ya0 . Next we show that there is always a CFI model that can induce1073

any factual outcome statistics.1074

Lemma 1. For any desired outcome distribution P (y|a, x) there is a choice of exogenous noise1075

distribution P (eY ) and causal mechanism fY (a, x, eY ) such that Y is counterfactually independent1076

with respect to A1077

Proof. Consider the causal mechanism y = fY (a, x, eY ) for some fixed X = x, and exogenous1078

noise distribution P (EY = e
Y ). Let the noise term by described by the random field E

Y =1079

{EY (a, x) : a 2 A, x 2 X}, with P (EY = e
y) = ⇥a2A,x2XP (Ey(a, x) = e

y(a, x)) and with1080

dom(EY (a, x)) = dom(Y ) 8 A = a,X = x. I.e. we choose the noise distribution to be joint state1081

over mutually independent noise variables, one for every action A = a and context X = x, and1082

where each of these variables has the same domain as Y . Next, we choose the causal mechanism,1083

fY (a, x, e
Y ) = e

Y (a, x) (58)

i.e. the value of Y for action A = a and context X = x is the state of the independent noise variable1084

E
Y (a, x). By construction this is a valid SCM, and we note that the factual distributions (calculated1085

with (4)) are given simply by,1086

P (y|a, x) = P (EY (a, x) = y) (59)

Likewise applying our choice of mechanism and noise distribution to (4) gives (for a 6= a
0) the1087

counterfactual distribution,1088

P (Ya = y, Ya0 = y
0|x) = P (EY (a, x) = y)P (EY (a0, x) = y

0) (60)
= P (Ya = y|x)P (Ya0 = y

0|x) (61)
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and likewise gives P (ya|x)�(ya � y
0
a0) for a = a

0. Finally, we note that we can choose any1089

P (ya|x) = P (EY (a, x) = y), hence there is a CFI model that induces any factual outcome1090

distribution we desire.1091

Next, we show that in counterfactually independent models there are outcome distributional shifts1092

that only change the expected harm of individual actions, without changing any other factual or1093

counterfactual statistics.1094

Lemma 2. For M and (context-dependent) default action A = ā(x), if U is outcome dependent for1095

the default action ā(x) and some other action a 6= ā(x), then there are three outcome distributionally1096

shifted environments M0, M+ and M� such that;1097

1. E[h|a, x;M�] < E[h|a, x;M0] < E[h|a, x;M+]1098

2. E[h|b, x;M�] = E[h|b, x;M0] = E[h|b, x;M+] 8 b 6= a1099

3. P (y|a0, x;M0) = P (y|a0, x;M+) = P (y|a0, x;M�) 8 a
0 2 A, including a, ā(x)1100

Proof. In the following we suppress the notation ā(x) = ā. To construct the environment M0 we1101

restrict to a binary outcome distribution for each action such that P (ya|x) is completely concentrated1102

on the highest and lowest utility outcomes,1103

Ya = 1 =) Ya = argmax
y

U(a, x, y) (62)

Ya = 0 =) Ya = argmin
y

U(a, x, y) (63)

1 = P (Ya = 1|x;M0) + P (Ya = 0|x;M0) (64)

Note that we abuse notation as the variables Ya = 1 and Yb = 1 will not be in the same state1104

in general, and the states 1, 0 denote the max/min utility states under any given action, rather1105

than a fixed state of Y . By Lemma 1 we can choose Ya to be counterfactually independent with1106

respect to A. Recalling our parameterization of CFI models in Lemma 1, with noise distribuiton1107

P (EY = e
Y ) = ⇥a2A,x2XP (EY (a, x) = e

Y (a, x)), dom(EY (a, x)) = dom(Y ), and causal1108

mechanism fY (a, x, eY ) = e
Y (a, x), therefore E

Y (a, x) 2 {0, 1} 8 a, x. The expected harm for1109

action do(A = a) is,1110

E[h|a, x;M0] =
1X

ya=0

1X

yā=0

P (yā|x)P (ya|x)max {0, U(ā, x, yā)� U(a, x, ya)} (65)

where we have used the fact that P (y⇤ā, y|a, x) = P (y⇤ā, ya|x) and used counterfactual independence.1111

U(a, x, 0) < U(ā, x, 1) and so if we choose non-deterministic outcome distributions for P (ya|x)1112

and P (yā|x) then (65) is strictly greater than 0.1113

We can construct the desired M± by keeping the causal mechanism but changing the factorized1114

exogenous noise distribution in M to be,1115

P
0(EY = e

Y ;M+) = P (EY = e
Y ;M0) + (�1)e

Y (a,x)�eY (ā,x)
�+ (66)

P
0(EY = e

Y ;M�) = P (EY = e
Y ;M0) + (�1)e

Y (a,x)�eY (ā,x)
�� (67)

where �± 2 R are constants that satisfy the bounds max{�P (Yā = 1|x)P (Ya = 1|x),�P (Yā =1116

0|x)P (Ya = 0|x)}  �±  min{P (Yā = 1|x)P (Ya = 0|x), P (Yā = 0|x)P (Ya = 1|x)}. It is1117

simple to check that for any � that satisfies these bounds we recover
P

eY P
0(EY = e

Y ) = 1,1118

P
0(EY = e

Y ) � 0 8 e
Y , and therefore P

0 is a valid noise distribution. Keeping the same causal1119
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mechanism fY is M± as in M0 gives P (ya|x;M0) = P (ya|x;M+) = P (ya|x;M�) as,1120

P
0(yi|x) =

1X

eY (0,x)=0

. . .

1X

eY (i�1,x)=0

1X

eY (i+1,x)=0

. . .

X

eY (|A|,x)=0

2

4
|A|Y

j=1

P (eY (j, x)) + (�1)e
Y (i,x)�eY (ā,x)

�±

3

5

(68)

= P (eY (i, x)) + (�1)e
Y (i,x)�0

�± + (�1)e
Y (i,x)�1

�± (69)

= P (eY (i, x)) = P (yi|x) (70)

and likewise for i = ā. This implies that for any desired outcome statistics P (ya|x) there is a model1121

where Ya ? Ya0 8 (a, a0) where a 6= a
0 except for the pair a, ā, so long as P (yā|x) and P (ya|x) are1122

non-deterministic (if they are deterministic, �± = 0 and M0 = M±). Because Ya0 ? Yā 8 a
0 6= a,1123

then H(a0, x;M0) = H(a0, x;M±) 8 a
0 6= a. Also note that H(ā, x;M) = 0 for any U or M if1124

P (a|x) = �(a � ā), as P (Yā = i, , Yā = k) = 0 if i 6= k and if i = k (factual and counterfactual1125

outcomes are identical) then the expected harm is zero. The only difference between M0 and M± is1126

P (yā, ya|x;M+) 6= P (yā, ya|x;M�) 6= P (yā, ya|x;M0), which differ for �+ 6= 0, �� 6= 0 and1127

�+ 6= ��. Substituting (66) and (67) into our expression for the expected harm as using the notation1128

�y,y0 = max{0, U(ā, x, y)� U(a, x, y0)} gives,1129

E[h|a, x;M±] = E[h|a, x;M0] + �± [�00 +�11 ��10 ��01] (71)
E[h|a0, x;M±] = E[h|a0, x;M0] , a

0 6= a (72)

Now, as maxy U(a, x, y) > miny U(ā, x, y) then �01 = 0. For the coefficient of �± in (71) to be1130

zero, we would therefore require that �00 + �11 = �10. We know �10 > 0 because otherwise1131

miny U(a, x, y) > maxy U(ā, x, y), therefore the minimial value of �10 is maxy U(ā, x, 1) �1132

miny U(a, x, y). If �00 6= 0 and �11 6= 0 then �00 + �11 � �10 implies miny U(ā, x, y) �1133

maxy U(a, x, y) which violates our assumptions, therefore �00 +�11 < �10. If �00 = 0 clearly1134

we cannot have �11 = �10 as miny U(a, x, y) < maxy U(a, x, y) by our assumptions, and likewise1135

if �11 = 0 we cannot have �00 = �10 as this would imply miny U(ā, x, y) = maxy U(ā, x, y)1136

which violates our assumptions. Therefore we can conclude that the coefficient in (71) in greater than1137

zero.1138

Therefore if we choose any 0 < �+ < min{P (Yā = 1|x)P (Ya = 0|x), P (Yā = 0|x)P (Ya =1139

1|x)} we get E[h|a, x;M+] > E[h|a, x;M0], and any max{P (Yā = 1|x)P (Ya = 1|x), P (Yā =1140

0|x)P (Ya = 0|x)} < �� < 0, we get E[h|a, x;M�] < E[h|a, x;M0].1141

Lemma 3. For (context dependent) default action A = ā(x), E[h|ā(x), x;M] = 0 8 M1142

Proof. In the following we suppress the notation ā(x) = ā.1143

E[h|ā, x;M] =

Z

y⇤,y

P (Yā = y
⇤
, Y = y|ā, x;M)max{0, U(ā, x, y⇤)� U(ā, x, y)} (73)

=

Z

y⇤,y

P (Yā = y
⇤
, Yā = y|x;M)max{0, U(ā, x, y⇤)� U(ā, x, y)} (74)

=

Z

y⇤,y

P (Yā = y|x;M)�(y⇤ � y)max{0, U(ā, x, y⇤)� U(ā, x, y)} (75)

=

Z

y

P (Yā = y|x;M)max{0, U(ā, x, y)� U(ā, x, y)} (76)

= 0 (77)

P (y|a, x) = P (ya|x).1144

1145

29



Theorem 3: For any (context dependent) default action A = ā(x), if there is a context X = x where1146

the user’s utility function is outcome dependent for ā(x) amd some other action a 6= ā(x), then there1147

is an outcome distributional shift such that U is harmful in the shifted environment.1148

Proof. For the expected utility to not be harmful by Definition 6, it must be that E[h|a, x] > E[h|b, x]1149

=) E[U |a, x] < E[U |b, x]. Given our assumption of outcome dependence, we know there1150

is a context X = x such that the utility functions for ā(x) and a 6= ā(x) overlap, that is1151

miny U(a, x, y) < maxy U(ā(x), x, y) and maxy U(a, x, y) > miny U(ā(x), x, y). In the fol-1152

lowing we drop the notation ā(x) = ā. We can restrict our agent to choose between these two1153

actions and construct an outcome distributional shift such that; i) The outcomes Ya and Yā are1154

binary with one outcome maximizing the utility for that action and the other minimizing the utility,1155

i.e. Ya 2 {maxy U(a, x, y),miny U(a, x, y)} and Yā 2 {maxy U(ā, x, y),miny U(ā, x, y)}, ii)1156

E[U |a, x] = E[U |ā, x], iii) P (ya|x) and P (yā|x) are non-deterministic. This follows from the fact1157

that the set of possible expected utility values for an action a is the set of mixtures over U(a, x, y)1158

with respect to y, and as Ya = 0, 1 are the extremal points of this convex set, the expected utility for1159

action a in context x can be written as P (Ya = 0|x)U(a, x, 0) + P (Ya = 1|x)U(a, x, 1). Then, as1160

the utility functions for a and ā overlap there is point in the intersection of these convex sets that is1161

non-extremal (and hence, a non-deterministic mixture).1162

By Lemma 3 the default action causes zero expected harm. By Lemma 2 we can construct a shifted1163

environment M0 where the non-default action a 6= ā has non-zero harm for any non-deterministic1164

P (ya|x). We can therefore construct M0 such that i) E[Ya|x] = E[Yā|x], and ii) E[h|a, x] >1165

E[h|ā, x], violating our requirement that E[h|a, x] > E[h|b, x] =) E[U |a, x] < E[U |b, x].1166

1167

Theorem 4: For any (context dependent) default action A = ā(x), if there is a context X = x where1168

the user’s utility function is outcome dependent for ā(x) and two other actions a1, a2 6= ā(x), then1169

for any factual objective function J there is an outcome distributional shift such that maximizing the1170

J is harmful in the shifted environment.1171

Proof. By assumption there is a context X = x for which the utility functions for a1, a2 and ā(x)1172

overlap. In the following we drop the notation ā(x) = ā. There is a choice of non-deterministic1173

outcome distributions P (yā|x), P (ya1 |x) and P (ya2 |x) such that all three actions have the same1174

expected utility. By Lemma 2 for any non-deterministic outcome distribution we can choose M01175

such that E[h|a1, x;M0] > 0, and E[h|a2, x;M0] > 0, and by Lemma 3 E[h|ā, x;M] = 0 8 M.1176

Therefore 9 M0 that is an outcome distributional shift of the original environment M such that1177

ā, a1, a2 have the same expected utility, ā has zero expected harm and a1, a2 have non-zero expected1178

harm.1179

If E[h|a1, xM0] = E[h|a2, x;M0] then by Lemma 2 there are outcome-shifted environments M±1180

such that ā, a1 and a2 have the same factual statistics as in M0 and E[h|a2, xM0] = E[h|a2, xM±],1181

but the harm caused by a1 is increased(descreased) by some non-zero amount. Therefore in M+1182

a1 and a2 have the same expected utility but a has a strictly higher expected harm, and in order1183

to be non-harmful it must be that E[J |a1, x;M+] < E[J |a2, x;M+]. Likewise in M� a1 and a21184

have the same expected utility but the expected harm for a1 is strictly lower than for a2, therefore1185

in order to be non-harmful it must be that E[J |a1, x;M�] > E[J |a2, x;M�]. Finally we note that1186

E[J |a, x;M+] = E[J |a, x;M�] = E[J |a, x;M0] 8 a 2 A as the factual statistics are identical1187

in M0,M±, i.e. P (ya|x;M+) = P (ya|x;M�) = P (ya|x;M0). Therefore any J must be1188

harmful in either M+ and M�, and therefore there is an outcome distributional shift M ! M+ or1189

M ! M� such that J is harmful in the shifted environment.1190

If E[h|a1, xM0] 6= E[h|a2, x;M0], assume without loss of generality that E[h|a1, xM0] >1191

E[h|a2, x;M0]. As ā, a1 and a2 have the equal expected utilities then so does any mixture of1192

these actions, in M0 and M±. Restrict the agent to choose between action a2 and a mixture1193

of actions ā and a1—i.e. a stochastic or ‘soft’ intervention [17, 68], which involves replacing1194

the causal mechanism for A with a mixture ⌧ := q[A = a1] + (1 � q)[A = a0] where q1195

is an independent binary noise term. By linearity the expected utility for this mixed action is1196

E[U⌧ |x] = qE[Ua1 |x]+(1�q)E[Uā|x] = E[Ua1 |x] as all three actions have the same expected utility,1197

and has an expected harm E[h|⌧, x;M0] = qE[h|a1, x;M]+(1�q)E[h|ā, x;M] = qE[h|a1, x;M]1198

as E[h|ā, x;M] = 0 8 M. Therefore as E[h|a1, x;M] > 0 and E[h|a2, x;M] > 0 we can choose1199
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p > 0 such that E[h|⌧, x;M0] = E[h|a2, x;M0]. Therefore in M0, a2 and ⌧ have the same ex-1200

pected harm and utility, and in M+ they have the same expected utility but ⌧ is more harmful than1201

a2 as E[h|a1, x;M+] > E[h|a1, x;M0] and p > 0, and in M� they have the same expected utility1202

but a2 is more harmful that ⌧ . As the factual statistics P (ya|x) are identical for M0 and M±, so is1203

the value of any factual objective function across all three environments. Hence, any factual objective1204

function must be harmful in either M+ or M�.1205

K1206

In this appendix we discuss related works; counterfactual fairness [49] and path-specific objectives1207

[26], as well as discussing some deep learning implementations that are capable of supporting1208

counterfactual inferences of the type used to estimate counterfactual harm. For the sake of generality1209

our results are derived in the SCM framework, and so taken at face value they assume knowledge of1210

the SCM for the data generating process. Often in complex domains we will not have access to the1211

true SCM that describes the data generating process but some approximation. However, there have1212

been several recent proposals for performing counterfactual inference using deep learning methods,1213

with promising results in diverse complex domains including learning deep structural causal models1214

for medical imaging [67], visual question answering [63], and vision-and-language navigation in1215

robotics [66] and text generation [56]. These studies evidence that deep learning algorithms can1216

learn to make good counterfactual inferences that can be used to support decision making without1217

perfect knowledge of the underlying SCM (one notable exception being when the environment is1218

simulated, in which case the precise SCM is known). This is somewhat analogous to the fact that1219

human decision making often utilizes counterfactual reasoning for various cognitive tasks [23] (for1220

example, it is important for legal and ethical reasoning [51]). This is in spite of the fact that humans1221

clearly do not having access to perfect structural causal models of their environments, but have to1222

learn good enough approximations through heuristics and inductive biases. While it is known that1223

counterfactuals cannot be identified from data alone [82] but are only defined up to a structural causal1224

models of the environment, clearly humans [32] and increasingly AI systems are capable of learning1225

good structural causal models of real-world environments and using these to make counterfactual1226

inferences capable of guiding actions and reasoning about harm.1227

However, our proposed framework for dealing with harm does not come without limitations to be1228

investigated in future work. Similar to other works on causal inference (see [79] for review), our1229

current setup assumes that the SCM is known and all variables are observed when computing the1230

counterfactual (no unobserved confounding), which may limit the applicability of our measure for1231

harm to certain scenarios. Several methods have been proposed for results with similar restrictions1232

(e.g. in counterfactual fairness [46]). One approach that is particularly appropriate for dealing with1233

harm is bounding counterfactuals, which allows for tight upper bounds on the counterfactuals in1234

equation (6) to be determined using a mix of observational and interventional data [98]. This would1235

result in a tight upper bound to harm, which in its self would be sufficient to ensure that actions cause1236

no more than some acceptable level of harm and so satisfy the desired harm aversion with certainty1237

(perhaps at the expense of some further expected utility cost).1238

We now briefly discuss two examples of current implementations of counterfactual reasoning in1239

complex domains where our framework could be applied.1240

Example: medical imaging. Consider a recent study developing a deep structural causal models1241

for generating counterfactual images of brain CT scans in patients with multiple sclerosis (MS) [75].1242

MS causes brain lesions and abnormalities, and CT scans of the brain can be used to predict health1243

outcomes for patients including disease progression and long-term patient outcomes [89]. MS is1244

known to have a wide range of demographic risk factors including smoking exposure to chemical1245

pollutants, and these factors are known to cause artefacts in brain scans such as lesions independently1246

of MS. To determine the harm caused by the patient by the disease one has to determine what the1247

patient’s ‘healthy’ scan would look like (if they did not have MS), given their factual scans which1248

encode information about latent factors such as smoking and exposure to environmental pollutants1249

(which also contribute to negative health outcomes through causal pathways not mediated by MS).1250

Translating to our framework, the counterfactual harm Definition 3 can be estimated by generating1251

samples of counterfactual healthy images y⇤ ⇠ P (Yā|a, y;M) where Yā is the counterfactual image1252

under the intervention that sets the latent variable for duration of symptoms to zero (as in used to1253

generate healthy images in [75]), Y is the factual image, A = a is the known factual duration of1254
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symptoms and M is the deep structural causal model derived in [75]. Finally, the counterfactual harm1255

(6) can be estimated using a reasonable utility function U(y) such as the predicted quality adjusted1256

life years (QALYs) for a given CT scan evaluated using a deep learning model for predicting patient1257

outcomes [89]. The resulting harm measure would be the expected decrease in the expected QALYs1258

caused by the presence of MS.1259

Example: reinforcement learning. Consider a recent study where a reinforcement learning agent1260

is trained to determine optimal treatment policies for major depression [90]. A structural causal1261

model is learned for the Markov decision process and used to generate counterfactual explanations1262

for patient outcomes. Sequential decision making in medicine is a good use-case for our framework1263

as there are well defined default treatment policies ⇡(ā|s) (e.g patients with certain medical history1264

receive a standardized treatment), and there is increasing interest in using reinforcement learning1265

techniques to improve patient outcomes by adapting treatments over time and personalizing them to1266

patients (see for example [55, 96]). However, care must be taken to ensure that any learned treatment1267

policies are not overly harmful compared to the standardized treatment policies that the patient would1268

have received. For example, some treatment policies may improve patient outcomes on average by1269

benefiting some patients while causing other patients worse outcomes than they would have had1270

(much like with the allergic reaction in Examples 1 & 2—indeed these heterogeneous responses to1271

treatments are commonplace in psychiatry and medicine in general). To apply our framework for1272

harm aversion the agent can be trained with a harm-averse Bellman equation,1273

Q�(a, s;M) =
X

s0

P (s0|a, s)
"
R(a, s, s0)� �h(a, s, s0;M) + �

X

a0

⇡(a0|s0)Q(a0, s0;M)

#

(78)

where M is an SCM of the Markov decision process (e.g. as derived in [90] and,1274

h(a, s, s0;M) =
X

s⇤

P (S0
ā(s) = s

⇤|a, s, s0)max{0, R(ā(s), s, s⇤)�R(a, s, s0)} (79)

where a(s) is the deterministic default treatment choice that the patient would receive if they followed1275

the standardized treatment rules. For � = 1 this reduces to the standard Bellman equation, but for1276

� > 1 the agent chooses a policy that maximizes the discounted cumulative HPU (Definition 4)1277

rather than the reward, and so will avoid actions that achieve higher cumulative reward at the cost of1278

harming patients (as illustrated in Section 6).1279

K.1 Related work1280

Counterfactual fairness deals with prediction tasks Ŷ : X ! Y where the desire is to have a predictor1281

Ŷ that is not unfairly influenced by a protected attribute A such as gender or race. Note A is a1282

feature that typically cannot be intervened on, whereas is our setup A denotes an agent’s action.1283

Counterfactual fairness quantifies this unfair influence causally, using the counterfactual constraint,1284

P (Ŷa = y|X = x,A = a) = P (Ŷa0 = y|X = x,A = a) 8 a0 2 A, y 2 Ŷ (80)

which states that the probability of predicting any given outcome should not be caused on average1285

by the protected attribute A, where type causation is established using the counterfactual P (Ŷa0 =1286

y|X = x,A = a) which is the probability of Ŷ given A = a if A had been equal to a
0. Note1287

that the counterfactual in (80) does not deal with the joint statistics of the factual outcome Ŷa and1288

the counterfactual outcome Ŷa0 , as so is an example of type causality compared to harm which an1289

example of actual causality [34]. Harm is conceptually distinct from fairness—for example, it is1290

possible to apply a needlessly harmful action fairly—but the two measures can be used in tandem.1291

For example, one could quantify if a action or decision was unfair, and whether or not the user was1292

harmed due to this unfair action.1293

Another perhaps more related use of counterfactual inference for ethical AI is path-specific objectives1294

[26]. This work similarly refines expected utility theory in the CID framework to take into account1295

the fact that we often want to maximize utility via specific causal pathways due to ethical constraints.1296
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For example we can consider a simple model where the agent’s action A influences user feedback1297

Y (and utility U(y)) but also effects the users preferences H where A ! Y , A ! H and H ! Y .1298

To maximize utility without intentionally manipulating the user we must maximize along the causal1299

pathway (1) : A ! Y without including contributions to the expected utility from the mediator1300

pathway (2) : A ! H ! Y . This involves replacing the expected utility with its path-specific1301

equivalent, much as our path-specific harm (Definition 9) generalizes our path-independent definition1302

of harm (Definition 3). As such the path-specific expected utility is still agnostic to harm just as1303

the expected utility is, although it could be combined with the path specific harm in [26] to give a1304

path-specific variant of the HPU (Definition 4). This would allow for harm averse decision making1305

where the necessary degree of harm-aversion �(i) differs depending on the causal path (i)—for1306

example, if we desire agents that have a high aversion for being directly harmful, but a lower degree1307

of harm-aversion for indirect harm mediated by the actions of other agents (as described in Appendix1308

B).1309
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