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Abstract

We extend the options framework for temporal abstraction in reinforcement learn-1

ing from discounted Markov decision processes (MDPs) to average-reward MDPs.2

Our contributions include general convergent off-policy inter-option learning algo-3

rithms, intra-option algorithms for learning values and models, as well as sample-4

based planning variants of our learning algorithms. Our algorithms and conver-5

gence proofs extend those recently developed by Wan, Naik, and Sutton. We6

also extend the notion of option-interrupting behaviour from the discounted to the7

average-reward formulation. We show the efficacy of the proposed algorithms with8

experiments on a continuing version of the Four-Room domain.9

1 Introduction10

Reinforcement learning (RL) is a formalism of trial-and-error learning in which an agent interacts11

with an environment to learn a behavioral strategy that maximizes a notion of reward. In many12

problems of interest, a learning agent may need to predict the consequences of its actions over13

multiple levels of temporal abstraction. The options framework provides a way for defining courses14

of actions over extended time scales, and for learning, planning, and representing knowledge with15

them (Sutton, Precup, & Singh 1999, Sutton & Barto 2018). The options framework was originally16

proposed within the discounted formulation of RL in which the agent tries to maximize the expected17

discounted return from each state. We extend the options framework from the discounted formulation18

to the average-reward formulation in which the goal is to find a policy that maximizes the rate of19

reward.20

Given a Markov decision process (MDP) and a fixed set of options, learning and planning algorithms21

can be divided into two classes. The first class consists of inter-option algorithms, which enable an22

agent to learn or plan with options instead of primitive actions. Given an option, the learning and23

planning updates for this option in these algorithms occur only after the option’s actual or simulated24

execution. Algorithms in this class are also called semi-MDP (SMDP) algorithms because given25

an MDP, the decision process that selects among a set of options, executing each to termination,26

is an SMDP (Sutton et al., 1999). The second class consists of algorithms in which learning or27

planning updates occur after each state-action transition within options’ execution — these are called28

intra-option algorithms. From a single state-action transition, these algorithms can learn or plan to29

improve the values or policies for all options that may generate that transition, and are therefore30

potentially more efficient than SMDP algorithms.31

Several inter-option (SMDP) learning algorithms have been proposed for the average-reward formu-32

lation (see, e.g., Das et al. 1999, Gosavi 2004, Vien & Chung 2008). To the best of our knowledge,33

Gosavi’s (2004) algorithm is the only proven-convergent off-policy inter-option learning algorithm.34

However, its convergence proof requires the underlying SMDP to have a special state that is recurrent35

under all stationary policies. We extend Wan, Naik, and Sutton’s (2021) Differential Q-learning,36

an off-policy control learning algorithm, to inter-option Differential Q-learning and show that it37

converges without requiring a special state. For planning, we propose inter-option Differential38
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Q-planning, which is the first convergent incremental (sampled-based) planning algorithm. The39

existing proven-convergent inter-option planning algorithms (e.g., Schweitzer 1971, Puterman 1994,40

Li & Cao 2010) are not incremental because they perform a full sweep over states for each planning41

step.42

Additionally, the literature seems to lack intra-option learning and planning algorithms within43

the average-reward formulation for both values and models. We fill this gap by proposing such44

algorithms in the average-reward formulation and provide their convergence results. These algorithms45

are stochastic approximation algorithms solving the average-reward intra-option value and model46

equations, which are also introduced in this paper for the first time.47

Sutton et al. (1999) also introduced an algorithm to improve an agent’s behavior given estimated48

option values. Instead of letting an option execute to termination, this algorithm involves potentially49

interrupting an option’s execution to check if starting a new option might yield a better expected50

outcome. If so, then the currently-executing option is terminated, and the new option is executed. Our51

final contribution involves extending this notion of an interruption algorithm from the discounted to52

the average-reward formulation.53

2 Problem Setting54

We formalize an agent’s interaction with its environment by a finite Markov decision process (MDP)55

M and a finite set of options O. The MDP is defined by the tupleM .
= (S,A,R, p), where S is56

a set of states, A is a set of actions, R is a set of rewards, and p : S × R × S × A → [0, 1] is the57

dynamics of the environment. Each option o in O consists two components: the option’s policy58

πo : A× S → [0, 1], and a probability distribution of the option’s termination βo : S → [0, 1]. For59

simplicity, for any s ∈ S, o ∈ O, we use π(a|s, o) to denote πo(a, s) and β(s, o) to denote βo(s).60

Sutton et al.’s (1999) options additionally have an initiation set that consists of the states at which61

the option can be initiated. To simplify the presentation in this paper, we allow all options to be62

initiated in all states of the state space; the algorithms and theoretical results can be easily extended63

to incorporate initiation from specific states.64

An option o executes as follows. First, the agent observes a state St and chooses an action At65

according to the option’s policy π(·|St, o). The agent then observes the next state St+1 and reward66

Rt+1 according to p. The option either terminates at St+1 with probability β(St+1, o), or continues67

with action At+1 chosen according to π(·|St+1, o). It then possibly terminates in St+2 according68

to β(St+2, o), and so on. The behavior of the agent is determined by a policy that chooses options,69

which we denote by µb : S ×O 7→ [0, 1]. In state St, the agent selects an option Ot ∈ O according70

to probability distribution µb(·|St). The option policy starts executing at St and terminates St+K ,71

where K is a random variable denoting the number of time steps the option executed. At St+K , a72

new option is chosen according to µb(·|St+K), and so on. The agent-environment interactions go on73

forever without any resets. Note that actions are a special case of options—every action a is an option74

o that terminates after exactly one step (β(s, o) = 1, ∀s) and whose policy is to pick a in every state75

(π(a|s, o) = 1, ∀s).76

Let Tn denote the time step when the n− 1th option terminates and the nth option is chosen. Denote77

the nth option by Ôn
.
= OTn , its starting state by Ŝn

.
= STn , the cumulative reward during its78

execution by R̂n
.
=
∑Tn+1

t=Tn+1Rt, the state it terminates in by Ŝn+1
.
= STn+1

, and its length by79

L̂n
.
= Tn+1 − Tn. Note that every option’s length is a random variable taking values among positive80

integers. Then the option’s transition probability can be defined as p̂(s′, r, l | s, o) .
= Pr(Ŝn+1 =81

s′, R̂n = r, L̂n = l | Ŝn = s, Ôn = o). Throughout the paper, we assume that the expected execution82

time of any option starting from any state is finite.83

Given an MDPM and the set of options O, M̂ = (S,O, L̂, R̂, p̂) is a(an) SMDP, where L̂ is the set84

of all possible lengths of options and R̂ is the set of all possible options’ cumulative rewards . For this85

SMDP, the reward rate of a policy of interest, µ, given a starting state s and option o can be defined86

as rC(µ)(s, o)
.
= limt→∞ Eµ[

∑t
i=1Ri | S0 = s,O0 = o]/t. Alternatively, at the level of option87

transitions, r(µ)(s, o)
.
= limn→∞ Eµ[

∑n
i=0 R̂i | Ŝ0 = s, Ô0 = o]/Eµ[

∑n
i=0 L̂i | Ŝ0 = s, Ô0 = o].88

It can be shown that the above two limits exist and are equivalent (Puterman’s (1994) propositions89

11.4.1 and 11.4.7) under the following assumption:90
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Assumption 1. Consider an MDP (S,O, R̂, p′), where p′(s′, r | s, o) .
=
∑
l p̂(s

′, r, l | s, o) for all91

s′, r, s, o. The Markov chain induced by any stationary policy in this MDP is recurrent.92

Under Assumption 1, the reward rate does not depend on the start state-option pair, and hence we93

denote it by just r(µ). The optimal reward rate can then be defined as r∗
.
= supµ∈Π r(µ), where Π94

denotes the set of all policies. The differential option-value function for a policy µ is defined for all95

s ∈ S, o ∈ O as qµ(s, o)
.
= Eµ[Rt+1− r(µ) +Rt+2− r(µ) + · · · | St = s,Ot = o ]. The evaluation96

and optimality equations for SMDPs are, as given by Puterman (1994):97

q(s, o) =
∑
s′,r, l

p̂(s′, r, l | s, o)
(
r − r̄ · l +

∑
o′

µ(o′|s′)q(s′, o′)
)
, (1)

q(s, o) =
∑
s′,r, l

p̂(s′, r, l | s, o)
(
r − r̄ · l + max

o′
q(s′, o′)

)
. (2)

Just like the average-reward MDP Bellman equations, the SMDP Bellman equations have a unique98

solution for r̄ — r(µ) for evaluation and r∗ for control — and a unique solution for q only up to a99

constant. Given an MDP and a set of options, the goal of the prediction problem is, for a given policy100

µ, to find the reward rate r(µ) and the differential value function (possibly with some constant offset).101

The goal of the control problem is to find a policy that achieves the optimal reward rate r∗.102

3 Inter-Option Learning and Planning Algorithms103

In this section, we present our inter-option learning and planning, prediction and control algorithms,104

which extend Wan et al.’s (2021) differential learning and planning algorithms for average-reward105

MDPs from actions to options. We begin with the control learning algorithm and then move on to the106

prediction and planning algorithms.107

Consider Wan et al.’s (2021) control learning algorithm:108

Qt+1(St, At)
.
= Qt(St, At) + αtδt, R̄t+1

.
= R̄t + ηαtδt,

where Q is a vector of size |S × A| that approximates a solution of q in the Bellman equation109

for MDPs, R̄ is a scalar estimate of the optimal reward rate, αt is a step-size sequence, η is a110

positive constant, and δt is the temporal-difference (TD) error: δt
.
= Rt − R̄t + maxaQt(St+1, a)−111

Qt(St, At). The most straightforward inter-option extension of Differential Q-learning is:112

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + αnδn, (3)

R̄n+1
.
= R̄n + ηαnδn, (4)

where Q is a vector of size |S × O| that approximates a solution of q in (2), R̄ is a scalar estimate of113

r∗, αn is a step-size sequence, and δn is the TD error:114

δn
.
= R̂n − L̂nR̄n + max

o
Qn(Ŝn+1, o)−Qn(Ŝn, Ôn). (5)

Such an algorithm is prone to instability because the option length L̂n can be quite large, and any115

error in the reward-rate estimate R̄n gets multiplied with the potentially-large option length. Using116

small step sizes might make the updates relatively stable, but at the cost of slowing down learning for117

options of shorter lengths. This could make the choice of step size quite critical, especially when the118

range of the options’ lengths is large and unknown. Alternatively, inspired by Schweitzer (1971), we119

propose scaling the updates by the estimated length of the option being executed:120

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + αnδn/Ln(Ŝn, Ôn), (6)

R̄n+1
.
= R̄n + ηαnδn/Ln(Ŝn, Ôn), (7)

where αn is a step-size sequence, Ln(·, ·) comes from an additional vector of estimates L : S ×O →121

R that approximates expected lengths of state-option pairs, updated from experience by:122

Ln+1(Ŝn, Ôn)
.
= Ln(Ŝn, Ôn) + βn(L̂n − Ln(Ŝn, Ôn)), (8)

where βn is an another step-size sequence. The TD-error δn in (6) and (7) is as in (5) with Ln(Ŝn, Ôn)123

instead of L̂n. These equations make up our inter-option Differential Q-learning algorithm.124
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Similarly, our prediction learning algorithm, called inter-option Differential Q-evaluation, also has125

update rules (6–8) but with the TD error now equal to:126

δn
.
= R̂n − Ln(Ŝn, Ôn)R̄n +

∑
o

µ(o|Ŝn+1)Qn(Ŝn+1, o)−Qn(Ŝn, Ôn). (9)

Theorem 1 (Convergence of intra-option algorithms, informal). If Assumption 1 holds, step sizes are127

decreased appropriately, all state-option pairs are visited for an infinite number of times, and the128

relative visitation frequency between any two pairs is finite:129

1. inter-option Differential Q-learning (5–8) converges almost surely, R̄n to r∗ and Qn to a130

solution of (2), and r(µn) to r∗, where µn is a greedy policy w.r.t. Qn,131

2. inter-option Differential Q-evaluation (6–9) converges almost surely, R̄n to r(µ) and Qn to132

a solution of (1).133

The convergence proofs for the inter-option (as well as the subsequent intra-option) algorithms are134

based on a result that generalizes Wan et al.’s (2021) and Abounadi et al.’s (2001) proof techniques135

from primitive actions to options. We present this result in Appendix A.1 and the formal theorem136

statements as well as proofs in Appendix A.2.137

Remark: The scaling factor Ln(Ŝn, Ôn) used in the algorithm is the expected option length instead138

of the sampled option length. Scaling the updates by the expected option lengths guarantees that139

fixed points of the updates are the same as those of (3–4), which are the solutions of (2). This is140

not guaranteed to be true when using the sampled option length. We discuss this in more detail in141

Appendix C.1.142

The inter-option planning algorithms for prediction and control are similar to the learning algorithms143

except that they use simulated experience generated by a (given or learned) model instead of real144

experience. In addition, they only have two update rules, (6) and (7), and not (8) because the model145

provides the expected length of a given option from a given state (see Section 5 for a complete146

specification of option models). The planning algorithms and their convergence results are presented147

in Appendix A.2.148

G2

G1

G3

Figure 1: A continuing vari-
ant of the Four-Room do-
main where the task is to
repetitively go from the yel-
low start state to one of
the three green goal states.
Also shown is an option
policy to go to the upper
hallway cell; more details
in-text.

Empirical Evaluation. We tested our inter-option Differential Q-149

learning with Gosavi’s (2004) algorithm as a baseline in a variant150

of Sutton et al.’s (1999) Four-Room domain (shown in Figure 1). The151

agent starts in the yellow cell. The goal states are indicated by green152

cells. Every experiment in this paper uses only one of the green cells153

as a goal state; the other two are considered as empty cells. There are154

four primitive actions of moving up, down, left, right. The agent155

receives a reward of +1 when it moves into the goal cell, 0 otherwise.156

In addition to the four primitive actions, the agent has eight options157

that take it from a given room to the hallways adjoining the room. The158

arrows in Figure 1 illustrate the policy of one of the eight options. For159

this option, the policy in the empty cells (not marked with arrows) is160

to uniformly-randomly pick among the four primitive actions. The161

termination probability is 0 for all the cells with arrows and 1 for the162

empty cells. The other seven options are defined in a similar way.163

Denote the set of primitive actions as A and the set of hallway options164

asH. Including the primitive actions, the agent has 12 options in total.165

In the first experiment, we tested inter-option Differential Q-learning166

with three different sets of options, O = A, O = H and O = A+H.167

The task was to reach the green cell G1, the shortest path to which from168

the starting state is 16 steps. Hence the best possible reward rate for this task is 1/16 = 0.0625. The169

agent used an ε-greedy policy with ε = 0.1. For each of the two step-sizes αn and βn, we tested five170

choices: 2−x, x ∈ {1, 3, 5, 7, 9}. In addition, we tested five choices of η : 10−x, x ∈ {0, 1, 2, 3, 4}.171

Q and R̄ were initialized to 0; L was initialized to 1. Each parameter setting was run for 200,000 steps172

and repeated 30 times. The left subfigure of Figure 2 shows a typical learning curve for each of the173

three sets of options, with α = 2−3, β = 2−1, and η = 10−1. The parameter study for O = A+H174

w.r.t. α and η, with β = 2−1, is presented in the right subfigure of Figure 2. The metric is the average175

reward obtained over the entire training period. Complete parameter studies for O = H+A,O = H176

and O = A are presented in Appendix B.1.177
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Figure 2: Plots showing some learning curves and the parameter study of inter-option Differential
Q-learning on the continuing Four-Room domain when the goal was to go to G1. Left: A point
on the solid line denotes reward rate over the last 1000 time steps and the shaded region indicates
one standard error. The behavior using the three different sets of options was as expected. Right:
Sensitivity of performance to α and η when using O = A +H and β = 2−1. The x-axis denotes
step size α; the y-axis denotes the rate of the rewards averaged over all 200,000 steps of training,
reflecting the rate of learning. The error bars denote one standard error. The algorithm’s rate of
learning varied little over a broad range of its parameters α and η.

The learning curves in the left panel of Figure 2 show that the agent achieved a relatively stable178

reward rate after 100,000 steps in all three cases. Using just primitive actions, the learning curve rises179

the slowest, indicating that hallway options indeed help the agent reach the goal faster. But solely180

using the hallway options is not very useful in the long run as the goal G1 is not a hallway state. Note181

that because of the ε-greedy behavior policy, the learning curves do not reach the optimal reward rate182

of 0.0625. These observations mirror those by Sutton et al. (1999) in the discounted formulation.183

The sensitivity curves of inter-option Differential Q-learning (right panel of Figure 2) indicate that,184

in this Four-Room domain, the algorithm was not sensitive to parameters η, performed well for a185

wide range of step sizes α, and showed low variance across different runs. We also found that the186

algorithm was not sensitive to β either; this and the additional parameter studies involving the two187

other option sets are presented in Appendix B.1.188
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0.06

0.08

Reward
Rate

β = 2−9
β = 2−7

β = 2−5

β = 2−3

β = 2−1

Figure 3: Parameter studies showing
Gosavi’s (2004) algorithm’s rate of learn-
ing is relatively more sensitive to the
choices of its two parameters com-
pared to our inter-option Differential Q-
learning. The experimental setting and
the plot axes are the same as mentioned
in Figure 2’s caption.

We also tested Gosavi’s (2004) algorithm as a baseline.189

Recall it is the only proven-convergent SMDP off-policy190

control learning algorithm prior to our work. The algo-191

rithm estimates the reward rate by tracking the cumulative192

reward C̄ obtained by the options and dividing it by the193

another estimate T̄ the tracks the length of the options.194

If the nth option executed is a greedy choice, then these195

estimates are updated using:196

C̄n+1
.
= C̄n + βn(R̂n − Cn),

T̄n+1
.
= T̄n + βn(L̂n − Tn),

R̄n+1
.
= C̄n+1/T̄n+1.

When Ôn is not greedy, R̄n+1 = R̄n. The option-value197

function is updated with (3) with δn as defined in (5). αn198

and βn are two step-size sequences. The sensitivity of199

this algorithm with O = A + H is shown in Figure 3.200

Compared to inter-option Differential Q-learning, this baseline has one less parameter, but its201

performance was found to be more sensitive to the values of both its step-size parameters. In addition,202

the error bars were generally larger, suggesting that the variance across different runs was also higher.203

To conclude, our experiments with the continuing Four-Room domain show that our inter-option204

Differential Q-learning indeed finds the optimal policy given a set of options, in accordance with205

Theorem 1. In addition, its performance seems to be robust to the choices of its parameters.206
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4 Intra-Option Value Learning and Planning Algorithms207

In this section, we introduce intra-option value learning and planning algorithms. The objectives are208

same as that of inter-option value learning algorithms. As mentioned earlier, intra-option algorithms209

learn from every transition St, At, Rt+1, St+1 during the execution of a given option Ot. Moreover,210

intra-option algorithms also make updates for every option o ∈ O, including ones that may potentially211

never be executed.212

To develop our algorithms, we first establish the intra-option evaluation and optimality equations in213

the average-reward case. The general form of the intra-option Bellman equation is:214

q(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)
(
r − r̄ + uq(s′, o)

)
(10)

where q ∈ R|S|×|O| and r̄ ∈ R are free variables. The optimality and evaluation equations use215

uq = uq∗ and uq = uqµ respectively, defined ∀ s′ ∈ S, o ∈ O as:216

uq(s′, o) = uq∗(s
′, o)

.
=
(
1− β(s′, o)

)
q(s′, o) + β(s′, o) max

o′
q(s′, o′), (11)

uq(s′, o) = uqµ(s′, o)
.
=
(
1− β(s′, o)

)
q(s′, o) + β(s′, o)

∑
o′

µ(o′|s′)q(s′, o′). (12)

Intuitively, the uq term accounts for the two possibilities of an option terminating or continuing in217

the next state. These equations generalize the average-reward Bellman equations given by Puterman218

(1994). The following theorem characterizes the solutions to the intra-option Bellman equations.219

Theorem 2 (Solutions to intra-option Bellman equations). If Assumption 1 holds, then:220

1. a) there exists a r̄ = R and a q ∈ R|S|×|O| for which (10) and (11) holds, b) the solution of221

r̄ is unique and is equal to r∗, the solutions of q form a set {q∗ + ce | c ∈ R} where e is an222

all-one vector of size |S| × |O|, c) a greedy policy w.r.t. a solution of q achieves the optimal223

reward rate r∗.224

2. a) there exists a r̄ ∈ R and a q ∈ R|S|×|O| for which (10) and (12) holds, b) the solution of225

r̄ is unique and is equal to r(µ), the solutions of q form a set {qµ + ce | c ∈ R}.226

The proof extends that of Corollary 8.2.7, Theorem 8.4.3, and Theorem 8.4.4 by Puterman (1994),227

and is presented in Appendix A.3.228

Our intra-option control and prediction algorithms are stochastic approximation algorithms solving229

the intra-option optimality and evaluation equations respectively. Both the algorithms maintain230

a vector of estimates Q(s, o) and a scalar estimate R̄, just like our inter-option algorithms (since231

intra-option algorithms make updates after every transition, they do not need to maintain an estimator232

for option lengths (L) like the inter-option algorithms). Our control algorithm, called intra-option233

Differential Q-learning, updates estimates Q and R̄ by:234

Qt+1(St, o)
.
= Qt(St, o) + αtρt(o)δt(o), ∀ o ∈ O, (13)

R̄t+1
.
= R̄t + ηαt

∑
o∈O

ρt(o)δt(o), (14)

where αt is a step-size sequence, ρt(o)
.
= π(At|St,o)

π(At|St,Ot)
is the importance sampling ratio, and:235

δt(o)
.
= Rt+1 − R̄t + uQt

∗ (St+1, o)−Qt(St, o). (15)

Our prediction algorithm, called intra-option Differential Q-evaluation, also update Q and R̄ by (13)236

and (14) but with the TD error:237

δt(o)
.
= Rt+1 − R̄t + uQt

µ (St+1, o)−Qt(St, o). (16)

Theorem 3 (Convergence of intra-option algorithms; informal). Under the same assumptions as238

those of Theorem 1:239

1. intra-option Differential Q-learning algorithm (13–15) converges almost surely, R̄t to r∗,240

Qt to a solution of q in (10) and (11), and r(µt) to r∗, where µt is a greedy policy w.r.t. Qt,241
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2. intra-option Differential Q-evaluation algorithm (13,14,16) converges almost surely, R̄t to242

r(µ), Qt to a solution of q in (10) and (12).243

Remark: The intra-option learning methods introduced in this section can be used with options244

having stochastic policies. This is possible with the use of the important sampling ratios as described245

above. Sutton et al.’s (1999) discounted intra-option learning methods were restricted to options246

having deterministic policies.247

Again, the intra-option value planning algorithms are similar to the learning algorithms except that248

they use simulated experience generated by a given or learned model instead of real experience. The249

planning algorithms and their convergence results are presented in Appendix A.4.250
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0.08
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Figure 4: Learning curve showing that
the greedy policy corresponding to the
hallway options’ option-value function
achieves the optimal reward rate on the
continuing Four-Room domain. The
value function was learned via intra-
option Differential Q-learning using a
behavior policy consisting only of prim-
itive actions; the hallway options were
never executed.

Empirical Evaluation. We conducted another experi-251

ment in the Four-Room domain to show that intra-option252

Differential Q-learning can learn the values of hallway253

optionsH using only primitive actions A. As mentioned254

earlier, there are no intra-option average-reward baseline255

algorithms, so this is a proof-of-concept experiment.256

The goal state for this experiment was G2, which can be257

reached using the option that leads to the lower hallway.258

The optimal reward rate in this case is 1/14 ≈ 0.714 with259

both O = H and O = A. We applied intra-option Differ-260

ential Q-learning using a behavior policy that chose the261

four primitive actions with equal probability in all states.262

Each parameter setting was run for 200,000 steps and re-263

peated 30 times. For evaluation, we saved the learned264

option value function after every 1000 steps and computed265

the average reward of the corresponding greedy policy266

over 1000 steps.267

Figure 4 shows the learning curve of this average re-268

ward across the 30 independent runs for parameters α =269

0.125, η = 0.1. The agent indeed succeeds in learning270

the option-value function corresponding to the hallway op-271

tions using a behavior policy consisting only of primitive actions. The parameter study of intra-option272

Differential Q-learning is presented in Appendix B.2.273

5 Intra-Option Model Learning and Planning Algorithms274

In this section, we first describe option models within the average-reward formulation. We then275

introduce an algorithm to learn such models in an intra-option fashion. This option-model learning276

algorithm can be combined with the planning algorithms from the previous section to obtain a277

complete model-based average-reward options algorithm that learns option models and plans with278

them (we present this algorithm in Appendix C.2).279

The average-reward option model is similar to the discounted options model but with key distinctions.280

Sutton et al.’s (1999) discounted option model has two parts: the dynamics part and the reward281

part. Given a state and an option, the dynamics part predicts the discounted occupancy of states282

upon termination, and the reward part predicts the expected (discounted) sum of rewards during283

the execution of the option. In the average-reward setting, apart from the dynamics and the reward284

parts, an option model has a third part—the duration part—that predicts the duration of execution of285

the option. In addition, the dynamics part predicts the state distribution upon termination without286

discounting and reward part predicts the undiscounted cumulative rewards during the execution of287

the option.288

Formally, the dynamics part is mp(s′|s, o) .
=
∑
r,l p̂(s

′, r, l |s, o), the probability that option o289

terminates in state s′ when starting from state s. The reward part is mr(s, o)
.
=
∑
r,l p̂(s

′, r, l |s, o) r,290

the expected cumulative reward during the execution of option o when starting from state s. Finally,291

the duration part is ml(s, o)
.
=
∑
r,s′ p̂(s

′, r, l |s, o) l, the expected duration of option o when starting292

from state s.293
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We now present a set of recursive equations that are key to our model-learning algorithms. These294

equations extend the discounted Bellman equations for option models (Sutton et al. 1999) to the295

average-reward formulation.296

m̄p(x | s, o) =
∑
a

π(a | s, o)
∑
r

p(s′, r | s, a)
(
β(s′, o)I(x = s′) + (1− β(s′, o))m̄p(x | s′, o)

)
, (17)

m̄r(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)
(
r + (1− β(s′, o))m̄r(s′, o)

)
, (18)

m̄l(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)
(
1 + (1− β(s′, o))m̄l(s′, o)

)
. (19)

The following theorem (see Appendix A.5 for the proof) shows that (mp,mr,ml) is the unique297

solution of (17–19) and therefore the models can be obtained by solving these equations.298

Theorem 4 (Solutions to Bellman equations for option models). There exist unique m̄p ∈299

R|S|×|O|×|S|, m̄r ∈ R|S|×|O|, and m̄l ∈ R|S|×|O| for which (17), (18), and (19) hold. Further,300

if m̄p, m̄r, m̄l satisfy (17), (18), and (19), then m̄p = mp, m̄r = mr, m̄l = ml.301

Our intra-option model-learning algorithm solves the above recursive equations using the following302

TD-like update rules for each option o:303

Mp
t+1(x | St, o)

.
= Mp

t (x | St, o) + αtρt(o)
(
β(St+1, o)I(St+1 = x)

+
(
1− β(St+1, o)

)
Mp
t (x | St+1, o)−Mp

t (x | St, o)
)
, ∀ x ∈ S, (20)

Mr
t+1(St, o)

.
= Mr

t (St, o) + αtρt(o)
(
Rt+1 +

(
1− β(St+1, o)

)
Mr
t (St+1, o)−Mr

t (St, o)
)

(21)

M l
t+1(St, o)

.
= M l

t(St, o) + αtρt(o)
(

1 +
(
1− β(St+1, o)

)
M l
t(St+1, o)−M l

t(St, o)
)

(22)

where Mp is a |S|× |O|× |S|-sized vector of estimates, Mr and M l are both |S|× |O|-sized vectors304

of estimates, and αt is a sequence of step sizes. Standard stochastic approximation results can be305

applied to show the algorithm’s convergence (see Appendix A.6 for details).306

Theorem 5 (Convergence of the intra-option model learning algorithm, informal). Under Assump-307

tion 1, if the step sizes are set appropriately and all the state-option pairs are updated an infinite308

number of times, then the intra-option model-learning algorithm (20–22) converges almost surely,309

Mp
t to mp, Mr

t to mr, and M l
t to ml.310

Our intra-option model-learning algorithms (20–22) can be applied with simulated one-step transitions311

generated by a given action model, resulting to a planning algorithm that produces an estimated312

option model. The planning algorithm and its convergence result are presented in Appendix A.6.313

6 Interruption to Improve Policy Over Options314

In all the algorithms we considered so far, the policy over options would select an option, execute315

the option policy till termination, then select a new option. Sutton et al. (1999) showed that the316

policy over options can be improved by allowing the interruption of an option midway through its317

execution to start a seemingly better option. We now show that this interruption result applies for318

average-reward options as well (see Appendix A.7 for the proof).319

Theorem 6 (Interruption). For any MDP, any set of options O, and any policy µ : S ×O → [0, 1],320

define a new set of options, O′, with a one-to-one mapping between the two option sets as follows:321

for every o = (π, β) ∈ O, define a corresponding o′ = (π, β′) ∈ O′ where β′ = β, but for any state322

s in which qµ(s, o) < vµ(s), β′(s) = 1. Let the interrupted policy µ′ be such that for all s ∈ S and323

for all o′ ∈ O′, µ′(s, o′) = µ(s, o), where o is the option in O corresponding to o′. Then:324

1. the new policy over options µ′ is not worse than the old one µ, i.e., r(µ′) ≥ r(µ),325

2. if there exists a state s ∈ S from which there is a non-zero probability of encountering an326

interruption upon initiating µ′ in s, then r(µ′) > r(µ).327
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In short, the above theorem shows that interruption produces a behavior that achieves a higher reward328

rate than without interruption. Note that interruption behavior is only applicable with intra-option329

algorithms; complete option transitions are needed in inter-option algorithms.330

100000 200000 300000 400000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate

Acting without Interruption

Acting with Interruption

Figure 5: Learning curves showing that
executing options with interruptions can
achieve a higher reward rate than execut-
ing options till termination in the domain
described in the adjoining text.

Empirical Evaluation. We tested the intra-option Differ-331

ential Q-learning algorithm with and without interruption332

in the Four-Room domain. We set the goal as G3 and al-333

lowed the agent to choose and learn only from the set of334

all hallway optionsH. With just hallway options, without335

interruption, the best strategy is to first move to the lower336

hallway and then try to reach the goal by following options337

that pick random actions in the states near the hallway and338

goal. With interruption, the agent can first move to the339

left hallway, then take the option that moves the agent to340

the lower hallway but terminate when other options have341

higher option-values. This termination is most likely to342

occur in the cell just above G3. The agent then needs a343

fewer number of steps in expectation to reach the goal.344

Figure 5 shows learning curves using intra-option Differ-345

ential Q-learning with and without interruptions on this346

problem. Each parameter setting was run for 400,000347

steps and repeated 30 times. The learning curves shown correspond to α = 0.125 and η = 0.1. As348

expected, the agent achieved a higher reward rate by using interruptions. The parameter study of the349

interruption algorithm along with the rest of the experimental details is presented in Appendix B.3.350

7 Conclusions, Limitations, and Future Work351

In this paper, we extended learning and planning algorithms for the options framework — originally352

proposed by Sutton et al. (1999) for discounted-reward MDPs — to average-reward MDPs. The353

inter-option learning algorithm presented in this paper is more general than previous work in that its354

convergence proof does not require existence of any special states in the MDP. We also established355

intra-option Bellman equations in average-reward MDPs and used them to propose the first intra-356

option learning algorithms for average-reward MDPs. Finally, we extended the interruption algorithm357

and its related theory from the discounted to the average-reward setting. Our experiments on a358

continuing version of the classic Four-Room domain show the efficacy of the proposed algorithms.359

We believe that our contributions will enable widespread use of options in the average-reward setting.360

The most immediate line of future work involves extending these ideas from the tabular case to361

the general case of function approximation, starting with linear function approximation. The idea362

of linear (discounted) options can be extended to the average-reward case, perhaps by building on363

the theory used by Zhang et al. (2021). Using the results developed in this paper, we also foresee364

extensions to more ideas from the discounted setting involving function approximation such as Bacon365

et al.’s (2017) option-critic architecture to the average-reward setting.366

This paper assumes that a fixed set of options is provided and the agent then learns or plans using them.367

One of the most important challenges in the options framework is the discovery of options. We think368

the discovery problem is orthogonal to the problem formulation. Hence existing option-discovery369

algorithms developed for the discounted setting (e.g., by McGovern & Barto 2001, Menache et370

al. 2002, Şimşek & Barto 2004, Singh et al. 2004, Van Djik & Polani 2011, Machado et al. 2017)371

can be easily extended to the average-reward setting. Relatively more work might be required in372

extending approaches that couple the problems of option discovery and learning (e.g., Gregor et373

al. 2016, Eysenbach et al. 2018, Achiam et al. 2018, Veeriah et al. 2021).374

Another limitation of this paper is that it deals with learning and planning separately. We also need375

combined methods that learn models and plan with them; some ideas are discussed in Appendix C.376

Finally, we would like to get more empirical experience with the algorithms proposed in this paper,377

both in pedagogical tabular problems and challenging large-scale problems. Nevertheless, we believe378

this paper makes novel contributions that are significant for the use of temporal abstractions in379

average-reward reinforcement learning.380
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A Formal Theoretical Results and Proofs480

In this section, we provide formal statements of the theorems presented in the main text of the paper481

and show their proofs. This section has several subsections. The first subsection introduces General482

RVI Q, which will be used in later subsections. The other six subsections correspond to six theorems483

presented in the main text.484

A.1 General RVI Q485

Wan et al. (2021) extended the family of RVI Q-learning algorithms (Abounadi, Bertsekas, and486

Borkar et al. 2001) to prove the convergence of their Differential Q-learning algorithm. Unlike RVI487

Q-learning, Differential Q-learning does not require a reference function. We further extend Wan et488

al.’s extended family of RVI Q-learning algorithms to a more general family of algorithms, called489

General RVI Q. We then prove convergence for this family of algorithms and show that inter-option490

algorithms and intra-option value learning algorithms are all members of this family.491

We first need the following definitions:492

1. a set-valued process {Yn} taking values in the set of nonempty subsets of I with the493

interpretation: Yn = {i : ith component of Q was updated at time n},494

2. ν(n, i)
.
=
∑n
k=0 I{i ∈ Yk}, where I is the indicator function. Thus ν(n, i) = the number495

of times the i component was updated up to step n,496

3. i.i.d. random vectors Rn, Gn and Fn for all n ≥ 0 satisfying E [Rn(i)] = r(i), where r is a497

fixed real vector, E[Gn(Q)(i)] = g(Q)(i) for any Q ∈ R|I| where g : I → I is a function498

satisfying Assumption A.1 and E[Fn(Q)(i)] = f(Q) for any i ∈ I and Q ∈ R|I| where499

f : I → R is a function satisfying Assumption A.2.500

Assumption A.1. 1) g is a max-norm non-expansion, 2) g is a span-norm non-expansion, 3) g(x+501

ce) = g(x) + ce for any c ∈ R, x ∈ R|I|, 4) g(cx) = cg(x) for any c ∈ R, x ∈ R|I|.502

Assumption A.2. 1) f is L-Lipschitz, 2) there exists a positive scalar u s.t. f(e) = u and f(x+ce) =503

f(x) + cu, 3) f(cx) = cf(x).504

Assumption A.3. For n ∈ {0, 1, 2, . . . }, E[‖Rn − r‖2] ≤ K, E[‖Gn(Q)− g(Q)‖2] ≤ K(1 +505

‖Q‖2) for any Q ∈ R|I|, and E[‖Fn(Q)− f(Q)e‖2] ≤ K(1 + ‖Q‖2) for any Q ∈ R|I| for a506

suitable constant K > 0.507

The above assumption means that the variances of Rn, Gn(Q), and Fn(Q) for any Q are bounded.508

General RVI Q’s update rule is509

Qn+1(i)
.
= Qn(i) + αν(n,i)

(
Rn(i)− Fn(Qn)(i) +Gn(Qn)(i)−Qn(i) + εn(i)

)
I{i ∈ Yn},

(A.1)

where αν(n,i) is the stepsize and εn is a sequence of random vectors of size |I|.510

We make following assumption on εn.511

Assumption A.4 (Noise Assumption). ‖εn‖∞ ≤ K(1 + ‖Qn‖∞) for some scalar K. Further, εn512

converges in probability to 0.513

We make following assumptions on αν(n,i).514

Assumption A.5 (Stepsize Assumption). For all n ≥ 0, αn > 0,
∑∞
n=0 αn =∞, and

∑∞
n=0 α

2
n <515

∞.516

Assumption A.6 (Asynchronous Stepsize Assumption A). Let [·] denote the integer part of (·), for517

x ∈ (0, 1),518

sup
i

α[xi]

αi
<∞

and519 ∑[yi]
j=0 αj∑i
j=0 αj

→ 1

uniformly in y ∈ [x, 1].520
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Assumption A.7 (Asynchronous Stepsize Assumption B). There exists ∆ > 0 such that521

lim inf
n→∞

ν(n, i)

n+ 1
≥ ∆,

a.s., for all s ∈ S, o ∈ O. Furthermore, for all x > 0, let522

N(n, x) = min

{
m > n :

m∑
i=n+1

αi ≥ x
}
,

the limit523

lim
n→∞

∑ν(N(n,x),i)
i=ν(n,i) αi∑ν(N(n,x),i′)
i=ν(n,i′) αi

exists a.s. for all s, s′, o, o′.524

Assumption A.8. r(i)− r̄ + g(q)(i)− q(i) = 0,∀i ∈ I has a unique solution for r̄ and a unique525

for q only up to a constant.526

Denoted the unique solution of r̄ by r∞. Further, it can be seen that the solution of q satisfying both527

r − r̄e − g(q) − q = 0 and f(q) = r∞ is unique because our assumption on f (Assumption A.2).528

Denote the unique solution as q∞. We have,529

f(q∞) = r∞. (A.2)

Theorem A.1. Under Assumptions A.1-A.8, General RVI Q converges, almost surely, Qn to q∞ and530

f(Qn) to r∞.531

Proof. Because (A.1) is in the same form as the asynchronous update (Equation 7.1.2) by Borkar532

(2009), we apply the result in Section 7.4 of the same text (Borkar 2009) (see also Theorem 3.2533

by Borkar (1998)) which shows convergence for Equation 7.1.2, to show the convergence of (A.1).534

This result, given Assumption A.6 and A.7, only requires showing the convergence of the following535

synchronous version of the General RVI Q algorithm:536

Qn+1(i)
.
= Qn(i) + αn

(
Rn(i)− Fn(Qn)(i) + g(Qn)(i)−Qn(i)

)
∀i ∈ I. (A.3)

Define operators T1, T2:537

T1(Q)(i)
.
= r(i) + g(Q)(i)− r∞,

T2(Q)(i)
.
= r(i) + g(Q)(i)− f(Q)

= T1(Q)(i) + (r∞ − f(Q)) .

Consider two ordinary differential equations (ODEs):538

ẏt
.
= T1(yt)− yt, (A.4)

ẋt
.
= T2(xt)− xt = T1(xt)− xt + (r∞ − f(xt)) e. (A.5)

Note that because g is a non-expansion by Assumption A.1, both (A.4) and (A.5) have Lipschitz539

R.H.S.’s and thus are well-posed.540

Because g is a non-expansion, T1 is also a non-expansion. Therefore we have the next lemma, which541

restates Theorem 3.1 and Lemma 3.2 by Borkar and Soumyanath (1997).542

Lemma A.1. Let ȳ be an equilibrium point of (A.4). Then ‖yt − ȳ‖∞ is nonincreasing, and yt → y∗543

for some equilibrium point y∗ of (A.4) that may depend on y0.544

Lemma A.2. (A.5) has a unique equilibrium at q∞.545

Proof. Because f(q∞) = r∞, we have that q∞ = T1(q∞) = T2(q∞), thus q∞ is a equilibrium546

point for (A.5). Conversely, if T2(Q)−Q = 0, then T1Q+ (r∞ − f(Q))e = Q. But the equation547

T1Q+ ce = Q only has a solution when c = 0 because of Assumption A.1. We have c = 0 and thus548

f(Q) = r∞, which along with T1Q = Q, implies Q = q∞.549
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Lemma A.3. Let x0 = y0, then xt = yt+zte, where zt satisfies the ODE żt = −uzt+(r∞−f(yt)),550

and k .
= |I|.551

Proof. From (A.4), (A.5), by the variation of parameters formula,552

xt = exp(−t)x0 +

∫ t

0

exp(τ − t)T1(xτ )dτ +

[∫ t

0

exp(τ − t) (r∞ − f(xτ )) dτ

]
e,

yt = exp(−t)y0 +

∫ t

0

exp(τ − t)T1(yτ )dτ.

Then we have553

max
s,o

(xt(s, o)− yt(s, o))

≤
∫ t

0

exp(τ − t) max
s,o

(T1(xτ )(s, o)− T1(yτ )(s, o))dτ +

[∫ t

0

exp(τ − t) (r∞ − f(xτ )) dτ

]
,

min
s,o

(xt(s, o)− yt(s, o))

≥
∫ t

0

exp(τ − t) min
s,o

(T1(xτ )(s, o)− T1(yτ )(s, o))dτ +

[∫ t

0

exp(τ − t) (r∞ − f(xτ )) dτ

]
.

Subtracting, we have554

sp(xt − yt) ≤
∫ t

0

exp(τ − t)sp(T1(xτ )− T1(yτ ))dτ,

where sp(x) denotes the span of vector x.555

Because we assumed that g is span-norm non-expansion, T1 is also a span-norm non-expansion and556

thus557

sp(xt − yt) ≤
∫ t

0

exp(τ − t)sp(T1(xτ )− T1(yτ ))dτ ≤
∫ t

0

exp(τ − t)sp(xτ − yτ )dτ.

By Gronwall’s inequality, sp(xt − yt) = 0 for all t ≥ 0. Because sp(x) = 0 if and only if x = ce558

for some c ∈ R, we have559

xt = yt + zte, t ≥ 0.

for some zt. Also x0 = y0 =⇒ z0 = 0.560

Now we show that żt = −uzt + (r∞ − f(yt)). Note that f(xt) = f(yt + zte) = f(yt) + uzt. In561

addition, T1(xt)− T1(yt) = T1(yt + zte)− T1(yt) = T1(yt) + zte− T1(yt) = zte, therefore we562

have, for zt ∈ R:563

żte = ẋt − ẏt
= (T1(xt)− xt + (r∞ − f(xt)) e)− (T1(yt)− yt) (from (A.4) and (A.5))
= −(xt − yt) + (T1(xt)− T1(yt)) + (r∞ − f(xt)) e

= −zte+ zte+ (r∞ − f(xt)) e

= −uzte+ uzte+ (r∞ − f(xt)) e

= −uzte+ (r∞ − f(yt)) e

=⇒ żt = −uzt + (r∞ − f(yt)) .

564

Lemma A.4. q∞ is the globally asymptotically stable equilibrium for (A.5).565

Proof. We have shown that q∞ is the unique equilibrium in Lemma A.2.566

With that result, we first prove Lyapunov stability. That is, we need to show that given any ε > 0, we567

can find a δ > 0 such that ‖q∞ − x0‖∞ ≤ δ implies ‖q∞ − xt‖∞ ≤ ε for t ≥ 0.568
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First, from Lemma A.3 we have żt = −uzt + (r∞ − f(yt)). By variation of parameters and z0 = 0,569

we have570

zt =

∫ t

0

exp(u(τ − t)) (r∞ − f(yτ )) dτ.

Then571

‖q∞ − xt‖∞ = ‖q∞ − yt − ztue‖∞
≤ ‖q∞ − yt‖∞ + u |zt|

≤ ‖q∞ − y0‖∞ + u

∫ t

0

exp(u(τ − t)) |r∞ − f(yτ )| dτ

= ‖q∞ − x0‖∞ + u

∫ t

0

exp(u(τ − t)) |f(q∞)− f(yτ )| dτ (from (A.2)). (A.6)

Because f is L-lipschitz, we have572

|f(q∞)− f(yτ )| ≤ L ‖r∞ − yτ‖∞
≤ L ‖r∞ − y0‖∞ (from Lemma A.1)
= L ‖r∞ − x0‖∞ .

Therefore573 ∫ t

0

exp(u(τ − t)) |f(q∞)− f(yτ )| dτ ≤
∫ t

0

exp(u(τ − t))L ‖q∞ − x0‖∞ dτ

= L ‖q∞ − x0‖∞
∫ t

0

exp(u(τ − t))dτ

= L ‖q∞ − x0‖∞
1

u
(1− exp(−ut))

=
L

u
‖q∞ − x0‖∞ (1− exp(−ut)).

Substituting the above equation in (A.6), we have574

‖q∞ − xt‖∞ ≤ (1 + L) ‖q∞ − x0‖∞ .

Lyapunov stability follows.575

Now in order to prove the asymptotic stability, in addition to Lyapunov stability, we need to show576

that there exists δ > 0 such that if ‖x0 − q∞‖∞ < δ , then limt→∞ ‖xt − q∞‖∞ = 0. Note that577

lim
t→∞

zt = lim
t→∞

∫ t

0

exp(u(τ − t)) (r∞ − f(yτ )) dτ

= lim
t→∞

∫ t
0

exp(uτ)(r∞ − f(yτ ))dτ

exp(ut)

= lim
t→∞

exp(ut)(r∞ − f(yt))

u exp(ut)
(by L’Hospital’s rule)

=
r∞ − f(y∞)

u
(by Lemma A.1).

Because xt = yt + zte (Lemma A.3) and yt → y∞ (Lemma A.1), we have xt → y∞ + (r∞ −578

f(y∞))e/u, which must coincide with q∞ because that is the only equilibrium point for (A.5)579

(Lemma A.2). Therefore limt→∞ ‖xt − q∞‖∞ = 0 for any x0. Asymptotic stability is shown and580

the proof is complete.581

Lemma A.5. Equation A.3 converges a.s. Qn to q∞ as n→∞.582
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Proof. The proof uses Borkar’s (2008) Theorem 2 in Section 2 and is essentially the same as Lemma583

3.8 by Abounadi et al. (2001). For completeness, we repeat the proof (with more details) here.584

First write the synchronous update (A.3) as585

Qn+1 = Qn + αn(h(Qn) +Mn+1 + εn),

where586

h(Qn)(i)
.
= r(i)− f(Qn) + g(Qn)(i)−Qn(i)

= T2(Qn)(i)−Qn(i),

Mn+1(i)
.
= Rn(i)− Fn(Qn)(i) +Gn(Qn)(i)− T2(Qn)(i).

It can be shown that εn is asymptotically negligible and therefore does not affect the conclusions of587

Theorem 2 (text after Equation B.66 by Wan et al. 2021).588

Theorem 2 requires verifying following conditions and concludes that Qn converges to a (possibly589

sample path dependent) compact connected internally chain transitive invariant set of ODE ẋt =590

h(xt). This is exactly the ODE defined in (A.5). Lemma A.2 and A.4 conclude that this ODE has591

q∞ as the unique globally asymptotically stable equilibrium. Therefore the (possibly sample path592

dependent) compact connected internally chain transitive invariant set is a singleton set containing593

only the unique globally asymptotically stable equilibrium. Thus Theorem 2 concludes thatQn → q∞594

a.s. as n→∞. We now list conditions required by Theorem 2:595

• (A1) The function h is Lipschitz: ‖h(x)− h(y)‖ ≤ L ‖x− y‖ for some 0 < L <∞.596

• (A2) The sequence {αn} satisfies αn > 0, and
∑
αn =∞,

∑
α2
n <∞.597

• (A3) {Mn} is a martingale difference sequence with respect to the increasing family of598

σ-fields599

Fn .
= σ(Qi,Mi, i ≤ n), n ≥ 0.

That is600

E[Mn+1 | Fn] = 0 a.s., n ≥ 0.

Furthermore, {Mn} are square-integrable601

E[‖Mn+1‖2 | Fn] ≤ K(1 + ‖Qn‖2) a.s., n ≥ 0,

for some constant K > 0.602

• (A4) supn ‖Qn‖ ≤ ∞ a.s..603

Let us verify these conditions now.604

(A1) is satisfied because T2 is Lipschitz.605

(A2) is satisfied by Assumption A.5.606

(A3) is also satisfied because for any i ∈ I607

E[Mn+1(i) | Fn] = E [Rn(i)− Fn(Qn)(i) +Gn(i)− T2(Qn)(i) | Fn]

= E [Rn(i)− Fn(Qn)(i) +Gn(Qn)(i) | Fn]− T2(Qn)(i)

= 0,

and E[‖Mn+1‖2 | Fn] ≤ E[‖Rn − r‖2 | Fn] + E[‖Fn(Qn)− f(Qn)e‖2 | Fn] +608

E[‖Gn(Qn)− g(Qn)‖2 | Fn] ≤ K(1 + ‖Qn‖2) for a suitable constant K > 0 can be verified609

by a simple application of triangle inequality.610

To verify (A4), we apply Theorem 7 in Section 3 by Borkar (2008), which shows supn ‖Qn‖ ≤ ∞611

a.s., if (A1), (A2), and (A3) are all satisfied and in addition we have the following condition satisfied:612

(A5) The functions hd(x)
.
= h(dx)/d, d ≥ 1, x ∈ Rk, satisfy hd(x)→ h∞(x) as d→∞, uniformly613

on compacts for some h∞ ∈ C(Rk). Furthermore, the ODE ẋt = h∞(xt) has the origin as its unique614

globally asymptotically stable equilibrium.615
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Note that616

h∞(x) = lim
d→∞

hd(x) = lim
d→∞

(T2(dx)− dx) /d = g(x)− f(x)e− x,

because g(cx) = cg(x) and f(cx) = cf(x) by our assumption.617

The function h∞ is clearly continuous in every x ∈ Rk and therefore h∞ ∈ C(Rk).618

Now consider the ODE ẋt = h∞(xt) = g(xt)− f(xt)e− xt. Clearly the origin is an equilibrium.619

This ODE is a special case of (A.5), corresponding to the r(s, o)∀s ∈ S, o ∈ O being always620

zero. Therefore Lemma A.2 and A.4 also apply to this ODE and the origin is the unique globally621

asymptotically stable equilibrium.622

(A1), (A2), (A3), (A4) are all verified and therefore623

Qn → q∞ a.s. as n→∞.
624

625

A.2 Theorem 1626

For simplicity, we will only provide formal theorems and proofs for our control learning and planning627

algorithms. The formal theorems and proofs for our prediction algorithms are similar to those for628

the control algorithms and are thus omitted. To this end, we first provide a general algorithm that629

includes both learning and planning control algorithms. We call it General Inter-option Differential630

Q. We first formally define it and then explain why both inter-option Differential Q-learning and631

inter-option Differential Q-planning are special cases of General Inter-option Differential Q. We then632

provide assumptions and the convergence theorem of the general algorithm. The theorem would lead633

to convergence of the special cases. Finally, we provide a proof for the theorem.634

Given an SMDP M̂ = (S,O, L̂, R̂, p̂), for each state s ∈ S , option o ∈ O, and discrete step n ≥ 0,635

let R̂n(s, o), Ŝ′n(s, o), L̂n(s, o) ∼ p̂(·, ·, ·|s, o) denote a sample of resulting state, reward and the636

length. We hypothesize a set-valued process {Yn} taking values in the set of nonempty subsets of637

S × O with the interpretation: Yn = {(s, o) : (s, o) component of Q was updated at time n}. Let638

ν(n, s, o)
.
=
∑n
k=0 I{(s, o) ∈ Yk}, where I is the indicator function. Thus ν(n, s, o) = the number639

of times the (s, o) component was updated up to step n. The update rules of General Inter-option640

Differential Q are641

Qn+1(s, o)
.
= Qn(s, o) + αν(n,s,o)δn(s, o)/Ln(s, o)I{(s, o) ∈ Yn}, ∀s ∈ S, o ∈ O, (A.7)

R̄n+1
.
= R̄n + η

∑
s,o

αν(n,s,o)δn(s, o)/Ln(s, o)I{(s, o) ∈ Yn}, (A.8)

Ln+1(s, o)
.
= Ln(s, o) + βn(s, o)(L̂n(s, o)− Ln(s, o))I{(s, o) ∈ Yn}, (A.9)

where642

δn(s, o)
.
= R̂n(s, o)− R̄nLn(s, o) + max

o′
Qn(Ŝ′n(s, o), o′)−Qn(s, o) (A.10)

is the TD error.643

Here αν(n,s,o) is the stepsize at step n for state-action pair (s, o). The quantity αν(n,s,o) depends644

on the sequence {αn}, which is an algorithmic design choice, and also depends on the visitation645

of state-option pairs ν(n, s, o). To obtain the stepsize, the algorithm could maintain a |S × O|-size646

table counting the number of visitations to each state-option pair, which is exactly ν(·, ·, ·). Then the647

stepsize αν(n,s,o) can be obtained as long as the sequence {αn} is specified.648

Q0 and R0 can be initialized arbitrarily. Note that L0 can not be initialized to 0 because it is the649

divisor for both (A.7) and (A.8) for the first update. Because the expected length of all options would650

be greater than or equal to 1, we choose L0 to be 1. In this way, Ln will never be 0 because it651

is initialized to 1 and all the sampled option lengths are greater than or equal to 1. Therefore the652

problem of division by 0 will not happen in the updates.653
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Now we show inter-option Differential Q-learning and inter-option Differential Q-planning are654

special cases of General Inter-option Differential Q. Consider a sequence of real experience655

. . . , Ŝn, Ôn, R̂n, L̂n, Ŝn+1, . . ..656

Yn(s, o) = 1, if s = Ŝn, o = Ôn,

Yn(s, o) = 0 otherwise,

and Ŝ′n(Ŝn, Ôn) = Ŝn+1, R̂n(Ŝn, Ôn) = R̂n+1, L̂n(Ŝn, Ôn) = L̂n, update rules (A.7), (A.8), and657

(A.10) become658

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + αν(n,Ŝn,Ôn)δ̂n/Ln(Ŝn, Ôn) , and Qn+1(s, o)

.
= Qn(s, o),∀s 6= Ŝn, o 6= Ôn,

R̄n+1
.
= R̄n + ηαν(n,Ŝn,Ôn)δ̂n/Ln(Ŝn, Ôn),

δ̂n
.
= R̂n − R̄nL̂n + max

o′
Qn(Ŝn+1, o

′)−Qn(Ŝn, Ôn),

Ln+1(Ŝn, Ôn)
.
= Ln(Ŝn, Ôn) + βn(Ŝn, Ôn)(L̂n − Ln(Ŝn, Ôn))

which are inter-option Differential Q-learning’s update rules (Section 3) with stepsize α in the n-th659

update being αν(n,Ŝn,Ôn), and the stepsize β being β(Ŝn, Ôn).660

If we consider a sequence of simulated experience . . . , S̃n, Õn, R̃n, L̃n, S̃′n, . . ..661

Yn(s, o) = 1, if s = S̃n, o = Õn,

Yn(s, o) = 0 otherwise,

and Ŝ′n(s, o) = S̃′n, R̂n(s, o) = R̃n, L̂n(s, o) = L̃n, update rules (A.7)-(A.10) become662

Qn+1(S̃n, Õn)
.
= Qn(S̃n, Õn) + αν(n,S̃n,Õn)δ̃n/Ln , and Qn+1(s, o)

.
= Qn(s, o),∀s 6= S̃n, o 6= Õn,

R̄n+1
.
= R̄n + ηαν(n,S̃n,Õn)δ̃n/Ln,

δ̃n
.
= R̃n − R̄nL̃n + max

o′
Qn(S̃′n, o

′)−Qn(S̃n, Õn),

Ln+1(S̃n, Õn)
.
= Ln(S̃n, Õn) + βn(S̃n, Õn)(L̃n − Ln(S̃n, Õn)).

Now, in the planning setting, the model can produce an expected length, instead of a sampled one.663

And there estimating the expected length using Ln is no longer needed. The above updates reduce to664

Qn+1(S̃n, Õn)
.
= Qn(S̃n, Õn) + αν(n,S̃n,Õn)δ̃n/L̃n , and Qn+1(s, o)

.
= Qn(s, o),∀s 6= S̃n, o 6= Õn,

R̄n+1
.
= R̄n + ηαν(n,S̃n,Õn)δ̃n/L̃n,

δ̃n
.
= R̃n − R̄nL̃n + max

o′
Qn(S̃′n, o

′)−Qn(S̃n, Õn).

The above update rules are our inter-option Differential Q-planning’s update rules with stepsize at665

planning step n being αν(n,S̃n,Õn).666

We now provide a theorem, along with its proof, showing the convergence of General Inter-option667

Differential Q.668

Theorem A.2. Under Assumptions 1, A.5, A.6, A.7, and that 0 ≤ βn(s, o) ≤ 1,
∑
n βn(s, o) =∞,669

and
∑
n β

2
n(s, o) < ∞, and βn(s, o) = 0 unless s = Ŝn, General Inter-option Differential Q670

(Equations A.7-A.10) converges, almost surely, Qn to q satisfying both (2) and671

η(
∑

q −
∑

Q0) = r∗ − R̄0,

R̄n to r∗, and r(µn) to r∗ where µn is a greedy policy w.r.t. Qn.672
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Proof. At each step, the increment to R̄n is η times the increment to Qn and
∑
Qn. Therefore, the673

cumulative increment can be written674

R̄n − R̄0 = η

n−1∑
i=0

∑
s,o

αν(i,s,o)δi(s, o)/Li(s, o)I{(s, o) ∈ Yi}

= η
(∑

Qn −
∑

Q0

)
=⇒ R̄n = η

∑
Qn − η

∑
Q0 + R̄0 = η

∑
Qn − c, (A.11)

where c .= η
∑

Q0 − R̄0. (A.12)

Now substituting R̄n in (A.7) with (A.11), we have ∀s ∈ S, o ∈ O:675

Qn+1(s, o) = Qn(s, o) + αν(n,s,o)

R̂n(s, o)− Ln(s, o)(η
∑
Qn − c) + maxo′ Qn(Ŝ′n(s, o), o′)−Qn(s, o)

Ln(s, o)
I{(s, o) ∈ Yn}

= Qn(s, o) + αν(n,s,o)(
R̂n(s, o)− ln(s, o)(η

∑
Qn − c) + maxo′ Qn(Ŝ′n(s, o), o′)−Qn(s, o)

l(s, o)
+ εn(s, o)

)
I{(s, o) ∈ Yn},

(A.13)

where l(s, o) is the expected length of option o, starting from state s, and εn(s, o)
.
= (R̂n(s, o) −676

Ln(s, o)(η
∑
Qn−c)+maxo′ Qn(Ŝ′n(s, o), o′)−Qn(s, o))/L(s, o)−(R̂n(s, o)−l(s, o)(η∑Qn−677

c) + maxo′ Qn(Ŝ′n(s, o), o′)−Qn(s, o))/l(s, o).678

Standard stochastic approximation result can be applied to show that Ln converges to l. Further, it679

can be seen that εn satisfies that ‖εn‖∞ ≤ K(1 + ‖Qn‖) for some positive K and, by continuous680

mapping theorem, converges to 0 almost surely (and thus in probability).681

We now show that (A.13) is a special case of (A.1). To see this point, let682

i = (s, o),

Rn(i) =
R̂n(s, o)

l(s, o)
+ c,

Gn(Qn)(i) =
maxo′ Qn(Ŝ′n(s, o), o′)

l(s, o)
+
l(s, o)− 1

l(s, o)
Qn(s, o),

F (Qn)(i) = η
∑

Qn,

εn(i) = εn(s, o).

We now verify the assumptions of Theorem A.1 for Inter-option General Differential Q. Assump-683

tion A.1 and Assumption A.2 can be verified easily. Assumption A.3 satisfies because the MDP684

is finite. Assumption A.4 is satisfied as shown above. Assumption A.5-A.7 are satisfied due to685

assumptions of the theorem being proved. Assumption A.8 is satisfied because686

r(i)− r̄ + g(q)(i)− q(i)
= E[Rn(i)− r̄ +Gn(q)(i)− q(i)]

= E

[
R̂n(s, o) + cl(s, o)− r̄l(s, o) + maxo′ q(Ŝ

′
n(s, o), o′) + (l(s, o)− 1)q(s, o)− l(s, o)q(s, o)
l(s, o)

]

=
E
[
R̂n(s, o) + cl(s, o)− r̄l(s, o) + maxo′ q(Ŝ

′
n(s, o), o′)− q(s, o)

]
l(s, o)

.

From (2) we know if the above equation equals to 0, then under Assumption 1, r̄ = r∗ + c is the687

unique solution and the solutions for q form a set q = q∗ + ce.688
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All the assumptions are verified and thus from Theorem A.1 we conclude thatQn converges to a point689

satisfying η
∑
q = r∗+c = r∗+η

∑
Q0−R̄0 and R̄n = η

∑
Qn−c to η

∑
q−c = r∗+c−c = r∗.690

Finally, in order to show r(µn)→ r∗, we first extend Theorem 8.5.5 by Puterman (1994) to deal with691

SMDP.692

Lemma A.6. Under Assumption 1, ∀Q ∈ R|S×O|693

min
s,o

TQ(s, o) ≤ r(µQ) ≤ r∗ ≤ max
s,o

TQ(s, o),

where TQ(s, o)
.
=
∑
s′,r,l p̂(s

′, r, l | s, o)(r+ maxo′ Q(s′, o′)) and µQ denotes a greedy policy w.r.t.694

Q.695

Proof. Note that696

r(µQ) =
∑
s′,r,l

p̂(s′, r, l | s, o)(r +
∑
o′

µQ(o′ | s′)Q(s′, o′)−Q(s, o)).

Therefore697

min
s,o

(TQn(s, o)−Qn(s, o)) ≤ r(µn) ≤ r∗ ≤ max
s,o

(TQn(s, o)−Qn(s, o))

=⇒ |r∗ − r(µn)| ≤ sp(TQn −Qn).

698

Because Qn → q∞ a.s., and sp(TQn −Qn) is a continuous function of Qn, by continuous mapping699

theorem, sp(TQn −Qn)→ sp(Tq∞ − q∞) = 0 a.s. Therefore we conclude that r(µn)→ r∗.700

701

A.3 Theorem 2702

The proof for the intra-option evaluation equation is simple. First note that these equations can be703

written in the vector form:704

0 = r − r̄e+ (Pµ − I)q,

where r(s, o) = E[Rt+1 | St = s,Ot = o], Pµ((s, o), (s′, o′))
.
= Pr(St+1 = s′, Ot+1 = o′|St =705

s,Ot = o, µ) = β(s′, o)µ(o′ | s′) + (1− β(s′, o))I(o = o′), and e is a all-one vector. Intuitively, the706

intra-option evaluation equation can be viewed as the evaluation equation for some average-reward707

MRP with reward and dynamics being defined as r and Pµ.708

By Theorem 8.2.6 and Corollary 8.2.7 in Puterman (1994), the intra-option evaluation equation part709

in Theorem 2 is shown as long as the Markov chain associated with Pµ is unichain. Note that by710

our Assumption 1, there is only one recurrent class of states under any policy. Therefore no matter711

what the start state-option pair is, the agent will enter in the same recurrent class of states. Therefore712

we have, for every state s̄ in the recurrent class and an option ō such that µ(ō | s̄) > 0, the MDP713

visits (s̄, ō) an an infinite number of times. This shows that any two state-option pairs can not be in714

two separate recurrent sets of state-option pairs. Therefore the Markov chain associated with Pµ is715

unichain.716

The proof for the Intra-option Optimality Equations is more complicated. First, similar as what we717

know in the discounted primitive action case, we have the following lemma for the discounted option718

case.719

Lemma A.7. For every 0 < γ < 1, there exists a stationary deterministic discount optimal policy.720

The proof uses similar arguments as Theorem 6.2.10 and Proposition 4.4.3 by Puterman (1994).721

Now choose a sequence of discount factors {γn}, 0 ≤ γn < 1 with the property that γn ↑ 1. By722

lemma A.7, for each γn, there exists a stationary discount optimal policy. Because the total number723

of Markov deterministic policies is finite, we can choose a subsequence {γ′n} for which the same724

Markov deterministic policy, µ, is discount optimal for all γ′n. Denote this subsequence by {γn}.725
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Because µ is discount optimal for γn,∀n, qγn∗ = qγnµ ,∀n. By intra-option optimality equations in the726

discounted case (Sutton et al., 1999), for all s ∈ S, o ∈ O,727

0 =
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)
(
r + γnβ(s′, o)qγnµ (s′, µ(s′)) + γn(1− β(s′, o))qγnµ (s′, o)

)
− qγnµ (s, o)

=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)
(
r + γnβ(s′, o) max

o′
qγnµ (s′, o′) + γn(1− β(s′, o))qγnµ (s′, o)

)
− qγnµ (s, o).

(A.14)

By corollary 8.2.4 by Puterman (1994),728

qγnµ = (1− γn)−1r(µ) + qµ + f(γn), (A.15)

where r(µ) and qµ are the reward rate and differential value function under policy µ, and f(γ) is a729

function of γ that converges to 0 as γ ↑ 1.730

Substituting (A.15) into (A.14), we have731

0 =
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r + γnβ(s′, o) max
o′

[(1− γn)−1r(µ) + qµ(s′, o′) + f(γn, s
′, o′)]

+ γn(1− β(s′, o))[(1− γn)−1r(µ) + qµ(s′, o) + f(γn, s
′, o)])

− [(1− γn)−1r(µ) + qµ(s, o) + f(γn, s, o)]

=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r − r(µ) + γnβ(s′, o) max
o′

[qµ(s′, o′) + f(γn, s
′, o′)]

+ γn(1− β(s′, o))[qµ(s′, o) + f(γn, s
′, o)])

− [qµ(s, o) + f(γn, s, o)]

=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r − r(µ) + β(s′, o) max
o′

[qµ(s′, o′) + f(γn, s
′, o′)]

+ (γn − 1)β(s′, o) max
o′

[qµ(s′, o′) + f(γn, s
′, o′)]

+ (1− β(s′, o))[qµ(s′, o) + f(γn, s
′, o)]

+ (γn − 1)(1− β(s′, o))[qµ(s′, o) + f(γn, s
′, o)]

− [qµ(s, o) + f(γn, s, o)].

Note that (γ − 1)β(s′, o) maxo′ [qµ(s′, o′) + f(γ, s′, o′)] and (γ − 1)(1 − β(s′, o))[qµ(s′, o) +732

f(γ, s′, o)] both converge to 0 as γ ↑ 1.733

Now take n→∞, then γn ↑ 1, we have734

0 =
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)
(
r − r(µ) + β(s′, o) max

o′
qµ(s′, o′) + (1− β(s′, o))qµ(s′, o)

)
− qµ(s, o).

We see that r̄ = r(µ) and q = qµ is a solution of (10)-(11).735

Now we show that the solution for r̄ is unique. Define736

B(r̄, q)
.
=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)
(
r − r̄ + β(s′, o) max

o′
q(s′, o′) + (1− β(s′, o))q(s′, o)

)
− q(s, o).

First we show if B(r̄, q) = 0, then r̄ ≥ r∗.737

0 = B(r̄, q)

=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r − r̄ + β(s′, o) max
o′

q(s′, o′) + (1− β(s′, o))q(s′, o))− q(s, o)

≥ sup
µ∈ΠMR

∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)

(
r − r̄ + β(s′, o)

∑
o′

µ(o′|s′)q(s′, o′) + (1− β(s′, o))q(s′, o)

)
− q(s, o),
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where ΠMR denotes the set of all Markov randomized policies. In vector form, the above equation738

can be written as:739

0 ≥ sup
µ∈ΠMR

{r − r̄e+ (Pµ − I)q}.

Therefore ∀µ ∈ ΠMR,740

r̄e ≥ r + (Pµ − I)q.

Apply Pµ to both sides,741

Pµr̄e ≥ Pµr + Pµ(Pµ − I)q,

r̄e ≥ Pµr + Pµ(Pµ − I)q.

Repeating this process we have:742

r̄e ≥ Pnµ r + Pnµ (Pµ − I)q.

Summing these expressions from n = 0 to n = N − 1 we have:743

Nr̄e ≥
N−1∑
n=0

(Pnµ r + Pnµ (Pµ − I)q) =

N−1∑
n=0

Pnµ r + (PNµ − PN−1
µ )q.

Because limN→∞
1
N (PNµ − PN−1

µ )q = 0,744

r̄e ≥ lim
N→∞

1

N

N−1∑
n=0

Pnµ r = r(µ)e,

for all µ ∈ ΠMR. Therefore r̄ ≥ r∗.745

Then we show that if 0 = B(r̄, q) then r̄ ≤ r∗. As we proved above, if (r̄, q) satisfies that 0 = B(r̄, q)746

then there exists a policy µ such that r̄e = r + (Pµ − I)q is true. Therefore,747

Pnµ r̄e = Pnµ r + Pnµ (Pµ − I)q,

lim
N→∞

1

N

N−1∑
n=0

Pnµ r̄e = lim
N→∞

1

N

N−1∑
n=0

(Pnµ r + Pnµ (Pµ − I)q),

r̄e = lim
N→∞

N−1∑
n=0

Pnµ r = r(µ)e ≤ r∗e.

Therefore r̄ ≤ r∗. Combining r̄ ≥ r∗ and r̄ ≤ r∗ we have r̄ = r∗.748

Finally, we show that the solution for q is unique only up to a constant. Note that one could iteratively749

replace q in the r.h.s. of the intra-option Optimality equation (10)-(11) by the entire r.h.s. of the750

intra-option Optimality equation, resulting to the inter-option Optimality equation (2). Therefore any751

solution of (10)-(11) must be a solution of (2). But we know that the solutions for q in (2) is unique752

only up to a constant. Therefore the solutions for q in (10)-(11) can not differ by a non-constant.753

Further, it is easy to see that if q is a solution, then q + ce,∀c is also a solution. The theorem is754

proved.755

�756

A.4 Theorem 3757

For simplicity, we will only provide formal theorems and proofs for our control learning and planning758

algorithms. The formal theorems and proofs for our prediction algorithms are similar to those for759

the control algorithms and are thus omitted. To this end, we first provide a general algorithm that760

includes both learning and planning control algorithms. We call it General Intra-option Differential761

Q. We first formally define it and then explain why both Intra-option Differential Q-learning and762

Intra-option Differential Q-planning are special cases of General Intra-option Differential Algorithm.763

We then provide assumptions and the convergence theorem of the general algorithm. The theorem764

would lead to convergence of the special cases. Finally, we provide a proof for the theorem.765
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Given an MDPM .
= (S,A,R, p) and a set of options O, for each state s ∈ S , option o ∈ O, a refer-766

ence option ō, and discrete step n ≥ 0, letAn(s, ō) ∼ π(· | s, ō),Rn(s,An(s, ō)), S′n(s,An(s, ō)) ∼767

p(·, · | s,An(s, ō)) denote, given state-option pair (s, ō), a sample of the chosen action and the result-768

ing state and reward. We hypothesize a set-valued process {Yn} taking values in the set of nonempty769

subsets of S ×O with the interpretation: Yn = {(s, o) : (s, o) component of Q was updated at time770

n}. Let ν(n, s, o)
.
=
∑n
k=0 I{(s, o) ∈ Yk}, where I is the indicator function. Thus ν(n, s, o) =771

the number of times the (s, o) component was updated up to step n. In addition, we hypothesize a772

set-valued process {Zn} taking values in the set of nonempty subsets of O with the interpretation:773

Zn = {ō : ō component was visited at time n}. ∑ō I{ō ∈ Zn} means the number of reference774

options used at update step n. For simplicity, we assume this number is always 1.775

Assumption A.9.
∑
ō I{ō ∈ Zn} = 1 for all discrete n ≥ 0.776

The update rules of General Intra-option Differential Q are777

Qn+1(s, o)
.
= Qn(s, o) + αν(n,s,o)

∑
ō

ρn(s, o, ō)δn(s, o, ō)I{(s, o) ∈ Yn}I{ō ∈ Zn}, ∀s ∈ S, and o ∈ O

(A.16)

R̄n+1
.
= R̄n + η

∑
s,o

αν(n,s,o)

∑
ō

ρn(s, o, ō)δn(s, o, ō)I{(s, o) ∈ Yn}I{ō ∈ Zn}, (A.17)

where ρn(s, o, ō)
.
= π(An(s, ō) | s, o)/π(An(s, ō) | s, ō) and778

δn(s, o, ō)
.
= Rn(s,An(s, ō))− R̄n + β(S′n(s,An(s, ō)), o) max

o′
Qn(S′n(s,An(s, ō)), o′)

+ (1− β(S′n(s,An(s, ō)), o))Qn(S′n(s,An(s, ō)), o)−Qn(s, o) (A.18)

is the TD error.779

Here αν(n,s,o) is the stepsize at step n for state-option-option triple (s, o). The quantity αν(n,s,o)780

depends on the sequence {αn}, which is an algorithmic design choice, and also depends on the781

visitation of state-option pairs ν(n, s, o). To obtain the stepsize, the algorithm could maintain a782

|S × O|-size table counting the number of visitations to each state-option pair, which is exactly783

ν(·, ·, ·). Then the stepsize αν(n,s,o) can be obtained as long as the sequence {αn} is specified.784

Now we show Intra-option Differential Q-learning and Intra-option Differential Q-planning are785

special cases of General Intra-option Differential Q. Consider a sequence of real experience786

. . . , St, Ot, At, Rt+1, St+1, . . .. By choosing step n = time step t,787

Yn(s, o) = 1, if s = St
Yn(s, o) = 0 otherwise,
Zn(ō) = 1, if ō = Ot
Zn(ō) = 0 otherwise,

and An(St, Ot) = At, S′n(St, An(St, Ot)) = St+1, Rn(St, An(St, Ot)) = Rt+1, update rules788

(A.16), (A.17), and (A.18) become789

Qt+1(St, o)
.
= Qt(St, o) + αν(t,St,o)ρt(o)δt(o),∀o ∈ O , and Qt+1(s, o)

.
= Qt(s, o),∀o ∈ O and ∀s 6= St,

R̄t+1
.
= R̄t + η

∑
o

αν(t,St,o)ρt(o)δt(o),

δt(o)
.
= Rt+1 − R̄t + β(St+1, o) max

o′
Qt(St+1, o

′) + (1− β(St+1, o))Qt(St+1, o)−Qt(St, o),

where ρt(o)
.
= π(At | St, o)/π(At | St, Ot). The above equations are Intra-option Differential790

Q-learning’s update rules (Equations 13, 14, 15) with stepsize at time t being αν(t,St,o) for each791

option o.792

If we consider a sequence of simulated experience . . . , S̃n, Õn, Ãn, R̃n, S̃′n, . . ., by choosing step793

n = planning step n,794

Yn(s, o) = 1, if s = S̃n
Yn(s, o) = 0 otherwise,

Zn(ō) = 1, if ō = Õn
Zn(ō) = 0 otherwise,
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and An(S̃n, Õn) = Ãn, S′n(S̃n, An(S̃n, Õn)) = S̃′n, Rn(S̃n, An(S̃n, Õn)) = R̃n, update rules795

(A.16), (A.17), and (A.18) become796

Qn+1(S̃n, o)
.
= Qn(S̃n, o) + αν(n,S̃n,o)

ρn(o)δn(o),∀o ∈ O , and Qn+1(s, o)
.
= Qn(s, o),∀s 6= S̃n,∀o ∈ O

R̄n+1
.
= R̄n + η

∑
o

αν(n,S̃n,o)
ρn(o)δn(o),

δn(o)
.
= R̃n − R̄n + β(S̃′n, o) max

o′
Qn(S̃′n, o

′) + (1− β(S̃′n, o))Qn(S̃′n, o)−Qn(S̃n, o),

where ρn(o)
.
= π(An | Sn, o)/π(An | Sn, On). The above equations are Intra-option Differential797

Q-planning’s update rules (Equations 13, 14, 15) with stepsize at planning step n being αν(n,Sn,o)798

for each option o.799

Finally, note that for both Intra-option Differential Q-learning and Q-planning algorithms, because800

for each time step t or update step n, there is only one option which is actually chosen to generate801

data, Assumption A.9 is satisfied.802

Theorem A.3. Under Assumptions 1, A.5, A.6, A.7, A.9, General Intra-option Differential Q (Equa-803

tions A.16-A.18) converges, almost surely, Qn to q satisfying both (10)-(11) and804

η(
∑

q −
∑

Q0) = r∗ − R̄0, (A.19)

R̄n to r∗, and r(µn) to r∗ where µn is a greedy policy w.r.t. Qn.805

Proof. At each step, the increment to R̄n is η times the increment to Qn and
∑
Qn. Therefore, the806

cumulative increment can be written as:807

R̄n − R̄0 = η

n−1∑
i=0

∑
s,o

αν(i,s,o)

∑
ō

ρi(s, o, ō)δi(s, o, ō)I{(s, o) ∈ Yi}I{ō ∈ Zi}

= η
(∑

Qn −
∑

Q0

)
=⇒ R̄n = η

∑
Qn − η

∑
Q0 + R̄0 = η

∑
Qn − c, (A.20)

where c .= η
∑

Q0 − R̄0.

Now substituting R̄n in (A.16) with (A.20), we have ∀s ∈ S, o ∈ O:808

Qn+1(s, o) = Qn(s, o) + αν(n,s,o)

∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)(

Rn(s,An(s, ō))− η
∑

Qn + c+ β(S′n(s,An(s, ō)), o) max
o′

Qn(S′n(s,An(s, ō)), o′)

+ (1− β(S′n(s,An(s, ō)), o))Qn(S′n(s,An(s, ō)), o)−Qn(s, o)

)
I{(s, o) ∈ Yn}I{ō ∈ Zn}. (A.21)

We now show that (A.21) is a special case of (A.1). To see this point, let i = (s, o),809

Rn(i) =
∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}(Rn(s,An(s, ō)) + c),

Fn(Qn)(i) =
∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}η

∑
Qn,

Gn(Qn)(i) =
∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}

(
β(S′n(s,An(s, ō)), o) max

o′
Qn(S′n(s,An(s, ō)), o′)

+ (1− β(S′n(s,An(s, ō)), o))Qn(S′n(s,An(s, ō)), o)−Qn(s, o)
)
,

εn(i) = 0.
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Then we have:810

r(i) = E[Rn(i)]

= E

[∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}(Rn(s,An(s, ō)) + c)

]

=
∑
ō

E
[
π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}(Rn(s,An(s, ō)) + c)

]
=
∑
ō

I{ō ∈ Zn}
∑
a

π(a | s, o)E[Rn(s, a) + c]

=
∑
a

π(a | s, o)
∑
r,s′

p(r, s′ | s, a)(r + c), By Assumption A.9,

f(q) = E[F (q)(i)] = η
∑

q,

g(q)(i) = E[Gn(q)(i)]

= E

[∑
ō

π(An(s, ō) | s, o)
π(An(s, ō) | s, ō)I{ō ∈ Zn}

(
β(S′n(s,An(s, ō)), o) max

o′
q(S′n(s,An(s, ō)), o′)

+ (1− β(S′n(s,An(s, ō)), o))q(S′n(s,An(s, ō)), o)− q(s, o)
)]

=
∑
ō

I{ō ∈ Zn}
∑
a

π(a | s, o)

E[(β(S′n(s, a), o) max
o′

q(S′n(s, a), o′) + (1− β(S′n(s, a), o))q(S′n(s, a), o)− q(s, o))]

=
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)(β(s′, o) max
o′

q(s′, o′) + (1− β(s′, o))q(s′, o)− q(s, o))],

for any i ∈ I.811

We now verify the assumptions of Theorem A.1 for Intra-option General Differential812

Q. Assumption A.1 can be verified for g(q)(s, o) =
∑
a π(a | s, o)

∑
s′,r p(s

′, r |813

s, a)(β(s′, o) maxo′ q(s
′, o′) + (1 − β(s′, o))q(s′, o)) easily. Assumption A.2 is satisfied for814

f(q) = η
∑
q. Assumption A.3 satisfies because the MDP is finite. Assumption A.4 is satis-815

fied for εn = 0. Assumption A.5-A.7 are satisfied due to assumptions of the theorem being proved.816

Assumption A.8 is satisfied because817

r(i)− r̄ + g(q)(i)− q(i)
=
∑
a

π(a|s, o)
∑
s′,r

p(s′, r|s, a)(r − r̄ + β(s′, o) max
o′

q(s′, o′) + (1− β(s′, o))q(s′, o)).

By Theorem 2, we know that if the above equation equals to 0, then under Assumption 1, r̄ = r∗ + c818

is the unique solution and the solutions for q form a set q = q∗ + ke for all k ∈ R.819

Therefore Theorem A.1 applies and we conclude that Qn converges to a point satisfying η
∑
q =820

r∗ + c = r∗ + η
∑
Q0 − R̄0 and R̄n = η

∑
Qn − c to η

∑
q − c = r∗ + c − c = r∗. Finally, by821

Lemma A.6, we have r(µn)→ r∗.822

823

A.5 Theorem 4824

Proof. We will show that there exists a unique solution for (17). Results for (18) and (19) can825

be shown in a similar way. To show that (17) has a unique solution, we apply a generalized826

version of the Banach fixed point theorem (see, e.g., Theorem 2.4 by Almezel, Ansari, and Khamsi827

2014). Once the unique existence of the solution is shown, we easily verify that mp is the unique828

solution by showing that it is one solution to (17) as follows. With a little abuse of notation, let829
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p̂(s′, r | s, o) .
=
∑
r,l p̂(x, r, l | s, o), we have830

mp(x|s, o) =
∑
r,l

p̂(x, r, l|s, o)

=

∞∑
l=1

p̂(x, l|s, o) =
∑
a

π(a|s, o)
∑
r

p(s′, r|s, a)β(s′, o)I(x = s′) +

∞∑
l=2

p̂(x, l|s, o)

=
∑
a

π(a|s, o)
∑
r

p(s′, r|s, a)
(
β(s′, o)I(x = s′) + (1− β(s′, o))

∞∑
l=1

p̂(x, l|s′, o)
)

=
∑
a

π(a|s, o)
∑
r

p(s′, r|s, a)
(
β(s′, o)I(x = s′) + (1− β(s′, o))mp(x|s′, o)

)
.

To apply the generalized version of the Banach fixed point theorem to show the unique831

existence of the solution, we first define operator T : R|S|×|S|×|O| → R|S|×|S|×|O|832

such that for any m ∈ R|S|×|S|×|O| and any x, s ∈ S, o ∈ O, Tm(x | s, o)
.
=833 ∑

a π(a|s, o)∑s′,r p(s
′, r|s, a)(β(s′, o)I(x = s′) + (1 − β(s′, o))m(x|s′, o))). We further define834

Tnm
.
= T (Tn−1m) for any n ≥ 2 and any m ∈ R|S|×|S|×|O|. The generalized Banach fixed point835

theorem shows that if Tn is a contraction mapping for any integer n ≥ 1 (this is called a n-stage836

contraction), then Tm = m has a unique fixed point. The unique fixed point immediately leads to837

the existence of the unique solution of (17). The existence of the unique solution and that mp is a838

solution imply that mp is the unique solution.839

The only work left is to verify the following contraction property:840 ∥∥∥T |S|m1 − T |S|m2

∥∥∥
∞
≤ γ ‖m1 −m2‖∞ , (A.22)

where m1 and m2 are arbitrary members in R|S|×|S|×|O|, and γ < 1 is some constant.841

Consider the difference between T |S|m1 and T |S|m2 for arbitrary m1,m2 ∈ R|S×S×O|. For any842

x, s ∈ S, o ∈ O, we have843

T |S|m1(x | s, o)− T |S|m2(x | s, o)
=
∑
a

π(a | s, o)
∑
s′,r

p(s′, r|s, a)(1− β(s′, o))(T |S|−1m1(x | s′, o)− T |S|−1m2(x | s′, o))

=
∑
s1

Pr(St+1 = s1 | St = s,Ot = o)(1− β(s1, o))(T
|S|−1m1(x | s1, o)− T |S|−1m2(x | s1, o))

=
∑
s1

Pr(St+1 = s1 | St = s,Ot = o)(1− β(s1, o))
∑
s2

Pr(St+2 = s2 | St+1 = s1, Ot+1 = o)(1− β(s2, o))

(T |S|−2m1(x | s2, o)− T |S|−2m2(x|s2, o))

...

=
∑

s1,··· ,s|S|

Pr(St+1 = s1, · · · , St+|S| = s|S| | St = s,Ot = o)

|S|∏
i=1

(1− β(si, o))(m1(x | s|S|, o)−m2(x|s|S|, o))

≤
∑

s1,··· ,s|S|

Pr(St+1 = s1, · · · , St+|S| = s|S| | St = s,Ot = o)

|S|∏
i=1

(1− β(si, o)) ‖m1 −m2‖∞ .

Here p̃(s, o) .
=
∑
s1,··· ,s|S|

Pr(St+1 = s1 · · · , St+|S| = s|S| | St = s,Ot = o)
∏|S|
i=1(1− β(si, o))844

is the probability of executing option o for |S| steps starting from swithout termination. If p̃(s, o) = 0,845

then option o will surely terminate within the first |S| steps and if p̃(s, o) = 1, then option o will846

surely not terminate within the first |S| steps.847

If option o would surely not terminate within the first |S| steps (p̃(s, o) = 1), then it would surely not848

terminate forever. This is because there are only |S| number of states, and thus an option could visit849

all states that are possible to be visited by the option within the first |S| steps. p̃(s, o) = 1 means that850
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option o has a zero probability of terminating in all states that are possible to be visited by option o.851

This non-termination of a state-option pair implies that the expected option length is infinite, which is852

contradict to our assumption of finite expected option lengths (Section 2). Therefore p̃(s, o) = 1 is853

not allowed by our assumption and thus p̃(s, o) < 1. So there must exist some γ(s, o) < 1 such that854

p̃(s, o) ≤ γ(s, o). With γ .
= maxs,o γ(s, o), we obtain (A.22).855

A.6 Theorem 5856

We first provide a formal statement of Theorem 5. The formal theorem statement needs stepsizes to857

be specific for each state-option pair. We rewrite (20–22) to incorporate such stepsizes:858

Mp
t+1(x | St, o)

.
= Mp

t (x | St, o) + αt(St, o)ρt(o)
(
β(St+1, o)I(St+1 = x)

+
(
1− β(St+1, o)

)
Mp
t (x | St+1, o)−Mp

t (x | St, o)
)
, ∀ x ∈ S, (A.23)

Mr
t+1(St, o)

.
= Mr

t (St, o) + αt(St, o)ρt(o)
(
Rt+1 +

(
1− β(St+1, o)

)
Mr
t (St+1, o)−Mr

t (St, o)
)

(A.24)

M l
t+1(St, o)

.
= M l

t(St, o) + αt(St, o)ρt(o)
(

1 +
(
1− β(St+1, o)

)
M l
t(St+1, o)−M l

t(St, o)
)
.

(A.25)

Theorem A.4 (Convergence of the intra-option model learning algorithm, formal). If 0 ≤ αt(s, o) ≤859

1,
∑
t αt(s, o) = ∞ and

∑
t α

2
t (s, o) < ∞, and αt(s, o) = 0 unless s = St, then the intra-option860

model-learning algorithm (A.23–A.25) converges almost surely, Mp
t to mp, Mr

t to mr, and M l
t to861

ml.862

Here the assumptions on αt guarantee that each state-option pair is updated for an infinite number of863

times. Because the three update rules are independent, we only show convergence of the first update864

rule; the other two can be shown in the same way.865

Proof. We apply a slight generalization of Theorem 3 by Tsitsiklis (1994) to show the above theorem.866

The generalization replaces Assumption 5 (an assumption for Theorem 3) by:867

Assumption A.10. There exists a vector x∗ ∈ Rn, a positive vector v, a positive integer m, and a868

scalar β ∈ [0, 1), such that869

‖Fm(x)− x∗‖v ≤ β ‖x− x∗‖v , ∀x ∈ Rn.

That is, we replace the one-stage contraction assumption by a m-stage contraction assumption. The870

proof of Tsitsiklis’ Theorem 3 also applies to its generalized form and is thus omitted here.871

Notice that our update rule (A.23) is a special case of the general update rule considered by Theorem872

3 (equations 1-3), and is thus a special case of its generalized version. Therefore we only need to873

verify the above m−stage contraction assumption, as well as Assumption 1, 2, and 3 required by874

Theorem 3. According to the proof in Appendix A.5, the operator T associated with the update rule875

(20) is a |S|−stage contraction (and thus is a |S|−stage pseudo-contraction). Other assumptions876

(Assumptions 1, 2, 3) required by Theorem 3 are also satisfied given our step-size, and finite MDP877

assumptions.878

A.7 Theorem 6879

Proof. We first show that880 ∑
o′

µ′(o′ | s)
∑
s′,r,l

p̂(s′, r, l | s, o′)(r − lr(µ) + vµ(s′))

≥
∑
o

µ(o | s)
∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr(µ) + vµ(s′)) = vµ(s). (A.26)

Note that for all s, o and its corresponding o′, µ(o | s) = µ′(o′ | s). In order to show (A.26), we881

show
∑
s′,r,l p̂(s

′, r, l | s, o′)(r− lr(µ) + vµ(s′)) ≥∑s′,r,l p̂(s
′, r, l | s, o)(r− lr(µ) + vµ(s′)) for882
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all s, o and corresponding o′.883 ∑
s′,r,l

p̂(s′, r, l | s, o′)(r − lr(µ) + vµ(s′))

= E[R̂n − L̂nr(µ) + vµ(Ŝn+1) | Sn = s,On = o′]

= E[R̂n − L̂nr(µ) + vµ(Ŝn+1) | Sn = s,On = o′,Not encountering an interruption]

+ E[R̂n − L̂nr(µ) + vµ(Ŝn+1) | Sn = s,On = o′,Encountering an interruption]

≥ E[R̂n − L̂nr(µ) + vµ(Ŝn+1) | Sn = s,On = o′,Not encountering an interruption]

+ E[β(s′)(R̂n − L̂nr(µ) + vµ(Ŝn+1)) + (1− β(s′))(R̂n − L̂nr(µ) + qµ(Ŝn+1, o))

| Sn = s,On = o′,Encountering an interruption]

=
∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr(µ) + vµ(s′)).

The above inequality holds because Ŝn+1 is the state where termination happens and thus884

qµ(Ŝn+1, o) ≤ vµ(Ŝn+1). The last equality holds because E[β(s′)(R̂n − L̂nr(µ) + vµ(Ŝn+1)) +885

(1 − β(s′))(R̂n − L̂nr(µ) + qµ(Ŝn+1, o)) | Sn = s,On = o′,Encountering an interruption] is the886

expected differential return when the agent could interrupt its old option but chooses to stick on the887

old option. (A.26) is shown.888

Now write the l.h.s. of (A.26) in the matrix form889 ∑
o′

µ′(o′ | s)
∑
s′,r,l

p̂(s′, r, l|s, o′)(r − lr(µ) + vµ(s′)) = rµ′(s)− lµ′(s)r(µ) + (Pµ′vµ)(s),

where rµ′(s)
.
=
∑
o′ µ
′(o′ | s)∑s′,r,l p̂(s

′, r, l|s, o′)r is the expected one option-transition reward,890

lµ′(s)
.
=
∑
o′ µ
′(o′ | s)∑s′,r,l p̂(s

′, r, l|s, o′)l is the expected one option-transition length, and891

Pµ′(s, s′)
.
=
∑
o′ µ
′(o′ | s)∑r,l p̂(s

′, r, l|s, o′) is the probability of terminating at s′.892

Combined with the r.h.s. of (A.26), we have893

rµ′(s)− lµ′(s)r(µ) + (Pµ′vµ)(s) ≥ vµ(s).

Iterating the above inequality for K − 1 times, we have894

K−1∑
k=0

(P kµ′rµ′(s)− P kµ′ lµ′(s)r(µ)) + PKµ′ vµ(s) ≥ vµ(s)

K−1∑
k=0

(P kµ′rµ′(s)− P kµ′ lµ′(s)r(µ)) ≥ vµ(s)− PKµ′ vµ(s).

Divide both sides by
∑K−1
k=0 P kµ′ lµ′(s) and take K →∞:895

lim
K→∞

1∑K−1
k=0 P kµ′ lµ′(s)

K−1∑
k=0

(P kµ′rµ′(s)− P kµ′ lµ′(s)r(µ)) ≥ lim
K→∞

1∑K−1
k=0 P kµ′ lµ′(s)

(vµ(s)− PKµ′ vµ(s)).

For the l.h.s.:896

lim
K→∞

1∑K−1
k=0 P kµ′ lµ′(s)

K−1∑
k=0

(P kµ′rµ′(s)− P kµ′ lµ′(s)r(µ))) = lim
K→∞

∑K−1
k=0 P kµ′rµ′(s)∑K−1
k=0 P kµ′ lµ′(s)

− r(µ) = r(µ′)− r(µ).

For the r.h.s.:897

lim
K→∞

1∑K−1
k=0 P kµ′ lµ′(s)

(vµ(s)− PKµ′ vµ(s)) = 0.

Therefore r(µ′)− r(µ) ≥ 0.898

Finally, note that a strict inequality holds if the probability of interruption when following policy µ′899

is non-zero.900
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B Additional Empirical Results901

B.1 Inter-option Learning902

2�12�32�52�72�9

Step-size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

β = 2−9

β = 2−7

β = 2−5

β = 2−3

β = 2−1

η = 100

2�12�32�52�72�9

Step-size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

β = 2−9

β = 2−7

β = 2−5

β = 2−3

β = 2−1

η = 10−1

2�12�32�52�72�9

Step-size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

β = 2−9

β = 2−7

β = 2−5

β = 2−3

β = 2−1

η = 10−2

2�12�32�52�72�9

Step-size

0.00

0.02

0.04

0.06

0.08

Reward
Rate β = 2−9β = 2−7

β = 2−5

β = 2−3β = 2−1

η = 10−3

2�12�32�52�72�9

Step-size

0.00

0.02

0.04

0.06

0.08

Reward
Rate β = 2−9

β = 2−7

β = 2−5
β = 2−3

β = 2−1

η = 10−4

Figure B.1: Plots showing a parameter study for inter-option Differential Q-learning and the set of
options O = H + A in the continuing Four-Room domain when the goal was to go to G1. Same
experimental setups are used as what was described in Section 3. The x-axis denotes step size α; the
y-axis denotes the rate of the rewards averaged over all 200,000 steps of training, reflecting the rate
of learning. The error bars denote one standard error. The algorithm’s rate of learning varied little
over a broad range of its parameters α, β and η. Small standard error bars show that the algorithm’s
performance varied little over multiple runs.
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Figure B.2: Plots showing a parameter study for inter-option Differential Q-learning and the set
of options O = H in the continuing Four-Room domain when the goal was to go to G1. The
experimental setting and the plot axes are the same as mentioned in Figure B.1. Compared with
Figure B.1, it can be seen that the algorithm’s rate of learning with O = H was worse than it with
O = H + A. This is because there is no hallway option from H can takes the agent to G1. The
algorithm’s rate of learning varied little over a broad range of its parameters α, β and η, and also
varied little over multiple runs.
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Figure B.3: Plots showing a parameter study for inter-option Differential Q-learning and the set of
options O = A in the continuing Four-Room domain when the goal was to go to G1. Note that with
options being primitive actions, the algorithm becomes exactly the same as Differential Q-learning by
Wan et al. (2021). The experimental setting and the plot axes are the same as mentioned in Figure B.1.
Compared with Figure B.1, it can be seen that the algorithm’s rate of learning withO = A was worse
than it with O = H+A, particularly for small α. The algorithm’s rate of learning did not vary too
much over a broad range of its parameters β and η, and also varied little over multiple runs. The
algorithm’s performance is more sensitive to the choice of α.
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B.2 Intra-option Q-learning905
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Figure B.4: Plots showing a parameter study for intra-option Differential Q-learning with the set of
options O = H in the continuing Four-Room domain when the goal was to go to G2. The algorithm
used a behavior policy consisting only of primitive actions. The hallway options were never executed..
The experimental setting and the plot axes are the same as mentioned in Section 4. The algorithm’s
rate of learning varied little over a broad range of its parameters α and η, and also varied little over
multiple runs.

B.3 Interruption906

2�12�32�52�72�9

Step-size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

With interruption

η = 10−4

η = 10−3

η = 10−2
η = 10−1

η = 100

2�12�32�52�72�9

Step-size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 10−4η = 10−3 η = 10−2
η = 10−1

η = 100

Without interruption

Figure B.5: Plots showing parameter studies for intra-option Differential Q-learning with and without
interruption in the continuing Four-Room domain when the goal was to go to G3. The algorithm
used the set of hallway options O = H. The experimental setting and the plot axes are the same as
mentioned in Section 6. The algorithm’s rate of learning with interruption was higher than it without
interruption for medium sized choices of α. When a large or small α was used, interruption produced
a worse rate of learning. The algorithm’s rate of learning varied not too much over a broad range of
its parameters η and varied little over multiple runs, regardless of interruption. The algorithm’s rate
of learning was more sensitive to α when interruption is used.

C Additional Discussion907

C.1 Two Failed Attempts on Extending Differential Q-learning to an Inter-option Algorithm908

The authors have tried two other ways of extending Differential Q-learning to an Inter-option909

Algorithm (cf. Section 3). While these two ways appeared to work properly at the first glance, they910

do not actually. We now show these two approaches and explain why they do not work properly.911

The first extension uses, for each option, the average-reward rate per-step instead of the total reward912

as the reward of the option. In particular, such an extension use update rules (3) and (4), but with TD913

error defined as:914

δ′n
.
= R̂n/L̂n − R̄n + max

o
Qn(Ŝn+1, o)−Qn(Ŝn, Ôn) (C.1)
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Unfortunately, such an extension can not guarantee convergence to a desired point. Specifically, the915

extension, if converges, will converge to a solution of E[δ′n] = 0, which is not necessarily a solution916

of the Bellman equation E[δn] = 0 (Equation 2).917

An alternative approach to avoid the instability issue is to shrink the entire update, not the option’s918

cumulative reward, by the sample length:919

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + αnδn/L̂n, (C.2)

R̄n+1
.
= R̄n + ηαnδn/L̂n. (C.3)

Still, the above two updates can not guarantee convergence to the desired values because, again,920

E[δn/L̂n] = 0 does not imply that the Bellman equation E[δn] = 0 is satisfied.921

C.2 Pseudocodes922

Algorithm 1: Inter-option Differential Q-learning
Input: Behavioral policy µb’s parameters (e.g., ε for ε-greedy)
Algorithm parameters: step-size parameters α, η, β

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero); L(s, o)← 1 ∀ s ∈ S, o ∈ O
2 Obtain initial S
3 while still time to train do
4 Initialize L̂← 0, R̂← 0, Stmp ← S
5 O ← option sampled from µb(· | S)
6 do
7 Sample primitive action A ∼ π(· | S,O)
8 Take action A, observe R,S′

9 L̂← L̂+ 1

10 R̂← R̂+R
11 S ← S′

12 while O doesn’t terminate in S′
13 S ← Stmp
14 L(S,O)← L(S,O) + β

(
L̂− L(S,O)

)
15 δ ← R̂− R̄ · L(S,O) + maxoQ(S′, o)−Q(S,O)
16 Q(S,O)← Q(S,O) + αδ/L(S,O)
17 R̄← R̄+ ηαδ/L(S,O)
18 S ← S′

19 end
20 return Q
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Algorithm 2: Inter-option Differential Q-evaluation (learning)
Input: Behavioral policy µb, target policy µ
Algorithm parameters: step-size parameters α, η, β

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero); L(s, o)← 1 ∀ s ∈ S, o ∈ O
2 Obtain initial S
3 while still time to train do
4 Initialize L̂← 0, R̂← 0, Stmp ← S
5 O ← option sampled from µb(· | S)
6 do
7 Sample primitive action A ∼ π(· | S,O)
8 Take action A, observe R,S′

9 L̂← L̂+ 1

10 R̂← R̂+R
11 S ← S′

12 while O doesn’t terminate in S′
13 S ← Stmp
14 L(S,O)← L(S,O) + β

(
L̂− L(S,O)

)
15 δ ← R̂− R̄ · L(S,O) +

∑
o µ(o | S′)Q(S′, o)−Q(S,O)

16 Q(S,O)← Q(S,O) + αδ/L(S,O)
17 R̄← R̄+ ηαδ/L(S,O)
18 S ← S′

19 end
20 return Q

Algorithm 3: Intra-option Differential Q-learning
Input: Behavioral policy µb’s parameters (e.g., ε for ε-greedy)
Algorithm parameters: step-size parameters α, η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 while still time to train do
4 O ← option sampled from µb(· | S)
5 do
6 Sample primitive action A ∼ π(· | S,O)
7 Take action A, observe R,S′
8 for all options o do
9 ρ← π(A | S, o)/π(A | S,O)

10 δ ← R− R̄+
((

1− β(S′, o)
)
Q(S′, o) + β(S′, o) maxo′ Q(S′, o′)

)
−Q(S, o)

11 Q(S, o)← Q(S, o) + αρδ
12 R̄← R̄+ ηαρδ
13 end
14 S ← S′

15 while O doesn’t terminate in S
16 end
17 return Q
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Algorithm 4: Intra-option Differential Q-learning with interruption
Input: Behavioral policy µb’s parameters (e.g., ε for ε-greedy)
Algorithm parameters: step-size parameters α, η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 O ← option sampled from µb(·|S)
4 while still time to train do
5 if O /∈ argmaxQ(S, ·) then
6 O ← option sampled from µb(·|S)
7 end
8 Sample primitive action A ∼ π(·|S,O)
9 Take action A, observe R,S′

10 for all options o do
11 ρ← π(A|S, o)/π(A|S,O)

12 δ ← R− R̄+
((

1− β(S′, o)
)
Q(S′, o) + β(S′, o) maxo′ Q(S′, o′)

)
−Q(S, o)

13 Q(S, o)← Q(S, o) + αρδ
14 R̄← R̄+ ηαρδ
15 end
16 S = S′

17 end
18 return Q

Algorithm 5: Intra-option Differential Q-evaluation (learning)
Input: Behavioral policy µb, target policy µ
Algorithm parameters: step-size parameters α, η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 while still time to train do
4 O ← option sampled from µb(· | S)
5 do
6 Sample primitive action A ∼ π(· | S,O)
7 Take action A, observe R,S′
8 for all options o do
9 ρ← π(A | S, o)/π(A | S,O)

10 δ ← R−R̄+
((

1−β(S′, o)
)
Q(S′, o)+β(S′, o)

∑
o′ µ(o′ | S′)Q(S′, o′)

)
−Q(S, o)

11 Q(S, o)← Q(S, o) + αρδ
12 R̄← R̄+ ηαρδ
13 end
14 S ← S′

15 while O doesn’t terminate in S
16 end
17 return Q
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Algorithm 6: Combined Algorithm: Intra-option Model-learning + Inter-option Q-planning
Input: Behavioral policy µb’s parameters (e.g., ε for ε-greedy)
Algorithm parameters: step-size parameters α, β, η; number of planning steps per time step n

1 Initialize Q(s, o), P (x | s, o), R(s, o) ∀ s, x ∈ S, o ∈ O, R̄, arbitrarily (e.g., to zero);
L(s, o) = 1 ∀ s ∈ S, o ∈ O; T ← False

2 while still time to train do
3 S ← current state
4 O ← option sampled from µb(· | S)
5 while T is False do
6 Sample primitive action A ∼ π(· | S,O)
7 Take action A, observe R′, S′
8 for all options o such that π(A | S, o) > 0 do
9 ρ← π(A | S, o)/π(A | S,O)

10 for all states x ∈ S do
11 P (x | S, o)← P (x | S, o) + βρ

(
β(S′, o)I(S′ = x) +

(
1− β(S′, o)

)
P (x |

S′, o)− P (x | S, o)
)

12 end
13 R(S, o)← R(S, o) + βρ

(
R′ +

(
1− β(S′, o)

)
R(S′, o)−R(S, o)

)
14 L(S, o)← L(S, o) + βρ

(
1 +

(
1− β(S′, o)

)
L(S′, o)− L(S, o)

)
15 end
16 T ← indicator of termination sampled from β(S′, O)
17 for all of the n planning steps do
18 S ← a random previously observed state
19 O ← a random option previously taken in S
20 S′ ← a sampled state from P (· | S,O)
21 δ ← R(S,O)− L(S,O)R̄+ maxoQ(S′, o)−Q(S,O)
22 Q(S,O)← Q(S,O) + αρδ/L(S,O)
23 R̄← R̄+ ηαρδ/L(S,O)
24 end
25 end
26 end
27 return Q
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