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Abstract

Graph neural network (GNN)’s success in graph classification is closely related to1

the Weisfeiler-Lehman (1-WL) algorithm. By iteratively aggregating neighboring2

node features to a center node, both 1-WL and GNN obtain a node representation3

that encodes a rooted subtree around the center node. These rooted subtree rep-4

resentations are then pooled into a single representation to represent the whole5

graph. However, rooted subtrees are of limited expressiveness to represent a non-6

tree graph. To address it, we propose Nested Graph Neural Networks (NGNNs).7

NGNN represents a graph with rooted subgraphs instead of rooted subtrees, so8

that two graphs sharing many identical subgraphs (rather than subtrees) tend to9

have similar representations. The key is to make each node representation encode10

a subgraph around it more than a subtree. To achieve this, NGNN extracts a local11

subgraph around each node and applies a base GNN to each subgraph to learn12

a subgraph representation. The whole-graph representation is then obtained by13

pooling these subgraph representations. We provide a rigorous theoretical analysis14

showing that NGNN is strictly more powerful than 1-WL. In particular, we proved15

that NGNN can discriminate almost all r-regular graphs, where 1-WL always fails.16

Moreover, unlike other more powerful GNNs, NGNN only introduces a constant17

factor in time complexity compared to standard GNNs. NGNN is a plug-and-play18

framework that can be combined with various base GNNs. We test NGNN with19

different base GNNs on several benchmark datasets. NGNN uniformly improves20

their performance and shows highly competitive performance on all datasets.21

1 Introduction22

Graph is an important tool to model relational data in the real world. Representation learning over23

graphs has become a popular topic of machine learning in recent years. While network embedding24

methods, such as DeepWalk [1], can learn node representations well, they fail to generalize to25

whole-graph representations, which are crucial for applications such as graph classification, molecule26

modeling, and drug discovery. On the contrary, although traditional graph kernels [2–7] can be27

used for graph classification, they define graph similarity often in a heuristic way, which is not28

parameterized and lacks some flexibility to deal with features.29

In this context, graph neural networks (GNNs) have regained people’s attention and become the30

state-of-the-art graph representation learning tool [8–17]. GNNs use message passing to propagate31

features between connected nodes. By iteratively aggregating neighboring node features to the center32

node, GNNs learn node representations encoding their local structure and feature information. These33

node representations can be further pooled into a graph representation, enabling graph-level tasks34

such as graph classification. In this paper, we will use message passing GNNs to denote this class35

of GNNs based on repeated neighbor aggregation [18], in order to distinguish them from some36

high-order GNN variants [19–21] where the effective message passing happens between high-order37

node tuples instead of nodes.38
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Figure 1: The top graph is disconnected, while the bottom graph is connected. Both 1-WL and message passing
GNNs cannot differentiate them, since all nodes in the two graphs share identical rooted subtrees at any height.
In comparison, we can discriminate the two graphs by comparing their height-1 rooted subgraphs around nodes.

GNNs’ message passing scheme mimics the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm [22],39

which iteratively refines a node’s color according to its current color and the multiset of its neighbors’40

colors. This procedure essentially encodes a rooted subtree around each node into its final color,41

where the rooted subtree is constructed by recursively expanding the neighbors of the root node.42

One critical reason for GNN’s success in graph classification is because, two graphs sharing many43

identical or similar rooted subtrees are more likely classified into the same class, which actually aligns44

with the inductive bias that two graphs are similar if they have many common substructures [23].45

Despite this, rooted subtrees are still limited in terms of expressing all possible substructures that46

can appear in a graph. It is likely that two graphs, despite sharing a lot of identical rooted subtrees,47

are not similar at all because their other substructure patterns are not similar. Take the two graphs in48

Figure 1 as an example. If we apply 1-WL or a message passing GNN to them, the two graphs will49

always have the same representation no matter how many iterations/layers we use. This is because50

all nodes in the two graphs have identical rooted subtrees across all tree heights. However, the two51

graphs are quite different from a holistic perspective. The top graph is composed of two triangles,52

while the bottom graph is a connected circle. The intrinsic reason for such a failure is that rooted53

subtrees have limited expressiveness for representing general graphs, especially those with cycles.54

To address this issue, we propose Nested Graph Neural Networks (NGNNs). The core idea is, instead55

of encoding a rooted subtree, we want the final representation of a node to better encode a rooted56

subgraph (local h-hop subgraph) around it. The subgraph is not restricted to be of any particular57

graph type such as tree, but serves as a general description of the local neighborhood around a node.58

Rooted subgraphs offer much better representation power than rooted subtrees, e.g., we can easily59

discriminate the two graphs in Figure 1 by only comparing their height-1 rooted subgraphs.60

To represent a graph with rooted subgraphs, NGNN uses two levels of GNNs: a base (inner) GNN61

and an outer GNN. By extracting a local subgraph around each node, NGNN first applies the base62

GNN to each node’s subgraph independently. Then, a subgraph pooling layer is applied to each63

subgraph to aggregate the intermediate node representations into a subgraph representation. This64

subgraph representation is used as the final representation of the root node. Rather than encoding a65

rooted subtree, this final node representation encodes the local subgraph around it, which contains66

more information than a subtree. Finally, all the final node representations are further fed into the67

outer GNN to learn a representation for the entire graph.68

One may wonder that the base GNN seems to still learn only rooted subtrees if it is message-passing-69

based. Then why is NGNN more powerful than GNN? One key reason lies in the subgraph pooling70

layer. Take the height-1 rooted subgraphs around v1 and v2 in Figure 1 as an example. Suppose we71

use one message passing layer in the base GNN. Then both v1 and v2 will encode identical height-172

rooted subtrees (an open triplet), thus having the same intermediate representation. Nevertheless,73

nodes v3 and v4 in v1’s subgraph will encode different rooted subtrees from nodes v5 and v6 in v2’s74

subgraph. After applying a pooling layer (such as sum or mean pooling) over the intermediate node75

representations within the subgraphs, we can discriminate the rooted subgraphs around v1 and v2.76

The NGNN framework has multiple exclusive advantages. Firstly, it allows freely choosing the77

base GNN, and can enhance the base GNN’s representation power in a plug-and-play fashion.78
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Theoretically, we proved that NGNN is more powerful than message passing GNNs and 1-WL by79

being able to discriminate almost all r-regular graphs (where 1-WL always fails). Secondly, by80

extracting rooted subgraphs, NGNN allows augmenting the initial features of a node with subgraph-81

specific structural features, in contrast to standard GNNs which use the same initial features for82

a node no matter which root node’s subgraph it is within. Thirdly, unlike other more powerful83

graph neural networks, especially those based on higher-order WL tests [19–21, 24], NGNN only84

incurs a constant time higher time complexity compared to standard message passing GNNs, thus85

still maintaining good scalability. We demonstrate the effectiveness of the NGNN framework in86

various synthetic/real-world graph classification/regression datasets. NGNN consistently enhances the87

base GNNs’ performance, achieving highly competitive results on all datasets. In particular, NGNN88

achieves a new state-of-the-art result (Average Precision of 30.07) on the challenging ogbg-molpcba.89

2 Preliminaries90

2.1 Notation and problem definition91

We consider the graph classification/regression problem. Given a graph G = (V,E) where V =92

{1, 2, . . . n} is the node set and E ⊆ V × V is the edge set, we aim to learn a function mapping G to93

its class or target variable y. The nodes and edges in G can have feature vectors associated with them,94

denoted by xi (for node i) and eij (for edge (i, j)), respectively.95

2.2 Weisfeiler-Lehman test96

The Wesfeiler-Lehman (1-WL) test [22] is a popular algorithm for graph isomorphism checking. The97

classical 1-WL works as follows. At first, all nodes receive a color 1. Each node collects its neighbors’98

colors into a multiset. Then, 1-WL will update each node’s color so that two nodes get the same new99

color if and only if their current colors are the same and they have identical multisets of neighbor100

colors. Repeat this process until the number of colors does not increase between two iterations.101

Then, 1-WL will return that two graphs are non-isomorphic if their node colors are different at some102

iteration, or fail to determine whether they are non-isomorphic. See [7, 25] for more detail.103

1-WL essentially encodes the rooted subtrees around each node at different heights into its color104

representations. Figure 1 middle shows the rooted subtrees around v1 and v2. Two nodes will have105

the same color at iteration h if and only if their height-h rooted subtrees are the same.106

3 Nested Graph Neural Network107

In this section, we introduce our Nested Graph Neural Network (NGNN) framework and theoretically108

demonstrate its higher representation power than message passing GNNs.109

3.1 Limitations of the message passing GNNs110

Most existing GNNs follow the message passing framework [18]: given a graph G, each node’s111

hidden state ht+1
v is updated based on its previous state htv and the messages mt+1

v from its neighbors112

ht+1
v = Ut(h

t
v,m

t+1
v ), where mt+1

v =
∑

u∈N(v|G)

Mt(h
t
v,h

t
u, evu). (1)

Here Mt, Ut are the message and update functions at time stamp t, evu is the feature of edge (v, u),113

and N(v|G) is the set of v’s neighbors in graph G. The initial hidden states h0
v are given by the raw114

node features xv . After T time stamps (iterations), the final node representations hTv are summarized115

into a whole-graph representation with a readout (pooling) function R (e.g., mean or sum):116

hG = R({hTv |v ∈ G}). (2)

Such a message passing (or neighbor aggregation) scheme iteratively aggregates neighbor information117

into a center node’s hidden state, making it encode a local rooted subtree around the node. The118

final node representations will contain both the local structure and feature information around nodes,119

enabling node-level tasks such as node classification. After a pooling layer, these node representations120
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can be further summarized into a graph representation, enabling graph-level tasks. When there is121

no edge feature and the node features are from a countable space, it is shown that message passing122

GNNs are at most as powerful as the 1-WL test for discriminating non-isomorphic graphs [26, 19].123

For an h-layer message passing GNN, it will give two nodes the same final representation if they have124

identical height-h rooted subtrees (i.e., both the structures and the features on the corresponding125

nodes/edges are the same). If two graphs have a lot of identical (or similar) rooted subtrees, they will126

also have similar graph representations after pooling. This insight is crucial for the success of modern127

GNNs in graph classification, because it aligns with the inductive bias that two graphs are similar if128

they have many common substructures. Such insight has also been used in designing the WL subtree129

kernel [7], a state-of-the-art graph classification method before GNNs.130

However, message passing GNNs have several limitations. Firstly, rooted subtree is only one specific131

substructure. It is not general enough to represent arbitrary subgraphs, especially those with cycles132

due to the natural restriction from tree structure. Secondly, using rooted subtree as the elementary133

substructure results in a discriminating power bounded by the 1-WL test. For example, all n-node134

r-regular graphs cannot be discriminated by message passing GNNs. Thirdly, the initial node features135

xv are the same for a node v no matter which root node’s message passing function it attends. This136

prevents us from using root-node-specific features to augment the raw node features. We need to137

break through such limitations in order to design more powerful GNNs.138

3.2 The NGNN framework139

To address the above limitations, we propose the Nested Graph Neural Network (NGNN) framework.140

NGNN no longer aims to encode a rooted subtree around each node. Instead, in NGNN, each node’s141

final representation encodes the general local subgraph information around it more than a subtree, so142

that two graphs sharing a lot of identical or similar rooted subgraphs will have similar representations.143

Definition 1. (Rooted subgraph) Given a graph G and a node v, the height-h rooted subgraph Ghv144

of v is the subgraph induced from G by the nodes within h hops of v (including h-hop nodes).145

To make a node’s final representation encode a rooted subgraph, we need to compute a subgraph146

representation. To achieve this, we resort to another GNN, which we call the base GNN of NGNN.147

For example, the base GNN can be simply a message passing GNN, which performs message passing148

within the rooted subgraph to learn an intermediate representation for every node of the subgraph,149

and then uses a pooling layer to summarize a subgraph representation from the intermediate node150

representations. This subgraph representation is used as the final representation of the root node in151

the original graph. Take node w as an example. We first perform T rounds of message passing within152

node w’s rooted subgraph Ghw:153

ht+1
v,Gh

w
= Ut(h

t
v,Gh

w
,mt+1

v,Gh
w

), where mt+1
v,Gh

w
=

∑
u∈N(v|Gh

w)

Mt(h
t
v,Gh

w
,htu,Gh

w
, evu). (3)

Here Mt, Ut are the message and update functions of the base GNN at time stamp t, N(v|Ghw)154

denotes the set of v’s neighbors within w’s rooted subgraph Ghw, and ht+1
v,Gh

w
and mt+1

v,Gh
w

denote155

node v’s hidden state and message specific to rooted subgraph Ghw at time stamp t + 1. Note that156

when node v attends different nodes’ rooted subgraphs, its hidden states and messages will also be157

different. This is in contrast to standard GNNs where a node’s hidden state and message at time t is158

the same regardless of which root node it contributes to. For example, ht+1
v and mt+1

v in Eq. 1 does159

not depend on any particular rooted subgraph.160

After T rounds of message passing, we apply a subgraph pooling layer to summarize a subgraph161

representation hGh
w

from the intermediate node representations {hTv,Gh
w
|v ∈ Ghw}.162

hw : = hGh
w

= R0({hTv,Gh
w
|v ∈ Ghw}), (4)

where R0 is the subgraph pooling layer. This subgraph representation hGh
w

will be used as root163

node w’s final representation hw in the original graph. The base GNN is simultaneously and164

independently applied to all nodes’ rooted subgraphs to return a node representation for all nodes in165

the original graph. With such node representations, the outer GNN further aggregates them into a166

graph representation of the whole graph, with another graph pooling layer R1:167

hG := R1({hw|w ∈ G}). (5)
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Figure 2: The NGNN framework. NGNN first extracts a rooted subgraph around each node. It then applies a
base GNN with a subgraph pooling layer to each rooted subgraph independently. The subgraph representation
is used as the root node’s final representation in the original graph. Then, a graph pooling layer is used to
summarize the final node representations into a graph representation.

The Nested GNN framework can be understood as a two-level GNN, or a GNN of GNNs—the168

inner subgraph-level GNNs (base GNNs) are used to learn node representations from their rooted169

subgraphs, while the outer graph-level GNN is used to return a whole-graph representation from the170

inner GNNs’ outputs. The inner GNNs all share the same parameters which are trained end-to-end171

with the outer GNN. Figure 2 depicts the overall NGNN framework.172

Compared to message passing GNNs, NGNN changes the “receptive field” of each node from a173

rooted subtree to a rooted subgraph, in order to capture better local substructure information. The174

rooted subgraph is read by a base GNN to learn a subgraph representation. Finally, the outer GNN175

reads the subgraph representations output by the base GNNs to return a graph representation.176

Note that, when we apply the base GNN to a rooted subgraph, this rooted subgraph is extracted177

(copied) out of the original graph and treated as a completely independent graph from the other rooted178

subgraphs and the original graph. This allows the same node to have different representations within179

different rooted subgraphs. For example, in Figure 2, the same node B appears in four different180

rooted subgraphs. Sometimes it is the root node, while other times it is a 1-hop neighbor of the root181

node. NGNN enables learning different representations for the same node when it appears in different182

rooted subgraphs, in contrast to standard GNNs where a node only has one single representation at183

one time stamp (Eq. 1). Similarly, NGNN also enables using different initial features for the same184

node when it appears in different rooted subgraphs. This allows us to customize a node’s initial185

features based on its structural role within a rooted subgraph, as opposed to using the same initial186

features for a node across all rooted subgraphs. For example, we can augment node B’s initial187

features with the distance between node B and the root—when node B is the root node, we give it an188

additional feature 0; and when B is a k-hop neighbor of the root, we give it an additional feature k.189

Such feature augmentation helps better capture a node’s structural role within a rooted subgraph. It is190

an exclusive advantage of NGNN and is not possible in standard GNNs.191

3.3 The representation power of NGNN192

We want to theoretically characterize the additional power of NGNN as opposed to message passing193

GNNs. We focus on the power to distinguish different graph structures. As their representation194

power is limited by 1-WL, message passing GNNs fail to distinguish all pairs of n-sized r-regular195

graphs, unless discriminative node features can be leveraged. In contrast, we prove that NGNN can196

distinguish almost all pairs of n-sized r-regular graphs regardless of node features.197

Definition 2. If the message passing (Eq. 3) and the two-level graph pooling (Eqs. 4,5) are all198

injective given input from a countable space, then the NGNN is called proper.199

A proper NGNN always exists due to the representation power of fully-connected neural networks200

used for message passing and Deep Set for graph pooling [27]. For all pairs of graphs that 1-WL201

can discriminate, there always exists a proper NGNN that can also discriminate them, because two202

graphs discriminated by 1-WL means they must have different multisets of rooted subtrees at some203

height h, while a rooted subtree is always included in a rooted subgraph with the same height.204

Now we present our main theorem.205
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Theorem 1. Consider all pairs of n-sized r-regular graphs, where 3 ≤ r < (2 log n)1/2. For any206

small constant ε > 0, there exists a proper NGNN using at most d( 1
2 + ε) logn

log(r−1−ε)e-height rooted207

subgraphs and dε logn
log(r−1−ε)e-layer message passing, which distinguishes almost all (1− o(1)) such208

pairs of graphs.209

We include the proof in Appendix A. Theorem 1 has three implications. Firstly, since NGNN can210

discriminate almost all r-regular graphs where 1-WL always fails, it is strictly more powerful211

than 1-WL and message passing GNNs. Secondly, it implies that NGNN does not need to extract212

subgraphs with a too large height (about 1
2

logn
log (r−1) ) to be more powerful. Moreover, NGNN is213

already powerful with very few layers, i.e., an arbitrarily small constant times logn
log (r−1) (as few as 1214

layer). This benefit comes from the subgraph pooling (Eq. 4), freeing us from using deep base GNNs.215

We further conduct a simulation experiment in Appendix C to verify Theorem 1 by testing how well216

NGNN discriminates r-regular graphs in practice. The results match almost perfectly with our theory.217

Although NGNN is strictly more powerful than 1-WL and 2-WL (1-WL and 2-WL have the same218

discriminating power [20]), it is unclear whether NGNN is more powerful than 3-WL. Our initial219

analysis shows both NGNN and 3-WL cannot discriminate strongly-regular graphs with the same220

parameters [28]. We leave the exact comparison between NGNN and 3-WL to future work.221

3.4 Discussion222

Base GNN. NGNN is a general framework to increase the representation power of GNNs. For the223

base GNN, we are not restricted to message passing GNNs as described in Section 3.2. For example,224

we can also use GNNs matching the power of higher-dimensional WL tests, such as 1-2-3-GNN [19]225

and PPGN/Ring-GNN [20, 21], as the base GNN. In fact, one limitation of these high-order GNNs is226

their O(n3) complexity. Using the NGNN framework we can greatly alleviate this. Suppose a rooted227

subgraph has at most c nodes, then by applying a high-order GNN to all n rooted subgraphs, we can228

reduce the time complexity from O(n3) to O(nc3).229

Complexity. We compare the time complexity of NGNN (using a message passing GNN as the base230

GNN) with a standard message passing GNN. Suppose the graph has n nodes with a maximum degree231

d, and the maximum number of nodes in a rooted subgraph is c. Each message passing iteration in a232

standard message passing GNN takes O(n · d) operations. In NGNN, we need to perform message233

passing over all n nodes’ rooted subgraphs, which takes O(nc · d). We will keep c small so that the234

base GNN focuses on learning local subgraph patterns.235

4 Related work236

Understanding GNN’s representation power is a fundamental problem in GNN research. Xu et al.237

[26] and Morris et al. [19] first proved that the discriminating power of message passing GNNs is238

bounded by the 1-WL test, namely they cannot discriminate two non-isomorphic graphs that 1-WL239

fails to discriminate (such as r-regular graphs). Since then, there is increasing effort in enhancing240

GNN’s discriminating power beyond 1-WL [19, 21, 20, 29–33, 24]. Many GNNs have been proposed241

to mimic higher-dimensional WL tests, such as 1-2-3-GNN [19], Ring-GNN [21] and PPGN [20].242

However, these models generally require learning the representations of all node subsets of certain243

cardinality (e.g., node pairs, node triples and so on), thus cannot leverage the sparsity of graph244

structure and are difficult to scale to large graphs. Some works study the universality of GNNs245

for approximating any invariant or equivariant functions over graphs [34, 21, 35–37]. However,246

reaching universality would require polynomial(n)-order tensors, which hold more theoretical value247

than practical applicability. Relational Pooling (RP) [29] uses the ensemble of permutation-aware248

functions over graphs to reach universality, which requires exhausting all n! permutations to achieve249

its theoretical power. Similarly, Dasoulas et al. [38] propose to augment nodes of identical attributes250

with different colors, which also requires exhausting all the coloring choices to reach universality.251

Because of the high cost of mimicking high-dimensional WL tests, several works have been proposed252

to increase GNN’s representation power within the message passing framework. Noticing that253

different neighbors are indistinguishable during neighbor aggregation, some works propose to add254

one-hot node index features or random features to GNNs [39, 40]. These methods work well when255

nodes naturally have distinct identities irrespective of the graph structure. However, although making256
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GNNs more discriminative, they also lose some of GNNs’ generalization ability by not being able257

to guarantee nodes with identical neighborhoods to have the same embedding; the resulting models258

are also no longer permutation invariant. Repeating random initialization helps with avoiding such259

an issue but gets much slower convergence [41]. A notable exception is structural message-passing260

(SMP) [42], which propagates one-hot node index features to learn a global n× d feature matrix for261

each node. The feature matrix is further pooled to learn a permutation-invariant node representation.262

On the contrary, some works propose to use structural features to augment GNNs without hurting263

the generalization ability of GNNs. SEAL [43, 44] and DE [30] use distance-based features, where264

a distance vector w.r.t. the target node set to predict is calculated for each node as their additional265

features. Our NGNN framework is naturally compatible with such distance-based features due to its266

independent rooted subgraph processing. GSN [31] uses the count of certain substructures to augment267

node/edge features, which also surpasses 1-WL theoretically. However, GSN needs a properly defined268

substructure set to incorporate domain-specific inductive biases, while NGNN aims to learn arbitrary269

substructures around nodes without the need to predefine a substructure set.270

Concurrent to our work, You et al. [32] propose Identity-aware GNN (ID-GNN). ID-GNN uses271

different weight parameters between the center node and other context nodes during message passing,272

and is also beyond 1-WL. ID-GNN can be viewed as a special case of NGNN with 1) number of273

GNN layers equivalent to the height of the subgraph, 2) directly using the root representation without274

subgraph pooling, and 3) augmenting initial node features with 0/1 “identity”. However, the power of275

ID-GNN only comes from the “identity” feature, while the power of NGNN comes from the subgraph276

pooling—without using any node features, NGNN is still provably more discriminative than 1-WL.277

Another similar work to ours is natural graph network (NGN) [45]. NGN argues graph convolution278

weights need not be shared among all nodes but only (locally) isomorphic nodes. If we view our279

distance-based node features as refining the graph convolution weights so that nodes within a center280

node’s neighborhood are no longer treated symmetrically, then our NGNN reduces to an NGN.281

The idea of independently performing message passing within k-hop neighborhood is also explored in282

k-hop GNN [46] and MixHop [47]. However, MixHop directly concatenates the aggregation results283

of neighbors at different hops as the root representation, which ignores the connections between284

other nodes in the rooted subgraph. k-hop GNN sequentially performs message passing for k-hop,285

k − 1-hop, ..., and 0-hop node (the update of (i−1)-hop nodes depend on the updated states of i-hop286

nodes), while NGNN simultaneously performs message passing for all nodes in the subgraph thus287

is more parallelizable. Both MixHop and k-hop GNN directly use the root node’s representation288

as its final node representation. In contrast, NGNN uses a subgraph pooling to summarize all node289

representations within the subgraph as the final root representation, which distinguishes NGNN from290

other k-hop models. As Theorem 1 shows, the subgraph pooling enables using a much smaller number291

of message passing layers l (as small as 1) than the depth k of the subgraph, while MixHop and k-hop292

GNN always require l ≥ k. MixHop and k-hop GNN also do not have the strong theoretical power293

of NGNN to discriminate r-regular graphs.294

5 Experiments295

In this section, we study the effectiveness of the NGNN framework for graph classification and296

regression tasks. In particular, we want to answer the following questions:297

Q1 Is a practical NGNN able to reach its theoretical power for discriminating r-regular graphs?298

Q2 How often does NGNN improve the performance of base GNNs?299

Q3 How much improvement does NGNN bring to base GNNs than directly applying the base GNNs?300

Q4 How does NGNN perform in comparison to state-of-the-art GNN methods in open benchmarks?301

Q5 How much extra computation time does NGNN incur?302

We answer Q1 using a simulation experiment in Appendix C, and answer the other questions below.303

5.1 Datasets304

To answer Q2 and Q3, we use the QM9 dataset [48, 49] and the TU datasets [50]. QM9 contains305

130K small molecules. The task here is to perform regression on twelve targets representing en-306

ergetic, electronic, geometric, and thermodynamic properties, based on the graph structure and307

node/edge features. TU contains five graph classification datasets including D&D [51], MUTAG [52],308

PROTEINS [51], PTC_MR [53], and ENZYMES [54]. We used the datasets provided by PyTorch309
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Table 1: Statistics and evaluation metrics of the QM9 and OGB datasets.

Dataset #Graphs Avg. #nodes Avg. #edges Split ratio #Tasks Task type Metric
QM9 129,433 18.0 18.6 80/10/10 12 Regression MAE
ogbl-molhiv 41,127 25.5 27.5 80/10/10 1 Classification ROC-AUC
ogbl-molpcba 437,929 26.0 28.1 80/10/10 128 Classification AP

Geometric [55], where for QM9 we performed unit conversions to match the units used by [19]. The310

evaluation metric is Mean Absolute Error (MAE) for QM9 and Accuracy (%) for TU.311

To answer Q4, we use two Open Graph Benchmark (OGB) datasets [56], ogbg-molhiv and312

ogbg-molpcba.ogbg-molhiv contains 41K small molecules, the task of which is to classify whether313

a molecule inhibits HIV virus or not. ROC-AUC is used for evaluation. ogbg-molpcba contains314

438K molecules with 128 classification tasks. The evaluation metric is Average Precision (AP)315

averaged over all the tasks. We include the statistics for QM9 and OGB datasets in Table 1.316

5.2 Models317

QM9. We use 1-GNN, 1-2-GNN, 1-3-GNN, and 1-2-3-GNN from [19] as both the baselines and the318

base GNNs of NGNN. Among them, 1-GNN is a standard message passing GNN with 1-WL power.319

1-2-GNN is a GNN mimicking 2-WL, where message passing happens among 2-tuples of nodes.320

1-3-GNN and 1-2-3-GNN mimic 3-WL, where message passing happens among 3-tuples of nodes. 1-321

2-GNN and 1-3-GNN use features computed by 1-GNN as initial node features, and 1-2-3-GNN uses322

the concatenated features from 1-2-GNN and 1-3-GNN. We additionally include numbers provided323

by [49]. Note that we omit more recent baselines [57–59] using advanced physical representations324

from angles, atom coordinates, and quantum mechanics, which may obscure the comparison of325

GNNs’ pure graph regression performance. For NGNN, we uniformly use height-3 rooted subgraphs.326

For a fair comparison, the base GNNs in NGNN use exactly the same hyperparameters as when they327

are used alone, except for 1-GNN where we increase the number of message passing layers from 3328

to 5 to make the number of layers larger than the subgraph height. For subgraph pooling and graph329

pooling layers, we uniformly use mean pooling. All other settings follow [19].330

TU. We use four widely adopted GNNs as the baselines and the base GNNs of NGNN: GCN [12],331

GraphSAGE [60], GIN [26], and GAT [15]. Since TU datasets suffer from inconsistent evaluation332

standards [61], we uniformly use 4 message passing layers with 32 hidden dimensions each for all333

models, and train them for 100 epochs with a batch size of 128. We report the test set (10%) accuracy334

at the epoch with the smallest validation set (10%) loss. And the results are averaged over 10 runs.335

For NGNN, we uniformly use height-3 rooted subgraphs with mean pooling as the subgraph/graph336

pooling layers. All other hyperparameters are the same as when training the original base GNNs.337

OGB. We use GNNs achieving top places on the OGB graph classification leaderboard (https://338

ogb.stanford.edu/docs/leader_graphprop/) as the baselines, including GCN [12], GIN [26],339

DeeperGCN [62], HIMP [63], PNA [64], DGN [33], GINE [65], and PHC-GNN [66]. Note that340

those high-order GNNs [19–21, 24] are not included here, because despite being theoretically more341

discriminative, these GNNs are not among the GNNs with the best empirical performance on modern342

large-scale graph benchmarks, and their O(n3) complexity also raises a scalability issue. For NGNN,343

we use GIN as the base GNN (although GIN is not among the strongest baselines here). Some344

baselines additionally use the virtual node technique [18, 11, 67], which are marked by “*”. For345

NGNN, we search the subgraph height h in {3, 4, 5}, and the number of layers in {4, 5, 6}. We train346

the NGNN models for 100 and 150 epochs for ogbg-molhiv and ogbg-molpcba, respectively, and347

report the validation and test scores at the best validation epoch. We also find that our models are348

subject to high performance variance across epochs, likely due to the increased expressiveness. Thus,349

we save a model checkpoint every 10 epochs, and additionally report the ensemble performance by350

averaging the predictions from all checkpoints. The final hyperparameter choices and more details351

about the experimental settings are included in Appendix D. All results are averaged over 10 runs.352

For all NGNN models, we augment the initial features of a node with Distance Encoding (DE) [30],353

which uses the (generalized) distance between a node and the root as its additional feature, due to354

DE’s successful applications in link-level tasks [43, 68]. Note that such feature augmentation is not355

applicable to the baseline models as discussed in Section 3.2. An ablation study on their effects are356

included in Appendix E.357
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Table 2: MAE results on QM9 (smaller the better). A colored cell means NGNN is better than the base GNN.

Target Method
DTNN MPNN 1-GNN 1-2-GNN 1-3-GNN 1-2-3-GNN Nested 1-GNN Nested 1-2-GNN Nested 1-3-GNN Nested 1-2-3-GNN Max. reduction

µ 0.244 0.358 0.493 0.493 0.473 0.476 0.428 0.437 0.436 0.433 1.2×
α 0.95 0.89 0.78 0.27 0.46 0.27 0.29 0.278 0.261 0.265 2.7×
εHOMO 0.00388 0.00541 0.00321 0.00331 0.00328 0.00337 0.00265 0.00275 0.00265 0.00279 1.2×
εLUMO 0.00512 0.00623 0.00355 0.00350 0.00354 0.00351 0.00297 0.00271 0.00269 0.00276 1.3×
∆ε 0.0112 0.0066 0.0049 0.0047 0.0046 0.0048 0.0038 0.0039 0.0039 0.0039 1.8×
〈R2〉 17.0 28.5 34.1 21.5 25.8 22.9 20.5 20.4 20.2 20.1 1.7×
ZPVE 0.00172 0.00216 0.00124 0.00018 0.00064 0.00019 0.00020 0.00017 0.00017 0.00015 6.2×
U0 2.43 2.05 2.32 0.0357 0.6855 0.0427 0.295 0.252 0.291 0.205 7.9×
U 2.43 2.00 2.08 0.107 0.686 0.111 0.361 0.265 0.278 0.200 5.8×
H 2.43 2.02 2.23 0.070 0.794 0.0419 0.305 0.241 0.267 0.249 7.3×
G 2.43 2.02 1.94 0.140 0.587 0.0469 0.489 0.272 0.287 0.253 4.0×
Cv 0.27 0.42 0.27 0.0989 0.158 0.0944 0.174 0.0891 0.0879 0.0811 1.8×

Table 3: Accuracy results (%) on TU datasets.
D&D MUTAG PROTEINS PTC_MR ENZYMES

#Graphs 1178 188 1113 344 600
Avg. #nodes 284.32 17.93 39.06 14.29 32.63

GCN 72.7±3.6 73.4±8.8 71.9±4.4 57.8±5.0 27.7±7.2
GraphSAGE 72.2±4.0 74.0±11.5 72.0±3.8 55.8±6.2 28.5±7.2
GIN 70.0±3.8 82.0±11.4 72.2±6.1 56.7±5.8 36.0±3.5
GAT 70.3±3.3 72.9±10.5 71.7±4.1 59.0±5.5 28.3±6.8

Nested GCN 75.4±3.1 75.9±11.6 73.9±4.2 57.8±5.7 30.7±4.2
Nested GraphSAGE 76.2±4.3 72.8±10.0 73.0±3.1 61.1±3.9 29.2±5.5
Nested GIN 75.5±5.2 85.2±8.1 72.1±3.2 56.2±7.3 33.2±6.5
Nested GAT 73.6±4.5 77.6±10.4 72.9±4.0 58.4±6.1 29.8±5.7

Max. improvement 5.5% 4.7% 2.0% 5.3% 3.0%

Table 4: Results on OGB datasets (* virtual node).
ogbg-molhiv ogbg-molpcba
ROC-AUC (%) AP (%)

Method Validation Test Validation Test
CCN* 83.84±0.91 75.99±1.19 24.95±0.42 24.24±0.34
GIN* 84.79±0.68 77.07±1.49 27.98±0.25 27.03±0.23
DeeperGCN* – – 29.20±0.25 27.81±0.38
HIMP – 78.80±0.82 – –
PNA 85.19±0.99 79.05±1.32 – –
DGN 84.70±0.47 79.70±0.97 – –
GINE* – – 30.65±0.30 29.17±0.15
PHC-GNN 82.17±0.89 79.34±1.16 30.68±0.25 29.47±0.26

Nested GIN* 83.17±1.99 78.34±1.86 29.15±0.35 28.32±0.41
Nested GIN* (ens) 80.80±2.78 79.86±1.05 30.59±0.56 30.07±0.37

5.3 Results and discussion358

We show the experimental results on QM9 in Table 2. If the Nested version of a GNN achieves a359

better result than its basic version, we will color that cell with light green. As we can see, NGNN360

brings performance gains to all base GNNs on most targets, sometimes by large margins. We also361

show the results on TU in Table 3. NGNNs also show improvement over their base GNNs in most362

cases. These results answer Q2, indicating that NGNN is a general framework for improving a363

GNN’s power. We further compute the maximum reduction of MAE for QM9 and maximum absolute364

improvement of accuracy for TU before and after applying NGNN. NGNN reduces the MAE by up365

to 7.9 times for QM9, and increases the accuracy by up to 5.5% for TU. These results answer Q3,366

indicating that NGNN can bring significant improvement to base GNNs.367

To answer Q4, we compare Nested GIN with leading methods on the OGB leaderboard. The results368

are shown in Table 4. Nested GIN achieves highly competitive performance with these leading GNN369

models, albeit using a relatively weak base GNN (GIN). Compared to GIN alone, Nested GIN shows370

clear performance gains. The ensemble Nested GIN achieves test scores of 79.86 and 30.07 on371

ogbg-molhiv and ogbg-molpcba, respectively, which outperform all the baselines. In particular,372

for the challenging ogbg-molpcba, this is the first time that a method can achieve over 30.00 test373

AP averaged over 128 tasks, which ranks the 1st on the leaderboard at the time of submission. These374

significant results demonstrate the great empirical performance of NGNN, even compared to heavily375

tuned open leaderboard models. We believe NGNN could be even better with a stronger base GNN.376

To answer Q5, we report the training time per epoch for GIN and Nested GIN on OGB datasets. On377

ogbg-molhiv, GIN takes 54s per epoch, while Nested GIN takes 183s per epoch. On ogbg-molpcba,378

GIN takes 10min per epoch, while Nested GIN takes 20min. This verifies NGNN’s constant-factor379

higher time complexity. The additional complexity comes from independently learning better node380

representations from rooted subgraphs, which is a trade-off for the higher expressivity. Finally, we381

point out one limitation of NGNN. Currently, NGNN does not scale to graph datasets with an average382

node number over 400 (such as REDDIT-BINARY) due to copying a rooted subgraph for each node383

to the GPU memory. Reducing batch size or subgraph height helps, but also leads to performance384

degradation. We leave the exploration of memory-efficient NGNN to the future work.385

6 Conclusions386

We have proposed Nested Graph Neural Network (NGNN), a general framework for improving387

GNN’s representation power. NGNN learns node representations encoding rooted subgraphs more388

than rooted subtrees. Theoretically, we prove NGNN can discriminate almost all r-regular graphs389

which 1-WL always fails to do. Empirically NGNN consistently improves the performance of various390

base GNNs across different datasets while only incurring a constant-factor higher time complexity.391
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-576

mental results (either in the supplemental material or as a URL)? [No] We will release577

the code after cleaning it up.578

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they579

were chosen)? [Yes]580

(c) Did you report error bars (e.g., with respect to the random seed after running experi-581

ments multiple times)? [Yes]582

(d) Did you include the total amount of compute and the type of resources used (e.g., type583

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.584

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...585

(a) If your work uses existing assets, did you cite the creators? [Yes]586

(b) Did you mention the license of the assets? [No] The license can be found in their587

github.588

(c) Did you include any new assets either in the supplemental material or as a URL? [No]589

(d) Did you discuss whether and how consent was obtained from people whose data you’re590

using/curating? [N/A] The packages we used are all open-sourced.591

(e) Did you discuss whether the data you are using/curating contains personally identifiable592

information or offensive content? [N/A] There are no personal information in the593

datasets.594

5. If you used crowdsourcing or conducted research with human subjects...595

(a) Did you include the full text of instructions given to participants and screenshots, if596

applicable? [N/A]597

(b) Did you describe any potential participant risks, with links to Institutional Review598

Board (IRB) approvals, if applicable? [N/A]599

(c) Did you include the estimated hourly wage paid to participants and the total amount600

spent on participant compensation? [N/A]601

A Proof of Theorem 1602

The proof is inspired by the previous theoretical characterization on the power of distance features [30].603

Basically, performing height-k subgraph extraction around a center node is essentially equivalent604

to injecting distance features that indicates whether the distance between a node and the center605

node is less than k + 1. In the following part, we will explicitly show how these distance features606

make NGNN more powerful than the 1-WL test. Let us first introduce the outline of the proof.607

Consider two n-node r-regular graphs G(1) = (V (1), E(1)) and G(2) = (V (2), E(2)) and we pick608

two nodes, each from one graph, denoted by v1 and v2. By performing certain-height (at most609

d( 1
2 + ε) logn

log(r−1)e-height) rooted subgraph extraction around these two nodes, due to the implicit610

distance features, we may prove that the nodes on the boundary of the obtained two subgraphs will611

obtain special node representations. These special node representations will be propagated within the612

subgraphs. After some steps of propagation, we can prove that NGNN by leveraging the subgraph613

pooling (Eq.4) can distinguish these two subgraphs. This tells that NGNN may generate different614

node representations for v1 and v2 respectively. Then, a union bound can be used to transform such615

difference in node representations into the difference in the representations of G(1) and G(2). Note616

that the proof will assume that there are no node/edge attributes that can be leveraged. Additional617

node/edge attributes may only improve the possibility to distinguish these two graphs.618

The first lemma is to analyze the difference between the structures of the rooted subgraphs around619

two nodes over two n-node r-regular graphs. Before introducing that, we need to define a notion620

termed edge configuration. For a node v in graph G, let Qkv,G denote the set of nodes in G that are621

exactly k-hop neighbors of v, i.e., the shortest path distance between v and any node u ∈ Qkv,G is622

k. Then, we know the height-k rooted subgraph over G around the center node v is the subgraph623

induced by the node set ∪ki=0Q
i
v,G.624

Definition 3. The edge configuration between Qkv,G and Qk+1
v,G as a list Ckv,G = (a1,kv,G, a

2,k
v,G, ...)625

where ai,kv,G denotes the number of nodes in Qk+1
v,G of which each has exactly i edges from Qkv,G.626
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When we say two edge configurations Ck
v1,G(1) (between Qk

v1,G(1) and Qk+1
v1,G(1) ), Ckv2,G(2) (between627

Qk
v2,G(2) and Qk+1

v2,G(2)) are equal, we mean that these two lists are component-wise equal to each628

other. Obviously, we should also have |Qk
v1,G(1) | = |Qk

v2,G(2) | and |Qk+1
v1,G(1) | = |Qk+1

v2,G(2) | if629

Ck
v1,G(1) = Ck

v2,G(2) . Now, we are ready to propose the first lemma.630

Lemma 1. For two graphs G(1) = (V (1), E(1)) and G(2) = (V (2), E(2)) that are uniformly631

independently sampled from all n-node r-regular graphs, where 3 ≤ r <
√

2 log n, we pick any632

two nodes, each from one graph, denoted by v1 and v2 respectively. Then, there is at least one633

i ∈ ( 1
2

logn
log(r−1−ε) , (

1
2 + ε) logn

log(r−1−ε) ) with probability 1 − o(n−1) such that Ci
v1,G(1) 6= Ci

v2,G(2) .634

Moreover, with at least the same probability, for all i ∈ ( 1
2

logn
log(r−1−ε) , (

2
3 − ε)

logn
log(r−1) ), the number635

of edges between Qi
vj ,G(j) and Qi+1

vj ,G(j) are at least (r − 1− ε)|Qi
vj ,G(j) | for j ∈ {1, 2}.636

Proof. This lemma can be obtained by following the steps 1-3 in the proof of Theorem 3.3 in637

[30].638

Now, we set K = d( 1
2 + ε) logn

log(r−1−ε)e. We focus the two extracted subgraphs GKv1 and GKv2 . We first639

prove a lemma that shows with a certain number of layers, a proper NGNN will generate different640

representations for GKv1 and GKv2 , i.e., hv1 and hv2 in Eq.4.641

Lemma 2. For two graphs G(1) = (V (1), E(1)) and G(2) = (V (2), E(2)) that are uniformly642

independently sampled from all n-node r-regular graphs, where 3 ≤ r <
√

2 log n, we pick any two643

nodes, each from one graph, denoted by v1 and v2 respectively, and do d( 1
2 + ε) logn

log(r−1−ε)e-height644

subgraph extraction around v1 and v2. With at most εd logn
log(r−1−ε)e many layers, a proper message645

passing GNN will generate different representations for the extracted two subgraphs with probability646

at least 1− o(n−1).647

Proof. According to Lemma 1, we know that with probability 1− o(n−1), there exists at least one648

i ∈ ( 1
2

logn
log(r−1−ε) , (

1
2 + ε) logn

log(r−1−ε) ) such that Ck
v1,G(1) 6= Ck

v2,G(2) . So there exists at least one649

k ≤ K that make Ck
v1,G(1) 6= Ck

v2,G(2) (thus the difference in edge configurations appears in GKv1 and650

GKv2 ) and we pick the largest k.651

Now let us consider running a message passing GNN over the two subgraphs GKvj , j ∈ {1, 2}.652

All nodes are initialized with the same node features. The nodes of these two subgraphs can be653

categorized into Qi
vj ,G(j) (0 ≤ i ≤ K), for j ∈ {1, 2} respectively. Next, let us consider the node654

representations in these categories during the message passing procedure. We have the following655

observations.656

1. Note that all the nodes other than those in QK
vj ,G(j) have degree r in both subgraphs.657

Therefore, in the t-th iteration, the nodes in ∪K−ti=0 Q
i
vj ,G(j) for j ∈ {1, 2} will share the658

same node representation. We call this node representation as default representation. Note659

that if we do not perform rooted subgraph extraction, then all nodes in all r-regular graph660

hold default representation.661

2. Node representations that are different from default representations will first appear among662

the nodes in QK
vj ,G(j) after the first iteration. This is because there are at least (r − 1 −663

ε)|QK
vj ,G(j) | edges between QK

vj ,G(j) and QK+1
vj ,G(j) before performing subgraph extraction664

(due to Lemma 1) and all these edges will not appear in the extracted subgraphs. Then,665

almost all nodes in QK
vj ,G(j) hold only degree one (and thus do not have degree r to keep666

default representations) within the corresponding extracted subgraphs. We uniformly call667

the node representations that are different from the default ones as new representations. New668

representations may be mutually different.669

3. Those new different node representations will propagate to nodes in QK−1
vj ,G(j) , Q

K−2
vj ,G(j)670

and so on and so forth via iterative message passing. Moreover, during such propagation671
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procedure, after t ≥ 2 iterations, new representations will at least make almost all nodes in672

Qi
vj ,G(j) hold representations different form almost all nodes in Qi+1

vj ,G(j) for i = K − t+673

1,K − t + 2, ...,K − 1, which can be easily obtained by doing induction from t = t1 to674

t = t1 + 1.675

Observing the above three points, We may compare the above propagating procedure between GKv1676

and GKv2 . Suppose in the first K − k steps of message passing, the set of node representations (both677

the default ones and the new ones) can keep the same between the two extracted subgraphs. If678

this is not true, we have already proven the results. As they hold different edge configurations in679

Ck
v1,G(1) 6= Ck

v2,G(2) , so when the new node representations propagate from Qk+1
vj ,G(j) to Qk

vj ,G(j) ,680

it will definitely induce different sets of new node representations between Qk
v1,G(1) and Qk

v2,G(2) .681

Currently, node representations are kept the same between Qi
v1,G(1) and Qi

v2,G(2) for i 6= [0, k− 1] as682

they are all default node representations. Though ∪Ki=k+1Q
i
vj ,G(j) also hold new node representations,683

they are different from those in Qk
vj ,G(j) for j ∈ {1, 2}. At this point, if an injective subgraph pooling684

operation is adopted, then the obtained representations of GKv1 and GKv2 , i.e., hv1 and hv2 , are685

different.686

Based on Lemma 2, using a union bound by comparing a node representation of G(1) with all node687

representaitons of G(2), we may achieve the final conclusion. Specifically, we consider a node of688

G(1), say v1, and another arbitrary node of G(2), say v2. Using Lemma 2, we know with probability689

1− o(n−1), hv1 is different from hv2 . Then, using the union bound, with probability 1− o(1), we690

have hv1 /∈ {hv2 |v2 ∈ V (G(2))}. Therefore, if the final graph pooling (Eq.5) is injective, we may691

guarantee that NGNN can generate different representations for G(1) and G(2).692

B Design choices of NGNN693

In this section, we discuss some other design choices of NGNN.694

High-order NGNN. NGNN is a two-level GNN (a GNN of GNNs), where a base GNN is used to695

learn a final node representation from a rooted subgraph and an outer GNN (graph pooling) is used to696

learn a graph representation from the base GNNs’ outputs. This design thus involves one level of697

nesting, which we call first-order NGNN. To extend the framework, we propose high-order NGNN,698

where we make the base GNN itself an NGNN. That is, we perform the subgraph representation699

learning tasks each using a first-order NGNN, where we treat each subgraph the same as the graph700

in the original NGNN. This way, we arrive at a second-order NGNN with two levels of nesting (a701

GNN of NGNNs, or a GNN of GNNs of GNNs). Repeating this construction, we can in principle702

construct an arbitrary-order NGNN. It is interesting to investigate whether high-order NGNNs can703

further enhance the representation power and the practical performance of a base GNN. We leave the704

exploration of such architectures to future work.705

Pooling functions R0 and R1. To summarize node representations into a subgraph/graph represen-706

tation, we need a readout (pooling) function. Popular choices include sum, mean, max, as well as707

more complex ones such as selecting top-K nodes [16, 69] and hierarchical approaches [17]. In this708

paper, we find mean pooling works very well, which directly takes the mean of node representations709

as the subgraph/graph representation. We also find another pooling function to be sometimes useful710

for subgraph pooling, called center pooling (CP). CP directly uses the root node’s representation to711

represent the entire subgraph. The success of CP relies on using more layers of message passing712

than the height of the rooted subgraph, so that even the intermediate representation of the center713

root node alone can have sufficient information about the entire subgraph. This is feasible for rooted714

subgraphs with a small height. Note that when using a number of message passing layers smaller715

than the subgraph height, NGNN with CP will reduce to a standard message passing GNN.716

Subgraph height h and base GNN layers l. NGNN is flexible in terms of choosing the subgraph717

height h and the number of message passing layers l in the base GNN. Theorem =1 provides a guide718

for discriminating r-regular graphs. In practice, we find using h = 3 and l = 4 generally performs719

well across various tasks. Using a small h will restrict the receptive field, causing NGNN to learn720

too local features. Using a too large h might cause each rooted subgraph to include the entire graph.721
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For the number of message passing layers l, we find that using l ≥ h performs better. This can be722

explained by that using a large l makes each node in a rooted subgraph to more sufficiently absorb723

the whole-subgraph information thus learning a better intermediate node representation reflecting its724

structural position within the subgraph.725

C Simulation experiments to verify Theorem 1726

We conduct a simulation over random regular graphs to validate Lemma 2 (how well NGNN727

distinguishes nodes of regular graphs) and Theorem 1 (how well NGNN distinguishes regular graphs).728

The results are shown in Figure 3, which match our theory almost perfectly. Basically, we sample 100729

n-node 3-regular graphs uniformly at random, and then apply an untrained NGNN to these graphs to730

see how often NGNN can distinguish the nodes and graphs at different rooted subgraph height h and731

node number n. The required h at different n matches almost perfectly with our theory. More details732

are contained in the caption of Figure 3.733
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Figure 3: Simulation to verify Theorem 1. The left graph shows the node-level (with only subgraph pooling)
simulation results. The right graph shows the graph-level (with both subgraph and graph pooling) simulation
results. We uniformly sample 100 n-node 3-regular graphs with n ranging from 10 to 1280. We let the rooted
subgraph height h range from 1 to 10. We apply an untrained Nested GIN with one message passing layer to these
graphs (with a uniform 1 as node features). In the left figure, we compare the final node representations (after
subgraph pooling) from all graphs output by the Nested GIN. If the difference between two node representations
||hu − hv||2 is greater than machine accuracy, they are regarded as indistinguishable. The shade of each
scatter point’s color reflects the portion of indistinguishable node pairs at certain (n, h). The darker, the more
indistinguishable node pairs. In the right graph, we compare the final graph representations (after graph pooling)
output by the Nested GIN. The blue and red dashed lines show the theoretical upper and lower bounds for h to
discriminate almost all nodes in n-node 3-regular graphs, respectively. As we can see, the node-level simulation
results perfectly match the theory (Lemma 2)—when h is larger than 0.5 log(n)/ log(r − 1), almost all nodes
from r-regular graphs are distinguishable by NGNN. When h is even larger than log(n)/ log(r − 1), the nodes
can hardly be distinguished because each subgraph contains the entire regular graph. The graph-level simulation
results show that even using a very small h NGNN can still discriminate almost all r-regular graphs—h in
practice even does not need to be always chosen beyond 0.5 log(n)/ log(r − 1). This is because although
most nodes from two r-regular graphs cannot be distinguished when h ≤ 0.5 log(n)/ log(r − 1), the graph
pooling can still distinguish the two graphs as long as there exists one single node from one graph holding a
representation different from any node representation from the other graph.

D More details about the experimental settings734

The experiments were run on a Linux server with 64GB memory, two NVIDIA RTX 2080S (8GB)735

GPUs and an INTEL i9-9900 8-core CPU. For ogbg-molhiv, the final NGNN architecture used a736

rooted subgraph height h = 4 and number of GIN layers l = 6. Mean pooling is used in both the737

subgraph and graph pooling. The final NGNN architecture for ogbg-molpcba used a rooted subgraph738

height h = 3 and the number of GIN layers l = 4. Center pooling (CP) is used in the subgraph739

pooling and mean pooling is used in the graph pooling. Although we searched the subgraph height740

and number of layers, we found the final performance is not very sensitive to these hyperparameters741

as long as the subgraph height is between 3 and 5 and the number of layers is larger than 4.742
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E Ablation study on DE743

In this paper, we choose Distance Encoding (DE) [30] to augment the initial node features of NGNN,744

due to its good theoretical properties for improving the expressive power of message passing GNNs745

as well as its superb empirical performance on link prediction tasks [43]. DE encodes the distance746

between a node and the root node into a vector through an embedding layer. The distance embedding747

is concatenated with the raw features of a node as its new features (at this rooted subgraph) input to748

the base GNN. Note that when this node appears in another rooted subgraph, it may have a different749

distance to that root node, thus resulting in different DE features at different subgraphs. Only the750

NGNN framework can leverage such a subgraph-specific feature augmentation—a standard GNN751

treats a node always the same no matter which node’s rooted subgraph/subtree it is in.752

In this section, we do ablation experiments to study the effect of the DE features. We choose QM9 as753

the testbed. The base GNNs are the same as in Table 2. For each base GNN, we compare it with its754

Nested GNN version without DE features (no DE) and its Nested GNN version with DE features755

(with DE). The results are shown in Table 5.756

Table 5: Ablation study on QM9 comparing Nested GNNs with and without DE features.

Method µ α εHOMO εLUMO ∆ε 〈R2〉 ZPVE U0 U H G Cv

1-GNN 0.493 0.78 0.00321 0.00355 0.0049 34.1 0.00124 2.32 2.08 2.23 1.94 0.27
Nested 1-GNN (no DE) 0.466 0.38 0.00292 0.00294 0.0042 24.0 0.00040 1.09 1.76 1.04 1.19 0.111
Nested 1-GNN (with DE) 0.428 0.29 0.00265 0.00297 0.0038 20.5 0.00020 0.295 0.361 0.305 0.489 0.174

1-2-GNN 0.493 0.27 0.00331 0.00350 0.0047 21.5 0.00018 0.0357 0.107 0.070 0.140 0.0989
Nested 1-2-GNN (no DE) 0.454 0.308 0.00280 0.00278 0.0041 23.3 0.00029 0.349 0.281 0.395 0.307 0.0945
Nested 1-2-GNN (with DE) 0.437 0.278 0.00275 0.00271 0.0039 20.4 0.00017 0.252 0.265 0.241 0.272 0.0891
1-3-GNN 0.473 0.46 0.00328 0.00354 0.0046 25.8 0.00064 0.6855 0.686 0.794 0.587 0.158
Nested 1-3-GNN (no DE) 0.448 0.298 0.00276 0.00276 0.0040 22.0 0.00025 0.410 0.396 0.370 0.422 0.0936
Nested 1-3-GNN (with DE) 0.436 0.261 0.00265 0.00269 0.0039 20.2 0.00017 0.291 0.278 0.267 0.287 0.0879
1-2-3-GNN 0.476 0.27 0.00337 0.00351 0.0048 22.9 0.00019 0.0427 0.111 0.0419 0.0469 0.0944
Nested 1-2-3-GNN (no DE) 0.449 0.306 0.00282 0.00286 0.0041 22.0 0.00023 0.220 0.218 0.268 0.205 0.0975
Nested 1-2-3-GNN (with DE) 0.433 0.265 0.00279 0.00276 0.0039 20.1 0.00015 0.205 0.200 0.249 0.253 0.0811

In Table 5, we color the cell with light green if the NGNN (no DE) is better than the base GNN, and757

mark the cell with green if the NGNN (with DE) is additionally better than the NGNN (no DE). From758

the results, we can first observe that NGNNs (no DE) generally outperform the base GNNs, validating759

that even without any feature augmentation the NGNN framework still enhances the performance760

of base GNNs. Furthermore, we can observe that if NGNN improves over the base GNN, adding761

DE features could further enlarge the performance improvement by achieving the smallest MAEs762

among the three (i.e., base GNN, NGNN (no DE) and NGNN (with DE)). This demonstrates the763

usefulness of augmenting NGNN with DE features. Note that adding such DE features can be done764

simultaneously with the rooted subgraph extraction process, which only adds a negligible amount of765

time. Thus, augmenting NGNN with DE features is almost a free yet powerful operation to further766

enhance NGNN’s power, which motivates us to make it a default component of NGNN.767
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