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1 Related Works1

Unsupervised pretraining for backbone. Recent unsupervised pretraining methods, which rely on2

pretext tasks to learn visual representations [8, 18, 16, 6, 9, 7, 27, 21, 30, 31], have shown considerable3

performance on transfer learning tasks, outperforming their supervised counterparts. However,4

compared with considerable performance gains on classification-related tasks, the improvement on5

dense-prediction tasks [20, 13] are limited. To this end, a growing number of works explore pretext6

tasks for object detection and instance segmentation. DenseCL [24] and PixPro [29] contrast pixel7

features on the same physical location under different views to learn pixel-level representations.8

DetCo [28] exploits supervision on features from different stages of the backbone and from global9

and local patches to learn consistent representations on image-level and patch-level. [1] proposes10

point-level region contrast, which enables the model to learn at the point-level to help localization,11

and at the region-level to help holistic object recognition. Despite the good performance, all these12

works only focus on pretraining the backbone of object detector, neglecting the detector heads. When13

these methods are transferred to object detection, the detector heads are initialized from scratch and14

do not benefit from pretraining, which limits their performance on object detection. In contrast, our15

JoinDet, which utilizes object priors generated by the model itself as supervision, pretrains the entire16

model to promote detector learning.17

Unsupervised pretraining for object detector. Pretraining the backbone with an pretext task for18

dense-prediction tasks leaves untrained detection heads which are also a core component when19

transferring to object detection [19]. Few works attempt to remedy this problem by pretraining20

the entire detector with various unsupervised pretext tasks. SoCo [26] utilizes selective search to21

generate object priors and perform contrastive learning on object-level features from the detector head.22

UP-DETR [10] and DETReg [2] pretrain the detection heads of DETR [3] by forcing them to predict23

object priors generated by randomly cropping and selective search, respectively. However, randomly24

cropping hardly provides any effective object prior, and selective search is a heuristics method which25

is time-consuming, independent from the pretraining process. In contrast to these methods, our26

proposed JoinDet jointly generates object priors and learns detection, which can gradually update the27

object priors with learned and improved ones for better supervision during pretraining.28

Attention in unsupervised pretraining as supervision. NNCLR [12] and DINO [5] show that the29

attention maps of the visual transformer can generate semantic segmentation masks even though the30

model is pretrained without labels. This suggests that self-learned attention can provide effective31

supervision for dense-prediction tasks. STEGO [17] utilizes off-the-shelf pretrained DINO to extract32

cross-image feature correspondence (cross-image attention) as supervision to distill segmentation33

features and train a unsupervised segmentation model. Different from STEGO, our JoinDet exploits34

the self-attention maps in the transformer encoder to generate multiple object priors as supervision35

during training. We also show that the self-attention maps can be jointly refined during training to36

generate progressive object priors for better supervision.37
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2 More experimental results38

One key factor that contributes to the success of JoinDet is using progressively refined object priors39

as supervision. We have already shown that the selection of effective object priors have a huge40

impact on finetuning performance in Sec.4 of the main text. Here, we provide more experimental41

results to explore the influence of hyperparameters in JoinDet and discuss the possible direction for42

future works. We implement experiments on single-scale deformable DETR [32]. Unless otherwise43

specified, we set the momentum coefficient in the Box Smooth Module as 0.45, the clustering IoU44

threshold in the Box Smooth Module as 0.48. The supervision generated from object priors is updated45

every 10 epochs by default. JoinDet is pretrained on COCO for 50 epochs and finetune on VOC for46

25 epochs. We train 3 different models with different random seeds and report the mean result of AP47

(COCO format) on VOC.48

2.1 Momentum coefficient in the Box Smooth Module49

The momentum coefficient ms in Box Smooth Module controls the shifting speed of supervision,50

which considers both precedent object priors and current object priors. We ablate the most suitable51

momentum coefficient for JoinDet in Tab. 1. Firstly, small momentum coefficients, which are smaller52

than 0.45, represent relative fast shifting speed of supervision, showing significant performance53

drops. Concretely, when ms = 0, the supervision will be directly replaced with current object priors,54

neglecting useful precedent object priors and leading to -2.4 AP drop. Second, when the shifting55

speed is too slow (ms = 0.70), behindhand object priors are insufficient to guide the current model,56

which is also harmful (55.4 AP→53.7 AP) for JoinDet.57

Table 1: Pretrain JoinDet with different momentum coefficients. When momentum coefficient
ms = 0, the supervision will be directly changed to current object priors. AP on VOC is reported.

Method ms 10 epochs 25 epochs

DETReg - 46.0 53.9

JoinDet

0.70 47.1 53.7
0.45 49.0 55.3
0.20 48.3 54.3
0.05 47.7 54.3

0 48.0 53.0

2.2 Clustering IoU threshold in the Box Smooth Module58

When precedent object priors and current object priors have large IoUs, which are bigger than the59

threshold, corresponding priors (boxes) will be clustered in the same cluster. The box coordinates60

and scores of all boxes in a specific cluster will be used to generate a new box for supervision.61

Experimental results of using different clustering IoU thresholds are summarized in Tab. 2. First, we62

find 0.48 as an optimal hyperparameter, suggesting that duplicate object priors with larger thresholds63

and scarce object priors with smaller thresholds are both harmful for pretraining. Second, the64

performance variation with different cluter IoU thresholds are relatively slight (at most -1.3 AP),65

which indicates that our proposed method is robust to the clustering IoU thresholds.66

2.3 Update frequency67

As generated object priors are progressively refined during pretraining, we update object priors every68

10 epochs as the supervision. As shown in Tab. 3, when the momentum coefficient is fixed (0.45),69

updating the supervision too frequently (every 1 epoch) leads to a significant performance drop,70

which indicates that a stable supervision is very important to unsupervised pretraining for object71

detector. We argue that the performance drop brought by frequent updating can be remedied with a72

proper momentum coefficient as discussed in Sec.2 of the main text, which we remain for the future73

work.74
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Table 2: Pretrain JoinDet with different clustering IoU thresholds. AP on VOC is reported.

Method IoU threshold 10 epochs 25 epochs

DETReg - 46.0 53.9

JoinDet

0.35 46.2 54.1
0.40 47.1 53.9
0.48 49.0 55.4
0.55 48.1 54.8
0.60 48.4 54.9
0.65 47.9 54.8

Table 3: Pretrain JoinDet with different update frequencies. AP on VOC is reported.

Method Update frequency 10 epochs 25 epochs

DETReg - 46.0 53.9

JoinDet

1 epoch 40.7 51.3
5 epochs 46.6 54.0

10 epochs 49.0 55.4
20 epochs 46.8 54.6

3 Additional visualization75

Fig. 1 visualizes more progressively refined object priors by JoinDet and fixed object priors by76

selective search. For select search, we only visualize top 15 object priors. JoinDet generates object77

priors with less background regions than selective search.78

4 The eigen attention map computation method K79

According to [25], the eigen attention map in the vision transformer can highlight salient foregrounds80

by partitioning all features fi ∈ Rc in output patch features F ∈ Rh×w×c into the background set Fb81

and the foreground set Ff , where i ∈ [1, hw], and h, w, c denote the height, width, and dimension of82

output patch features F , respectively. Following [25, 23], we fix the feature partition task by solving83

a group partition problem on a self-similarity graph S = (V,U), where the nodes V represent all84

features on F and the edges U are based on the cosine similarity between corresponding features,85

which can be computed by86

Ui,j =

{
1, if cos(fi, fj) ≥ τ

ϵ, otherwise
,

cos(fi, fj) =
⟨fi, fj⟩

∥fi∥2 · ∥fj∥2
,

(1)

where Ui,j denotes the edge between feature fi and feature fj , cos denotes the cosine similarity, τ87

is a hyper-parameter and ϵ equals a small positive value to ensure that the graph is fully-connected.88

To partition the graph S into tow disjoint sets Ff and Fb, we simply remove edges connecting the89

two parts. The optimal bi-partitioning of the graph S can be solved by minimizing the Ncut energy90

E [23, 25]:91

min
Ff ,Fb

E(Ff ,Fb) = min
Ff ,Fb

[
C(Ff ,Fb)

C(Ff ,V)
+

C(Ff ,Fb)

C(Fb,V)

]
, (2)

where C(Fb,Ff ) =
∑

u∈Fb,t∈Ff Uu,t measures the degree of similarity between two sets. By92

reducing Eq. 2, maximizing the similarity within the sets and minimizing the dissimilarity between93

two sets can be satisfied simultaneously [23].94

Let 1 be an vector of all ones, and x be an dimensional indicator vector, xi = 1 if node i is is in Ff95

and -1, otherwise. Indicating in [23], the optimization problem in Eq. 2, which is NP-complete, can96
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JoinDet Selective search(training epochs) 

Figure 1: Evolution of object priors generated by JoinDet and object priors generated by selective
search. We show that progressively refined object priors in JoinDet contains less background regions.
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be equivalently substituted by97

min
x

E(x) = min
y

yT (D− U)y
yTDy

, (3)

where D is a diagonal matrix with total connection from node i to all other nodes d(i) =
∑

j Ui,j on98

its diagonal, y ∈ {1,−b} and b satisfies yTD1 = 0.99

Eq. 3 is the Rayleigh quotient [15]. If y is relaxed to take on real values, Eq. 3 can be minimized by100

solving101

(D− U)y = λDy. (4)

Let z = D− 1
2y, we can rewrite Eq. 4 as102

D− 1
2 (D− U)D− 1

2 z = λz. (5)

And the energy in 3 can be rewrote as103

min
z

zTD− 1
2 (D− U)D− 1

2 z

zT z
. (6)

It can be easily proofed that z0 = D− 1
21 is an eigenvector of Eq. 5 with eigenvalue of 0, which104

satisfied the constraint yTD1 = 0. As (D−U), called the Laplacian matrix, is positive semidefinite,105

D− 1
2 (D− U)D− 1

2 is symmetric positive semidefinite [22]. Therefore z0 is the smallest eigenvector106

of Eq. 5, and z1, the second smallest eigenvector of Eq. 5, is perpendicular to z0 [23]. According to107

the Rayleigh quotient [15], z1, the second smallest eigenvector of Eq. 5, is the real valued solution to108

minimize the energy in Eq. 6,109

z1 = argmin
zT z0

zTD− 1
2 (D− U)D− 1

2 z

zT z
. (7)

Consequently, taking z = D− 1
2y,110

y1 = argmin
yTD1=0

yT (D− U)y
yTDy

. (8)

Therefore, y1, the second smallest eigenvectoer of Eq. 4, is the real valued solution that achieves the111

optimal partition with Ncut energy E in Eq. 2.112

We then reshape the second smallest eigenvectoer y1 to the eigen attention map M ∈ Rh×w, which113

has the same height and width with output patch features F .114

5 Training Details115

5.1 Pretraining116

Following DETReg [2], we initialize the ResNet50 backbone of JoinDet with SwAV [4], which was117

pretrained on ImageNet1K [11] for 800 epochs, and fix the backbone during pretraining. Furthermore,118

a same SwAV encoder is used to extract features of object priors, which are cropped and resized119

to 128 × 128. JoinDet follows the default hyperparameter setting and training strategy used in120

Deformable DETR [32], except that the object embbeding loss with loss weight 1. On COCO [20],121

models are trained for 50 epochs and the learning rate is decayed by a factor of 0.1 at epoch 40.122

On ImageNet [11], following DETReg [2], we train models for 5 epochs. Following Deformable123

DETR [32], we train our models using the Adam optimizer with a base learning rate of 2×10−4, β1 =124

0.9, β2 = 0.999, and set the weight decay as 10−4. We use large scale jittering mentioned in [14] as125

additional augmentation to alleviate the scale imbalance problem in generated object priors.126

5.2 Evaluation127

We finetune JoinDet on COCO [20], VOC [13] to evaluate our method. When finetuning, the original128

classification branch fcls and the object embbeding branch are dropped. We initial a new classification129
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branch using a single fully-connect layer with output dimension c, where c denotes the total categories130

in the downstream detection datasets.131

Full-data finetuning. For COCO, we finetune models for 50 epochs and the learning rate is decayed132

by a factor of 0.1 at the 40-th epoch. For VOC, following DETReg [2], models are trained for 100133

epochs with the learning rate decayed by a factor of 0.1 at the 70-th epoch.134

Low-Data regimes object detection. Following DETReg [2], we finetune JoinDet with 1%, 10%135

COCO training set data with 2000 epochs, 400 epochs, respectively. The base learning rate is set as136

2× 10−4 and the learning rate is decayed by a factor of 0.1 at the 1400-th epoch, the 280-th epoch,137

respectively.138

6 Broader impact139

We present a more effective general unsupervised object detection pretraining method which can140

jointly generate object priors and learn to detect. Compared with supervised learning, our method141

eases the burden of expansive and time-consuming manual labels and benefits from rapidly increasing142

real-word data. Meanwhile, our method can promote the development on smart healthcare because it143

can be directly use on medical images without labeling by expertise.144

However, several potential issues should be taken into consideration when applied it in real-world145

scenario. First, similar to other learning methods, there still remains concerns about the interpretability146

and robustness. Second, pretrained on manually collected datasets, the method might learn biased147

features when given with biased datasets. Finally, like other unsupervised pretraining methods, our148

method relies on extra epochs to pretrain the model, which is not efficient during pretraining, leading149

to more electricity consumption.150
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