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Abstract

It is a commonly held belief that enforcing invariance improves generalisation.1

Although this approach enjoys widespread popularity, it is only very recently that2

a rigorous theoretical demonstration of this benefit has been established. In this3

work we build on the function space perspective of Elesedy and Zaidi [8] to derive4

a strictly non-zero generalisation benefit of incorporating invariance in kernel ridge5

regression when the target is invariant to the action of a compact group. We study6

invariance enforced by feature averaging and find that generalisation is governed7

by a notion of effective dimension that arises from the interplay between the kernel8

and the group. In building towards this result, we find that the action of the group9

induces an orthogonal decomposition of both the reproducing kernel Hilbert space10

and its kernel, which may be of interest in its own right.11

1 Introduction12

Recently, there has been significant interest in models that are invariant to the action of a group13

on their inputs. It is believed that engineering models in this way improves sample efficiency and14

generalisation. Intuitively, if a task has an invariance, then a model that is constructed to be invariant15

ahead of time should require fewer examples to generalise than one that must learn to be invariant.16

Indeed, there are many application domains, such as fundamental physics or medical imaging, in17

which the invariance is known a priori [30, 32]. Although this intuition is certainly not new (e.g. [33]),18

it has inspired much recent work (for instance, see [36, 16]).19

However, while implementations and practical applications abound, until very recently a rigorous20

theoretical justification for invariance was missing. As pointed out in [8], many prior works such21

as [29, 25] provide only worst-case guarantees on the performance of invariant algorithms. It follows22

that these results do not rule out the possibility of modern training algorithms automatically favouring23

invariant models, irrespective of the choice of architecture. Steps towards a more concrete theory of24

the benefit of invariance have been taken by [8, 21] and our work is a continuation along the path set25

by [8].26

In this work we provide a precise characterisation of the generalisation benefit of invariance in27

kernel ridge regression. In contrast to [29, 25], this proves a provably strict generalisation benefit for28

invariant, feature-averaged models. In deriving this result, we provide insights into the structure of29

reproducing kernel Hilbert spaces in relation to invariant functions that we believe will be useful for30

analysing invariance in other kernel algorithms.31

The use of feature averaging to produce invariant predictors enjoys both theoretical and practical32

success [18, 9]. For the purposes of this work, feature averaging is defined as training a model33

as normal (according to any algorithm) and then transforming the learned model to be invariant.34

This transformation is done by orbit-averaging, which means projecting the model on the space of35

invariant functions using the operator O introduced in Section 2.3.36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Kernel methods have a long been a mainstay of machine learning (see [31, Section 4.7] for a brief37

historical overview). Kernels can be viewed as mapping the input data into a potentially infinite38

dimensional feature space, which allows for analytically tractable inference with non-linear predictors.39

While modern machine learning practice is dominated by neural networks, kernels remain at the core40

of much of modern theory. The most notable instance of this is the theory surrounding the neural41

tangent kernel [12], which states that the functions realised by an infinitely wide neural network42

belong to a reproducing kernel Hilbert space (RKHS) with a kernel determined by the network43

architecture. This relation has led to many results on the theory of optimisation and generalisation44

of wide neural networks (e.g. [15, 3]). In the same vein, via the NTK, we believe the results of this45

paper can be extended to study wide, invariant neural networks.46

1.1 Summary of Contributions47

This paper builds towards a precise characterisation of the benefit of incorporating invariance in48

kernel ridge regression by feature averaging.49

Lemma 3, given in Section 3, forms the basis of our work, showing that the action of the group G on50

the input space induces an orthogonal decomposition of the RKHSH as51

H = HS ⊕HA
where each term is an RKHS andHS consists of all of the invariant functions inH. We stress that,52

while the main results of this paper concern kernel ridge regression, Lemma 3 holds regardless of53

training algorithm and could be used to explore invariance in other kernel methods.54

Our main results are given in Section 4 and we outline them here. We define the generalisation gap55

∆(f, f ′) for two predictors f, f ′ as the difference in their test errors. If ∆(f, f ′) > 0 then f has56

strictly better test performance than f ′. Theorem 5 describes ∆(f, f ′) for f being the solution to57

kernel ridge regression and f ′ its invariant (feature averaged) version and shows that it is positive58

when the target is invariant.59

More specifically, let X ∼ µ where µ is G-invariant and Y = f∗(X) + ξ with f∗ G-invariant and60

E[ξ] = 0, E[ξ2] = σ2 < ∞. Let f be the solution to kernel ridge regression with kernel k and61

regularisation parameter ρ > 0 on n i.i.d. training examples {(Xi, Yi) ∼ (X,Y ) : i = 1, . . . , n} and62

let f ′ be its feature averaged version. Our main result, Theorem 5, says that63

E[∆(f, f ′)] ≥ σ2 dimeff(HA) + E
(
√
nMk + ρ/

√
n)2

where Mk = supx k(x, x) < ∞, E ≥ 0 describes the approximation errors and dimeff(HA) is the64

effective dimension of the RHKS HA. For an RKHS H with kernel k the effective dimension is65

defined by66

dimeff(H) =

∫
X
k(x, y)2 dµ(x) dµ(y).

where X = suppµ. We return to this quantity at various points in the paper. Finally, for intuition,67

in Theorem 7 we specialise Theorem 5 to the linear setting and compute the bound exactly.68

Assumptions and technical conditions are given in Section 2 along with an outline of the ideas69

of Elesedy and Zaidi [8] on which we build. Related works are discussed in Section 5.70

2 Background and Preliminaries71

In this section we provide a brief introduction to reproducing kernel Hilbert spaces (RKHS) and72

the ideas we borrow from Elesedy and Zaidi [8]. Throughout this paper,H with be an RKHS with73

kernel k. In Section 2.2 we state some topological and measurability assumptions that are needed74

for our proofs. These conditions are benign and the reader not interested in technicalities need take75

from Section 2.2 only that µ is G-invariant and that the kernel k is bounded and satisfies Eq. (1). We76

defer some background and technical results to Appendices B and C respectively.77

2.1 RKHS Basics78

A Hilbert space is an inner product space that is complete with respect to the norm topology induced79

by the inner product. A reproducing kernel Hilbert space (RKHS)H is Hilbert space of real functions80

f : X → R on which the evaluation functional δx : H → R with δx[f ] = f(x) is continuous81
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∀x ∈ X , or, equivalently is a bounded operator. The Reisz Representation Theorem tells us that there82

is a unique function kx ∈ H such that δx[f ] = 〈kx, f〉H for any f ∈ H, where 〈·, ·〉H : H×H → R83

is the inner product onH. We identify the function k : X ×X → R with k(x, y) = 〈kx, ky〉H as the84

reproducing kernel ofH. Using the inner product representation, one can see that k is positive-definite85

and symmetric. Conversely, the Moore-Aronszajn Theorem shows that for any positive-definite and86

symmetric function k, there is a unique RKHS with reproducing kernel k. In addition, any Hilbert87

space admitting a reproducing kernel is an RKHS. Finally, another characterisation of H is as the88

completion of the set of linear combinations of the form fc(x) =
∑n
i=1 cik(x, xi) for c1, . . . , cn ∈ R89

and x1, . . . , xn ∈ X . For (many) more details, see [31, Chapter 4].90

2.2 Technical Setup and Assumptions91

Input Space, Group and Measures Let G be a compact, second countable, Hausdorff topological92

group with Haar measure λ (see [13, Theorem 2.27]). Let X be a non-empty Polish space admitting93

a finite, G-invariant Borel measure µ, with suppµ = X . We normalise µ(X ) = λ(G) = 1, the latter94

is possible because λ is a Radon measure. We assume that G has a measurable action on X that we95

will write as gx for g ∈ G, x ∈ X . A measurable action is one such that the map g : G × X → X96

is (λ ⊗ µ)-measurable. A function f : X → R is G-invariant if f(gx) = f(x) ∀x ∈ X ∀g ∈ G.97

Similarly, a measure µ on X is G-invariant if ∀g ∈ G and any µ-measurable B ⊂ X the pushforward98

of µ by the action of G equals µ, i.e. (g∗µ)(B) = µ(B). This means that if X ∼ µ then gX ∼ µ99

∀g ∈ G. We will make use of the fact that the Haar measure is G-invariant when G acts on itself by100

either left or right multiplication, the latter holding because G is compact. Up to normalisation, λ is101

the unique measure on G with this property.102

The Kernel and the RKHS Let k : X × X → R be a measurable kernel with RKHSH such that103

k(·, x) : X → R is continuous for any x ∈ X . Assume that supx∈X k(x, x) = Mk < ∞ and note104

that this implies that k is bounded since105

k(x, x′) = 〈kx, kx′〉H ≤ ‖kx‖H‖kx′‖H =
√
k(x, x)

√
k(x′, x′) ≤Mk

Every f ∈ H is µ-measurable, bounded and continuous by [31, Lemmas 4.24 and 4.28] and in106

addition H is separable using [31, Lemma 4.33]. These conditions allow the application of [31,107

Theorem 4.26] to relateH to L2(X , µ) in the proofs building towards Lemma 3, given in Appendix C.108

We assume that the kernel satisfies, for all x, y ∈ X ,109 ∫
G
k(gx, y) dλ(g) =

∫
G
k(x, gy) dλ(g). (1)

For this it is sufficient to have k(gx, y) equal to k(x, gy) or k(x, g−1y), the latter uses compactness110

(hence unimodularity) of G to change variables g ↔ g−1. Highlighting two special cases: any111

inner product kernel k(x, x′) = κ(〈x, x′〉) such that the action of G is unitary with respect to 〈·, ·〉112

satisfies Eq. (1), as does any stationary kernel k(x, x′) = κ(‖x− x′‖) with norm that is preserved by113

G in the sense that ‖gx− gx′‖ = ‖x− x′‖ for any g ∈ G, x, x′ ∈ X .114

2.3 Invariance from a Function Space Perspective115

Given a function f : X → R we can define a corresponding orbit-averaged function Of : X → R116

with values117

Of(x) =

∫
G
f(gx) dλ(g).

Of will exist whenever f is µ-measurable. Note that O is a linear operator and, from the invariance118

of λ, Of is always G-invariant. Interestingly, f is G-invariant only if f = Of . Elesedy and Zaidi [8]119

use these observations to characterise invariant functions and study their generalisation properties. In120

short, this work extends these insights to kernel methods. Along the way, we will make frequent use121

of the following (well known) facts about O.122

Lemma 1 ([8, Propositions 23 and 24]). A function f is G-invariant if and only if Of = f . This123

implies that O is a projection operator, so can have only two eigenvalues 0 and 1.124

Lemma 2 ([8, Lemma 1]). O : L2(X , µ) → L2(X , µ) is well-defined and self-adjoint. Hence,125

L2(X , µ) has the orthogonal decomposition126

L2(X , µ) = S ⊕A
where S = {f ∈ L2(X , µ) : f is G invariant} and A = {f ∈ L2(X , µ) : Of = 0}.127
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The meaning of Lemma 2 is that any f ∈ L2(X , µ) has a (unique) decomposition f = f̄ + f⊥128

where f̄ = Of is G-invariant and Of⊥ = 0. A noteworthy consequence of this setup, as discussed129

in [8], is a provably non-negative generalisation benefit for feature averaging. In particular, for130

any predictor f ∈ L2(X , µ), if the target f∗ ∈ L2(X , µ) is G-invariant then the test error R(f) =131

EX∼µ[(f(X)− f∗(X))2] satisfies132

R(f)−R(f̄) = ‖f⊥‖2L2(X ,µ) ≥ 0.

The same holds if the target is corrupted by independent, zero mean (additive) noise.133

3 Induced Structure ofH134

In this section we present Lemma 3, which is an analog of Lemma 2 for RKHSs. Lemma 3 shows that135

for any compact group G and RKHSH, if the kernel forH satisfies the assumptions in Section 2.2,136

thenH can be viewed as being built from two orthogonal RKHSs, one consisting of invariant functions137

and another of those that vanish when averaged over G. Later in the paper, this decomposition will138

allow us to analyse the generalisation benefit of invariant predictors.139

It may seem at first glance that Lemma 3 should follow immediately from Lemma 2, but this is140

not the case. First, it is not obvious that for any f ∈ H, its orbit averaged version Of is also in H.141

Moreover, in contrast with L2(X , µ), an explicit form for the inner product onH is not immediate,142

which means that some work is needed to check that O is self-adjoint on H. These are important143

requirements for the proofs of both Lemmas 2 and 3 and we establish them, along with O being144

continuous onH, in Lemmas C.6 and C.7 and Corollary C.8 respectively. The assumption that the145

kernel satisfies Eq. (1) plays a central role.146

Lemma 3. H admits the orthogonal decomposition147

H = HS ⊕HA
whereHS = {f ∈ H : f is G-invariant} andHA = {f ∈ H : Of = 0}. Moreover,HS is an RKHS148

with kernel149

k̄(x, y) =

∫
G
k(x, gy) dλ(g)

andHA is an RKHS with kernel150

k⊥(x, y) = k(x, y)− k̄(x, y).

Finally, k̄ is G-invariant in both arguments.151

Proof. From Lemma 1 we know that O is a projection operator. Since it is self-adjoint, O is even an152

orthogonal projection onH: let hS have eigenvalue 1 and hA have eigenvalue 0 under O, then153

〈hS , hA〉H = 〈OhS , hA〉H = 〈hS ,OhA〉H = 0.

Therefore, by linearity, for any f ∈ H we can write f = f̄ + f⊥ where f̄ = Of ∈ HS is G-invariant154

and f⊥ = f −Of ∈ HA and these terms are mutually orthogonal.155

By the linearity of O, it is clear that HS = OH is an inner product space. It is easy to show that156

O being continuous implies HS is complete. Thus HS is a Hilbert space, and an RKHS since the157

evaluation functional is clearly continuous onHS ⊂ H. For any hS ∈ HS we have158

hS(x) = 〈hS , kx〉H = 〈hS ,Okx〉H = 〈hS , k̄x〉H
and the uniqueness afforded by the Reisz representation theorem tells us that the reproducing kernel159

for HS is k̄(x, y) =
∫
G k(x, gy) dλ(g). We have ‖id−O‖ ≤ 2 and we can do the same argument160

to show that HA is an RKHS with reproducing kernel k⊥ as claimed. Note that one can write161

k⊥(x, y) = 〈k⊥x , k⊥y 〉H so it must be positive-definite. The G-invariance of k̄(x, y) in both arguments162

is immediate from Eq. (1) and Lemma 1.163

As stated earlier, the perspective provided by Lemma 3 will support our analysis of generalisation.164

Just as with Lemma 2, Lemma 3 says that any f ∈ H can be written as f = f̄ + f⊥ where f̄ is165

G-invariant andOf⊥ = 0 with 〈f̄ , f⊥〉H = 0. As an aside, k̄ happens to qualify as a Haar Integration166

Kernel, a concept introduced by Haasdonk, Vossen, and Burkhardt [10]. We will see that a notion167

of effective dimension of the RKHSHA with kernel k⊥ governs the generalisation gap between an168

arbitrary predictor f and its invariant version Of . This effective dimension arises from the spectral169

theory of an integral operator related to k, which we develop in the next section.170
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3.1 Spectral Representation and Effective Dimension171

In this section we consider the spectrum of an integral operator related to the kernel k. This analysis172

will ultimately allow us to define a notion of effective dimension of HA that we will later see is173

important to the generalisation of invariant predictors. While the integral operator setup is standard,174

the use of this technique to identify an effective dimension ofHA is novel.175

Define the integral operator Sk : L2(X , µ)→ H by176

Skf(x) =

∫
X
k(x, x′)f(x′) dµ(x′).

One way of viewing things is that Sk assigns to every element in L2(X , µ) a function in H. On177

the other hand, every f ∈ H is bounded so has ‖f‖L2(X ,µ) < ∞ and belongs to some element of178

L2(X , µ). We write ι : H → L2(X , µ) for the inclusion map that sends f to the element of L2(X , µ)179

that contains f . In Lemma C.1 we show that ι is injective, so any element of L2(X , µ) contains at180

most one f ∈ H.181

One can define Tk : L2(X , µ)→ L2(X , µ) by Tk = ι ◦ Sk, and [31, Theorem 4.27] says that Tk is182

compact, positive, self-adjoint and trace-class. In addition, L2(X , µ) is separable by [7, Proposition183

3.4.5], because X is Polish and µ is a Borel measure, so has a countable orthonormal basis. Hence,184

by the Spectral Theorem, there exists a countable orthonormal basis {ẽi} for L2(X , µ) such that185

Tkẽi = λiẽi where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues of Tk. Moreover, since ι is injective, for186

each of the ẽi for which λi > 0 there is a unique ei ∈ H such that ιei = ẽi and Skẽi = λiei.187

Now, since ιkx ∈ L2(X , µ) we have188

ιkx =
∑
i

〈ιkx, ẽi〉L2(X ,µ)ẽi =
∑
i

(Skẽi)(x)ẽi =
∑
i

λiei(x)ẽi. (2)

From now on we permit ourself to drop the ι to reduce clutter. We use the above to define189

j(x, y) = 〈kx, ky〉L2(X ,µ), j̄(x, y) = 〈k̄x, k̄y〉L2(X ,µ) and j⊥(x, y) = 〈k⊥x , k⊥y 〉L2(X ,µ).

These quantities will appear again in our analysis of the generalisation of invariant kernel methods.190

Indeed, we will see later in this section that E[j⊥(X,X)] is a type of effective dimension of HA.191

Following Eq. (2), one finds the series representations given below in Lemma 4.192

The reader may have noticed that our setup is very similar to the one provided by Mercer’s theorem.193

However, we do not assume compactness of X and so (the classical form of) Mercer’s Theorem does194

not apply. In particular, the set {ei} (even when scaled appropriately) need not form an orthonormal195

basis inH. This aspect of our work is a feature, rather than a bug: the loosening of the compactness196

condition allows application to common settings such as X = Rn.197

Lemma 4. We have198

j = j̄ + j⊥.

Furthermore, let ēi = Oei and e⊥i = ei − ēi then199

j(x, y) =
∑
i

λ2i ei(x)ei(y), j̄(x, y) =
∑
i

λ2i ēi(x)ēi(y), and j⊥(x, y) =
∑
i

λ2i e
⊥
i (x)e⊥j (y).

Finally, the function
∑
i λ

2
i ēi ⊗ e⊥i : X × X → R vanishes everywhere.200

Proof. We show in Lemma C.2 that O and Sk commute on L2(X , µ) and O is self-adjoint on201

L2(X , µ) by Lemma 1, so O and ι (the adjoint of Sk by [31, Theorem 4.26]) must also commute.202

The first comment is then immediate from the observation that if a ∈ HS and b ∈ HA one has203

〈ιa, ιb〉L2(X ,µ) = 〈ιOa, ιb〉L2(X ,µ) = 〈Oιa, ιb〉L2(X ,µ) = 〈ιa, ιOb〉L2(X ,µ) = 0.

We also have both of204

〈ιk̄x, ẽi〉L2(X ,µ) = 〈ιkx,Oẽi〉L2(X ,µ) = SkOẽi = OSkẽi = λiēi

and205

〈ιk⊥x , ẽi〉L2(X ,µ) = 〈ιkx, (id−O)ẽi〉L2(X ,µ) = Sk(id−O)ẽi = (id−O)Skẽi = λie
⊥
i .

Therefore ιk̄x =
∑
i λiēi(x)ẽi and ιk⊥x =

∑
i λie

⊥
i (x)ẽi. Taking inner products on L2(X , µ) gives206

the remaining results.207
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Before turning to generalisation, we describe how the above quantities can be used to define a measure208

effective dimension. We define209

dimeff(H) = E[j(X,X)]

where X ∼ µ. Applying Fubini’s theorem, we find210

dimeff(H) =
∑
i

λ2i E[ei(X)2] =
∑
i

λ2i ‖ẽi‖2L2(X ,µ) =
∑
i

λ2i .

The series converges by the comparison test because λi ≥ 0 and
∑
i λi = Tr(Tk) < ∞. We have211

dimeff(H) = Tr(T 2
k ) and we can think of this (very informally) as taking L2(X , µ), pushing it212

throughH twice using Tk and then measuring its size. Now because j = j̄ + j⊥ we get213

dimeff(H) = dimeff(HS) + dimeff(HA)

with214

dimeff(HA) =
∑
i

λ2i ‖ẽ⊥i ‖2L2(X ,µ) = Tr(T 2
k )− Tr((OTk)2)

where ẽ⊥i = ιe⊥i . Again, very informally, this can be thought of as pushing L2(X , µ) through HA215

twice and measuring the size of the output. In the next section we will consider the generalisation of216

kernel ridge regression and find that dimeff(HA) plays a critical role.217

4 Generalisation218

In this section we apply the theory developed in Section 3 to study the impact of invariance on kernel219

ridge regression with an invariant target. We analyse the generalisation benefit of feature averaging,220

finding a strict benefit when the target is G-invariant.221

4.1 Kernel Ridge Regression222

Given input/output pairs {(xi, yi) : i = 1, . . . , n} where xi ∈ X and yi ∈ R, kernel ridge regression223

(KRR) returns a predictor that solves the optimisation problem224

argmin
f∈H

C(f) where C(f) =

n∑
i=1

(f(xi)− yi)2 + ρ‖f‖2H (3)

and ρ > 0 is the regularisation parameter. KRR can be thought of as performing ridge regression in a225

possibly infinite dimensional feature spaceH. The representer theorem tells us that the solution to226

this problem is of the form f(x) =
∑n
i=1 αikxi

(x) where α ∈ Rn solves227

argmin
α∈Rn

{
‖Y −Kα‖22 + ρα>Kα

}
, (4)

Y ∈ Rn is the standard row-stacking of the training outputs with Yi = yi and K is the kernel Gram228

matrix with Kij = k(xi, xj). We consider solutions of the form1 α = (K + ρI)−1Y which results229

in the predictor230

f(x) = kx(X)>(K + ρI)−1Y

where kx(X) ∈ Rn is the vector with components kx(X)i = kx(xi). We will compare the231

generalisation performance of this predictor with that of its averaged version232

f̄ = k̄x(X)>(K + ρI)−1Y ∈ HS .

To do this we look at the generalisation gap.233

1When K is a positive definite matrix this will be the only solution. If K is singular then ∃c ∈ Rn with∑
ij Kijcicj = ‖

∑
i cikxi‖2H = 0 so

∑
i cikxi is identically 0 and ∀f ∈ H we get

∑
i cif(xi) = 0 (see [19,

Section 4.6.2]). Clearly, this can’t happen if H is sufficiently expressive. In any case, the chosen α is the
minimum in Euclidean norm of all possible solutions.
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4.2 Generalisation Gap234

The generalisation gap is a quantity that compares the expected test performances of two predictors235

on a given task. Given a probability distribution P, data (X,Y ) ∼ P and loss function l defining a236

supervised learning task, we define the generalisation gap between two predictors f and f ′ to be237

∆(f, f ′) = E[l(f(X), Y )]− E[l(f ′(X), Y )]

where the expectations are conditional on the given realisations of f, f ′ if the predictors are random.238

In this paper we consider l(a, b) = (a−b)2 the squared-error loss and we will assume Y = f∗(X)+ξ239

for some target function f∗ where ξ is has mean 0, finite variance and is independent of X . In this240

case, the generalisation gap reduces to241

∆(f, f ′) = E[(f(X)− f∗(X))2]− E[(f ′(X)− f∗(X))2].

Clearly, if ∆(f, f ′) > 0 then we expect strictly better test performance from f ′ than f .242

4.3 Generalisation Benefit of Feature Averaging243

We are now in a position to give our main result, which is a characterisation of the generalisation244

benefit of invariance in kernel methods. This is in some sense a generalisation of [8, Theorem 6]245

and we will return to this comparison later. We emphasise that Theorem 5 holds under quite general246

conditions that cover many practical applications.247

Theorem 5. Let the training data be {(Xi, Yi) : i = 1, . . . , n} i.i.d. with Yi = f∗(Xi) + ξi where248

Xi ∼ µ, f∗ ∈ L2(X , µ) is G-invariant and {ξi : i = 1, . . . , n} are independent of each other and the249

{Xi}, with E[ξi] = 0 and E[ξ2i ] = σ2 < ∞. Let f = argminf∈H C(f) be the solution to Eq. (3)250

and let f̄ = Of ∈ HS be the result of applying feature averaging to f , then the generalisation gap251

with the squared-error loss satisfies252

E[∆(f, f̄)] ≥ σ2 dimeff(HA) + E[f∗(X)2j⊥(X,X)]

(
√
nMk + ρ/

√
n)2

where each term is non-negative and253

dimeff(HA) := Tr(T 2
k )− Tr((OTk)2) = E[j⊥(X,X)] =

∑
α

λ2α‖ẽ⊥α‖2L2(X ,µ) ≥ 0

is the effective dimension ofHA.254

Proof. Let J⊥ be the Gram matrix with components J⊥ij = j⊥(Xi, Xj) let u ∈ Rn have components255

ui = f∗(xi). We can use Lemma 2 to get256

∆(f, f̄) = E[(k⊥X(X)>(K + ρI)−1Y )2|X,Y ]

where k⊥x(X) ∈ Rn with k⊥x(X)i = k⊥x(Xi). Let ξ ∈ Rn have components ξi = ξi then one finds257

E[∆(f, f̄)|X] = E[(k⊥X(X)>(K + ρI)−1u)2|X] + E[(k⊥X(X)>(K + ρI)−1ξ)2|X]

= u>(K + ρI)−1J⊥(K + ρI)−1u+ σ2 Tr
(
J⊥(K + ρI)−2

)
where the first equality follows because ξ has mean 0 and the second comes from the trace trick.258

The first term vanishes in expectation. To see this, first note that it is non-negative because J⊥ is259

positive semi-definite, while at the same time Consider the first term. We have260

u>(K + ρI)−1J⊥(K + ρI)−1u = Tr((K + ρI)−1J⊥(K + ρI)−1uu>)

applying Corollary B.2 twice and using Lemma B.3 with boundedness of the kernel gives261

u>(K + ρI)−1J⊥(K + ρI)−1u ≥ λmin((K + ρI)−1)2 Tr(J⊥uu>) ≥ u>J⊥u

(Mn+ ρ)2

so262

E[u>(K + ρI)−1J⊥(K + ρI)−1u] ≥ E[u>J⊥u]

(Mn+ ρ)2
=

∑
ij E[f∗(Xi)f

∗(Xj)j
⊥(Xi, Xj)]

(Mn+ ρ)2
.
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It remains to show that the above vanishes when i 6= j. Using Lemma 4 we have263

E[f∗(Xi)f
∗(Xj)j

⊥(Xi, Xj)] = E[f∗(Xi)f
∗(Xj)

∑
α

λ2αe
⊥
α(Xi)e

⊥
α(Xj)].

By Fubini’s theorem, since the counting measure on α is σ-finite, we can exchange the expectation264

and the sum as long as265 ∑
α

λ2α E[f∗(Xi)f
∗(Xj)e

⊥
α(Xi)e

⊥
α(Xj)] <∞.

On the other hand, since i 6= j each term is just E[f∗(X)e⊥α(X)]2 = 〈ιf∗, ẽ⊥α〉2L2(X ,µ) = 0 by the266

G-invariance of f∗ and the orthogonality in Lemma 2.267

Moving to the second term, we have again by two applications of Corollary B.2 and then Lemma B.3268

with boundedness of the kernel that269

Tr
(
J⊥(K + ρI)−2

)
≥ λmin

(
(K + ρI)−2

)
Tr(J⊥) ≥ Tr(J⊥)

(Mkn+ ρ)2

and then270

1

n
E[Tr(J⊥)] =

1

n

n∑
i=1

E

[∑
α

λ2αe
⊥
α(Xi)e

⊥
α(Xi)

]
=
∑
α

λ2α‖ẽ⊥α‖2L2(X ,µ)

=
∑
α

λ2α −
∑
α

λ2α‖Oẽα‖2L2(X ,µ)

= Tr(T 2
k )− Tr(T 2

kO)

where we exchange the expectation and sum again using Fubini’s theorem as we will justify now.271

Considering the sum in the second line, note that ‖ẽα‖2L2(X ,µ) = 1 = ‖Oẽα‖2L2(X ,µ) + ‖ẽ⊥α‖2L2(X ,µ)272

by Lemma 2 so the sum converges if
∑
i λ

2
i converges. However, Tk is both positive and trace-class273

from Section 3.1 so λi ≥ 0 and
∑
i λi < ∞ (using Lidskii’s theorem) so

∑
i λ

2
i converges by the274

comparison test.275

Theorem 5 shows that feature averaging is provably beneficial in terms of generalisation if the mean276

of the target distribution is invariant. If H contains any functions that are not G-invariant then the277

lower bound is strictly positive. One might think that, given enough training examples, the solution f278

to Eq. (3) would learn to be G-invariant. Theorem 5 shows that this cannot happen unless the number279

of examples dominates the effective dimension ofHA.280

Recall the subspace A in Lemma 2. The role of dimeff(HA) mirrors that of dimA in [8, Theorem 6]281

and in the context of the theorem (linear models) A can be thought of as HA when k is the linear282

kernel. In this sense Theorem 5 is a generalisation of [8, Theorem 6]. It is for this reason that we283

believe that, although the constant Mk in the denominator is likely not optimal, the O(1/n) rate that284

matches [8] is tight. We leave a more precise analysis of the constants to future work.285

The second term in the numerator can be interpreted as quantifying the differences in bias. One has286

by the definition of j⊥, that287

E[f∗(X)2j⊥(X,X)] =

∫
X
f∗(y)2k⊥(x, y)2 dµ(x) dµ(y) (5)

and we also have the following.288

Proposition 6.∫
X
f∗(y)2k⊥(x, y)2 dµ(x) dµ(y) =

∫
X
f∗(y)2

(
k(x, y)2 − k̄(x, y)2

)
dµ(x) dµ(y)
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Proof. Using k⊥ = k − k̄289 ∫
X
f∗(y)2k⊥(x, y)2 dµ(x) dµ(y) =

∫
X
f∗(y)2k(x, y)2 dµ(x) dµ(y)

− 2

∫
X
f∗(y)2k̄(x, y)k(x, y) dµ(x) dµ(y)

+

∫
X
f∗(y)2k̄(x, y)2 dµ(x) dµ(y)

while, since f∗ is G-invariant, µ is G-invariant and G is unimodular (because it is compact),290 ∫
X
f∗(y)2k̄(x, y)k(x, y) dµ(x) dµ(y) =

∫
X

∫
G
f∗(gy)2 dλ(g)k̄(x, y)k(x, y) dµ(x) dµ(y)

=

∫
X

∫
G
f∗(gy)2 dλ(g)k̄(x, y)k(x, y) dµ(x) dµ(y)

=

∫
X
f∗(y)2

∫
G
k̄(x, gy)k(x, gy) dλ(g) dµ(x) dµ(y)

=

∫
X
f∗(y)2k̄(x, y)2 dµ(x) dµ(y)

where the final line follows because k̄ is G-invariant.291

For intuition, we present a simple special case of Theorem 5. In particular, the next result shows292

that Eq. (5) reduces to an approximation error that is reminiscent of the one in [8, Theorem 6] in a293

linear setting. For the rest of this section we find it helpful to refer to the action φ of G explicitly,294

writing φ(g)x instead of gx.295

Theorem 7. Assume the setting and notation of Theorem 5. In addition, let X = Sd−1 be the unit296

d− 1 sphere and let µ = Unif(X ). Let G act via an orthogonal representation φ on X and define the297

matrix Φ =
∫
G φ(g) dλ(g). Let k(x, y) = x>y be the linear kernel and suppose f∗(x) = θ>x for298

some θ ∈ Rd. Then the bound in Theorem 5 becomes299

E[∆(f, f̄)] ≥ 1

(
√
n+ ρ/

√
n)2

(
d− ‖Φ‖2F

d2
+

(d− ‖Φ‖2F)‖θ‖22
d2(d+ 2)

)
where ‖·‖F is the Frobenius norm. The first term in the parenthesis is exactly dimeff(HA) and the300

second term is exactly E[f∗(X)2j⊥(X,X)].301

Proof. We will make use of the Einstein convention of summing repeated indices. Since µ is finite,302

by Fubini’s theorem we are free to integrate in any order throughout the proof. First of all notice that303

supx k(x, x) = 1 so Mk = 1. Now observe that304

k̄(x, y) = x>
∫
G
φ(g)y dλ(g) = x>Φy.

Then the first term in the numerator becomes305

dimeff(HA) = E[j⊥(X,X)]

= E[j(X,X)]− E[j̄(X,X)]

=

∫
X

k(x, y)2 dµ(x) dµ(y)−
∫
X

k̄(x, y)2 dµ(x) dµ(y)

=

∫
X
xaxbyayb dµ(x) dµ(y)−

∫
X

xaxbycyeΦacΦbe dµ(x) dµ(y)

=
1

d
− 1

d2
‖Φ‖2F.

Now for the second term. We calculate each term of the right hand side of Proposition 6 separately.306

We know that307

f∗(x)2k(x, y)2 = (θ>x)2(x>y)2 = θaθbycyexaxbxcxe.
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Integrating y first, we get308 ∫
X
f∗(x)2k(x, y)2 dµ(x) dµ(y) =

∫
X
θaθbycyexaxbxcxe dµ(x) dµ(y)

=
1

d

∫
X
θaθbxaxb dµ(x)

=
1

d2
‖θ‖22

Similarly, we find309 ∫
X
f∗(x)2k̄(x, y)2 dµ(x) dµ(y) =

∫
X
θaθbxaxbxcxeyfyhΦcfΦeh dµ(x) dµ(y)

=
1

d
θaθbΦcfΦef

∫
X
xaxbxcxe dµ(x).

The 4-tensor
∫
X xaxbxcxe dµ(x) is isotropic, so must have the form310 ∫

X
xaxbxcxe dµ(x) = αδabδce + βδacδbe + γδaeδbc

(see, e.g. Hodge [11]). By symmetry and exchangeability we have α = β = γ. Then contracting the311

first two indices gives312 ∫
X
xaxaxcxe dµ(x) =

1

d
δce = α(d+ 2)δce

so α = 1
d(d+2) and we end up with313 ∫
X
f∗(x)2k̄(x, y)2 dµ(x) dµ(y) =

‖θ‖22‖Φ‖2F + 2‖Φθ‖22
d2(d+ 2)

=
‖θ‖22(‖Φ‖2F + 2)

d2(d+ 2)

where the second equality comes from314

θ>Φx =

∫
G
θ>φ(g)xdλ(g) =

∫
G
f∗(φ(g)x) dλ(g) = f∗(x) = θ>x

for any x ∈ X . Putting everything together gives the result.315

One can confirm that the generalisation gap cannot be negative in Theorem 7 using Jensen’s inequality316

‖Φ‖2F =

∥∥∥∥∫
G
φ(g) dλ(g)

∥∥∥∥2
F
≤
∫
G
‖φ(g)‖2F dλ(g) =

∫
G

Tr(φ(g)>φ(g)) dλ(g) = Tr(I) = d

because the representation φ is orthgonal.317

The matrix Φ in Theorem 7 can be computed analytically for various G and in the linear setting318

describes the importance of the symmetry to the task. For instance, in the simple case that G = Sd the319

permutation group on d elements and φ is the natural representation in terms of permutation matrices,320

we have Φ = 1
d11

> where 1 ∈ Rd is the vector of all 1s. In this case, since the target is assumed to321

be G-invariant, we must have θ = t1 for some t ∈ R. Specifically, Theorem 7 then asserts322

E[∆(f, f̄)] ≥ (d− 1)(dt2 + d+ 2)

d2(d+ 2)(
√
n+ ρ/

√
n)2

.

5 Related Work323

Incorporating invariance into machine learning models is not a new idea. The majority of324

modern applications concern neural networks, but earlier work has used kernels [10], support325

vector machines [26] and polynomial feature spaces [27, 28]. Indeed, early work also considered326

invariant neural networks [33], using methods that seem to have been rediscovered in [24]. Modern327

implementations include invariant/equivariant convolutional architectures [4, 6] that are inspired by328

concepts from mathematical physics and harmonic analysis [14, 5]. Some of these models even enjoy329

universal approximation properties [20, 35].330
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The earliest attempt at theoretical justification for invariance of which we are aware is [1], which331

roughly states that enforcing invariance cannot increase the VC dimension of a model. Anselmi332

et al. [2] and Mroueh, Voinea, and Poggio [23] propose heuristic arguments for improved sample333

complexity of invariant models. Sokolic et al. [29] build on the work of Xu and Mannor [34] to obtain334

a generalisation bound for certain types of classifiers that are invariant to a finite set of transformations,335

while Sannai and Imaizumi [25] obtain a bound for models that are invariant to finite permutation336

groups. The PAC Bayes formulation is considered in [17, 18].337

The above works guarantee only a worst-case improvement and it was not until very recently338

that Elesedy and Zaidi [8] derived a strict benefit for invariant/equivariant models. Our work is similar339

to [8] in that we provide a provably strict benefit, but differs in its application to kernels and RKHSs340

as opposed to linear models. We are careful to state that our setting does not directly reduce to that341

of [8, Theorem 6] for two reasons. First, [8, Theorem 6] considers G invariant linear models without342

regularisation. This may turn out to be accessible by a ρ→ 0+ limit (the so called ridgeless limit)343

of Theorem 5. More importantly, linear regression is equivalent to kernel regression with the linear344

kernel. However, the linear kernel can be unbounded (e.g. on R), so does not meet our technical345

conditions in Section 2.2. We conjecture that the boundedness assumption on k can be removed, or at346

least with mild care weakened to hold µ-almost-surely.347

Also very recently, Mei, Misiakiewicz, and Montanari [21] analyse the generalisation benefit of348

invariance in kernels and random feature models. Our results differ from [21] in some key aspects.349

First, Mei, Misiakiewicz, and Montanari [21] focus kernel ridge regression with an invariant inner350

product kernel whereas we study symmetrised predictors from more general kernels. Second, they351

obtain an expression for the generalisation error that is conditional on the training data and in terms of352

the projection of the predictor onto a space of high degree polynomials, while we are able to integrate353

against the training data and express the generalisation benefit directly in terms of properties of the354

kernel and the group.355

6 Discussion356

We have demonstrated a provably strict generalisation benefit for feature averaging in kernel ridge357

regression. In doing this we have leveraged an observation on the structure of RKHSs under the358

action of compact groups. We believe that this observation is applicable to other kernel methods too.359

There are many possibilities for future work. As we remarked in the introduction, there is an360

established connection between kernels and wide neural networks via the neural tangent kernel. Using361

this connection, generalisation properties of wide, invariant neural networks might be accessible362

through the techniques of this paper. Another natural extension of this paper is to equivariant363

(sometimes called steerable) matrix valued kernels. Finally, the ideas of this paper should also be364

applicable to Gaussian processes.365

A Notation and Definitions366

Trace of a linear operator A : V → V on a inner product space V is defined by367

Tr(A) =
∑
i

〈Avi, vi〉

where the collection {vi} forms an orthonormal basis of V . In this paper we will only encounter368

situations in which the basis is countable. This expressions is independent of the basis. We say A is369

trace-class if Tr(A) <∞.370

For any matrix A ∈ Rn×n, we define ‖A‖2 = supx∈Rn
‖Ax‖2
‖x‖ which is the operator norm induced371

by the Euclidean norm. For any symmetric matrix A, we denote by λmax(A) and λmin(A) the largest372

and smallest eigenvalues of A respectively.373

B Useful Results374

This section contains some results that are relied upon elsewhere in the paper.375

Lemma B.1 (Mori [22]). Let A,B ∈ Rn×n and suppose B is symmetric. Define A′ = 1
2 (A+A>),376

then377

λmin(A′) Tr(B) ≤ Tr(AB) ≤ λmax(A′) Tr(B),
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where λmin and λmax denote the smallest and largest eigenvalues respectively.378

Corollary B.2. Let A,B ∈ Rn×n and suppose A is symmetric, then379

λmin(A) Tr(B) ≤ Tr(AB) ≤ λmax(A) Tr(B).

Proof. Let B′ = 1
2 (B +B>), then using Lemma B.1 we have380

λmin(A) Tr(B′) ≤ Tr(AB′) ≤ λmax(A) Tr(B′).

On the other hand, Tr(B′) = Tr(B) and381

2 Tr(AB′) = Tr(AB) + Tr(AB>) = Tr(AB) + Tr(BA).

382

Lemma B.3. Let A ∈ Rn×n, then383

‖A‖2 ≤ nmax
ij
|Aij | .

Proof. Let ai ∈ Rn be the ith column of A, then384

sup
‖x‖2=1

‖Ax‖2 = sup
‖x‖2=1

√∑
i

(a>i x)2 ≤ sup
‖x‖2=1

√∑
i

‖ai‖22‖x‖22 ≤
√∑

i

‖ai‖22 ≤
√
n2 max

ij
A2
ij .

385

C Results leading to Lemma 3386

Recall from Section 3 the integral operator Sk : L2(X , µ)→ H defined by387

Skf(x) =

∫
X
k(x, y)f(y) dµ(y)

with adjoint ι : L2(X , µ)→ H.388

Lemma C.1. The image of L2(X , µ) under Sk is dense inH and ι is injective.389

Proof. By [31, Theorem 4.26] ‖f‖L2(X ,µ) < ∞ ∀f ∈ H and Sk(L2(X , µ)) is dense in H if and390

only if the inclusion ι : H → L2(X , µ) is injective. Injectivity of the inclusion is equivalent to the391

statement that for any f, f ′ ∈ H the set392

A(f, f ′) = {x ∈ X : f(x) 6= f ′(x)}
has A 6= ∅ =⇒ µ(A) > 0. Continuity implies that for any f, f ′ ∈ H, either f = f ′ pointwise or393

A(f, f ′) contains an open set. By the support of µ this implies µ(A) > 0. Thus, ι is injective.394

From [8, Proposition 22] we know that O : L2(X , µ)→ L2(X , µ) is well-defined and that ‖O‖ ≤ 1.395

Let the image of L2(X , µ) under Sk beH2, then Lemma C.1 states thatH2 = H.396

Lemma C.2. For any f ∈ L2(X , µ), OSkf = SkOf ∈ H2. This implies O : H2 → H2 is well397

defined.398

Proof. λ is a Radon measure [13, Theorem 2.27] so is finite because G is compact and all f ∈ H are399

bounded so we can apply Fubini’s theorem [13, Theorem 1.27] as follows: taking f ∈ L2(X , µ)400

SkOf(x) =

∫
X

∫
G
k(x, y)f(gy) dλ(g) dµ(y)

=

∫
X

∫
G
k(x, g−1y)f(y) dλ(g) dµ(y) invariance of µ

=

∫
X

∫
G
k(gx, y) dλ(g)f(y) dµ(y) Eq. (1) then unimodularity of G

=

∫
G

∫
X
k(gx, y)f(y) dµ(y) dλ(g) Fubini

= OSkf(x).

401
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Lemma C.3. Let a, b ∈ H2 with preimages a′, b′ ∈ L2(X , µ) such that a = Ska
′ and b = Skb

′,402

then403

〈a, b〉H =

∫
X
a′(x)b′(y)k(x, y) dµ(x) dµ(y).

Proof. The inner product onH is a bounded linear functional, hence commutes with integration. We404

can thus calculate405

〈a, b〉H = 〈
∫
X
a′(x)k(x, ·) dµ(x),

∫
X
b′(y)k(y, ·) dµ(y)〉H

=

∫
X
a′(x)b′(y)〈kx, ky〉H dµ(x) dµ(y)

=

∫
X
a′(x)b′(y)k(x, y) dµ(x) dµ(y).

406

Lemma C.4. For any f, h ∈ H2,407

〈Of, h〉H = 〈f,Oh〉H.

Proof. Let f ′ and h′ be the pre-images of f and h respectively under Sk. Using Lemma C.3, Fubini’s408

theorem [13, Theorem 1.27], the G-invariance of µ and Eq. (1) we can calculate409

〈Of, h〉H =

∫
X

∫
G
f ′(gx)h′(y)k(x, y) dλ(g) dµ(x) dµ(y)

=

∫
G

∫
X
f ′(x)h′(y)k(g−1x, y) dµ(x) dµ(y) dλ(g) G-invariance of µ

=

∫
G

∫
X
f ′(x)h′(y)k(x, g−1y) dµ(x) dµ(y) dλ(g) Eq. (1)

=

∫
G

∫
X
f ′(x)h′(gy)k(x, y) dµ(x) dµ(y) dλ(g) G-invariance of µ

= 〈f,Oh〉H.

410

Lemma C.5. O : H2 → H2 is bounded and ‖O‖ ≤ 1.411

Proof. Let f ∈ H2, then using Lemmas 1 and C.4 along with Cauchy-Schwarz412

‖Of‖2H = 〈Of,Of〉H = 〈f,Of〉H ≤ ‖f‖H‖Of‖H.

413

Lemma C.6. f ∈ H =⇒ Of ∈ H so O : H → H is well defined.414

Proof. By Lemma C.1, for any f ∈ H there is a sequence {fn} ⊂ H2 converging to f in ‖·‖H.415

Lemma C.2 shows thatO : H2 → H2 is well defined, so the sequence {Ofn} ⊂ H2. By Lemma C.5416

we have ‖Ofn − Ofm‖H ≤ ‖fn − fm‖H and so {Ofn} is Cauchy. By completeness of H, f̄ :=417

limn→∞Ofn ∈ H. Moreover, O bounded so is also continuous and we get f̄ = limn→∞Ofn =418

O limn→∞ fn = Of .419

Lemma C.7. O is self-adjoint with respect to the inner product onH.420

Proof. We will make use of the continuity of the inner product onH. First let h ∈ H, f ∈ H2. We421

saw from the proof of Lemma C.6 that ∃ sequence {hn} ⊂ H2 with limit h and {Ohn} ⊂ H2 with422

limit Oh. Then 〈Ohn, f〉H → 〈Oh, f〉H and simultaneously, applying Lemma C.4, 〈Ohn, f〉H =423

〈hn,Of〉H → 〈h,Of〉H so the two limits must be equal. Then assuming instead that f ∈ H one424

can do the same calculation again arrive at the conclusion.425
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Corollary C.8. O : H → H is bounded with ‖O‖ ≤ 1. Indeed, if H contains any G-invariant426

functions then ‖O‖ = 1 and if not then ‖O‖ = 0.427

Proof. Using Lemma C.7 we can repeat the calculation in Lemma C.4. The second claim follows428

from Lemma 1 and the variational representation of the operator norm.429
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