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Abstract
We study personalization of supervised learning with user-level differential privacy.1

Consider a setting with many users, each of whom has a training data set drawn from2

their own distribution Pi. Assuming some shared structure among the problems Pi,3

can users collectively learn the shared structure—and solve their tasks better than4

they could individually—while preserving the privacy of their data? We formulate5

this question using joint, user-level differential privacy—that is, we control what is6

leaked about each user’s entire data set.7

We provide algorithms that exploit popular non-private approaches in this domain8

like the Almost-No-Inner-Loop (ANIL) method, and give strong user-level privacy9

guarantees for our general approach. When the problems Pi are linear regression10

problems with each user’s regression vector lying in a common, unknown low-11

dimensional subspace, we show that our efficient algorithms satisfy nearly optimal12

estimation error guarantees. We also establish a general, information-theoretic13

upper bound via an exponential mechanism-based algorithm.14

1 Introduction15

Modern machine learning techniques are amazingly successful but come with a range of risks to the16

privacy of the personal data on which they are trained. Complex models often encode exact personal17

information in surprising ways—allowing, in extreme cases, the exact recovery of training data from18

black box use of the model [6, 7]. The emerging architecture of modern learning systems, in which19

models are trained collaboratively by networks of mobile devices using extremely rich, personal20

information exacerbates these risks.21

The paradigm of model personalization, a special case of multitask learning, has emerged as one22

way to address both privacy and scalability issues. The idea is to let users train models on their own23

data—for example, to recognize friends’ and family members’ faces in photos, or to suggest text24

completions that match the user’s style—based on information that is common to the many other25

similar learning problems being solved by other users in the system. Even a fairly limited amount of26

shared information—a useful feature representation or starting set of parameters for optimization, for27

example—can dramatically reduce the amount of data each user requires. But that shared information28

can nevertheless be highly disclosive.29

In this paper, we formulate a model for reasoning rigorously about the loss to privacy incurred by30

sharing information for model personalization. In our model, there are n users, each holding a dataset31

of m labeled examples. We assume user j’s data set Dj is drawn i.i.d. from a distribution Pj ; the32

user’s goal is to learn a prediction rule that generalizes well to unseen examples from Pj . Ideally, the33

user should succeed much better than they could have on their own. We give new algorithms for this34

setting, analyze their accuracy on specific data distributions, and test our results empirically.35

We ask that our algorithms satisfy user-level, joint differential privacy (DP) [27] (called task-level36

privacy, in the context of multi-task learning [31]). In this setting, each user provides their data set37

Dj as input to the algorithm and receives output Aj = Aj(D1, ..., Dn). We require that for every38
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choice of the other data sets D−j = (D1, ..., Dj−1, Dj+1, ..., Dn) and for every two data sets Dj39

and D′j , the collective view of the other users A−j be distributed essentially identically regardless of40

whether user j inputs Dj or D′j . The standard model of differential privacy doesn’t directly fit our41

setting, since the model ultimately trained by user j will definitely reveal information about user j’s42

data set. That said, the algorithms we design can ultimately be viewed as an appropriate composition43

of modules that satisfy the usual notion of DP (an approach known as the billboard model). For44

simplicity, we describe our algorithms in a centralized model in which the data are stored in a single45

location, and the algorithm A is run as a single operation. In most cases, we expect A to be run46

as a distributed protocol, using either general tools such as multiparty computation or lightweight,47

specialized ones such as differentially private aggregation to simulate the shared platform.48

Intuitively, strong privacy requirement at user level, while still demanding that users share some49

common information is significantly challenging. For one, as each user individually has a small50

amount of data, it has to share information about it’s model/data to learn a meaningful representation.51

Furthermore, in practical personalization settings, there is feedback loop between the common or52

pooled knowledge of all users and the personalized models for each user. That is, starting with53

reasonable personalized models for each user, leads to a better pooled information, while good pooled54

information then helps each user learn better personal model. Now, requirement of strong privacy55

guarantees forces the pooled information quality to degrade up to some extent, which can then lead56

to poorer personalized model and form a negative feedback loop.57

1.1 Contributions58

We consider two types of algorithms for DP model personalization: inefficient algorithms (based on59

the exponential mechanism [34]) that establish information-theoretic upper bounds on achievable error,60

and efficient ones based on popular iterative approaches to non-private personalization [39, 25, 50, 51].61

These latter approaches are popular for their convergence speed and low communication overhead.62

As is often the case, those same features make them attractive starting points for DP algorithms.63

Problem Setting: Consider a set of n users, and suppose each user j ∈ [n] holds a data set of m64

records Dj = {(xij , yij)}i∈[m] where xij ∈ Rd, yij ∈ R. The goal is to learn a personalized model65

fj(·) = f(·; θj) : Rd → R for each user j, where θj is a vector of parameters describing the model.66

We aim to learn a shared, low-dimensional representation for the features that allows users to train67

good predictors individually. For concreteness, we consider a linear embedding specified by a d× k68

matrix U , where k � d. We may think of U either as providing a k-dimensional representation of69

the feature xij (as U>xij) or, alternatively, as a compact way to specify a d-dimensional regression70

vector θj = Uvj where vj is vector of length k. In both cases, user j’s final predictor has the form71

fj(xij) = f ′(〈xij ,Uvj〉) = f ′(〈U>xij ,vj〉)
One may view this as a model as a two-layer neural network, where the first layer is shared across72

all users and the second layer is trained individually. A useful setting to have in mind is one where73

k � m � d—so users do not have enough data to find a good solution on their own, but they do74

have enough data to find the best vector vj once an embedding U has been specified. Without loss of75

generality, we assume U ∈ Rd×k to be an orthonormal basis and refer to it as embedding matrix. For76

brevity, we will define the matrix V = [v1| · · · |vn] ∈ C ⊆ Rk×n with vjs as columns.77

Measure of Accuracy: Let LPop(U ;V ) = E(i,j)∼u[m]×[n],(xij ,yij)∼Pj

[
`
(
〈U>xij ,vj〉; yij

)]
,78

where the loss function takes the form ` : R × R → R. We will focus on excess population79

risk defined in (1). The privately learned models are denoted by
(
Upriv,V priv

)
. The error measures80

are defined with respect to any fixed choice of parameters (U∗,V ∗).81

RiskPop(
(
Upriv,V priv

)
; (U∗,V ∗)) = LPop(Upriv,V priv)− LPop(U∗,V ∗). (1)

Alternating Minimization Framework: We develop an efficient framework based on alternating82

minimization [45, 28, 22]: starting from an initial embedding map U0, the algorithm proceeds in83

rounds that alternate between users individually selecting the model v(t)
j that minimizes the error of84

the predictor f ′(〈·,U (t)v
(t)
j 〉), and then running a DP algorithm, for which user j provides inputs85
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Dj ,v
(t)
j , to privately select a new embedding U (t+1) that minimizes the error of the predictor86

f ′(〈·,U (t+1)v
(t)
j 〉). In both steps, the optimization to be performed is convex when the loss being87

optimized is convex. This helps us handle the inherent non-convexity in the problem formulation.88

Instantiation and Analysis for Linear Regression with Gaussian Data: For the specific case of89

linear regression with the squared error loss, we show that our framework can be fully instantiated with90

an efficient algorithm which converges quickly to an optimal solution. For simplicity, we consider the91

case where the feature vectors and field noise are normally distributed and independent of each user’s92

“true” model θ∗j , and furthermore that the θ∗j vectors admit a common low-dimensional representation93

U∗ ∈ Rd×k, so that θ∗j = U∗v∗j . We show that careful initialization of U0 followed by alternating94

minimization converges to a near-optimal embedding as long as m = ω(k2) and n = ω
(
k2.5d1.5

ε

)
.95

Notice that non-privately, one would require n = ω(dk) users to get any reasonable test error. For96

standard private linear regression in dk dimensions, current state-of-the-art results (Theorem 3.2, [3])97

have a sample complexity similar to what we achieve.98

Theorem 1.1 (Informal version of Theorem 4.2). Suppose the output for point xij ∼ N (0, 1)d99

of user-j is given by: yij ∼ 〈(U∗)>xij ,v∗j 〉 + N (0, σ2
F) where U∗ parameterizes the shared100

representation. For simplicity, suppose v∗j ∼ N (0, 1)k. Then, assuming the number of users101

n ≥ (kd)1.5/ε, Algorithm 1 learns an embedding matrix Upriv s.t. the average test error of a linear102

regressor learned over points embedded by Upriv is at most Õ
(

(σ2
F+dk2)(dk)2·k

ε2n2 + σ2
F

(
dk2

mn + k
m

))
.103

Our instantiation of the framework in this case has two major components: The initial embedding104

U0 is derived from users’ data by a single noisy averaging step which roughly approximates the105

d× d projector onto the k-dimensional column space of U∗. The idea is that given two data points106

(xij , yij) and (x(i+1)j , y(i+1)j), the expected value of the rank-one matrix yijy(i+1)jxijx
>
(i+1)j is107

(when rescaled) a projector onto the space spanned by the regression vector θj . Adding these rank-one108

matrices across many data points and users produces a matrix with high overlap with the desired109

projector U∗(U∗)>. This is similar to the approach taken by [12] to design a non-private algorithm110

for a related, less general setting.111

The DP minimization step, which fixes the vj’s and seeks a near-minimal U , can be performed using112

any DP algorithm for convex minimization [8, 4]. In this particular case, one can view this step as113

solving a linear regression problem in which U represents a list of dk real parameters: once x and v114

are fixed, 〈U>x,v〉 = x>Uv is a linear function of U .115

For the analysis to be tractable, we restrict our attention to linear regression with independent,116

normally-distributed features. However, the framework we provide is more general, and can be117

applied to a wider class of models. Developing mathematical tools to analyse the behavior of noisy118

alternating minimization algorithms in more general settings remains an important open question.119

Information-theoretic Upper Bounds: In addition to developing efficient algorithms for particular120

settings, we give upper bounds on the achievable error of user-level DP model personalization121

via inefficient algorithms. Specifically, we consider the natural approach of using the exponential122

mechanism [34] to select a common structure that provides low prediction error on average across123

users. For the specific case of a shared linear embedding (a generalization of the linear regression124

setting above), when the feature vectors are drawn i.i.d. from N (0, 1)d, and when the v∗j ’s are drawn125

i.i.d. from N (0, 1)k, we provide an upper bound showing that n = ω
(
k1.5d1.5

ε

)
users suffice to learn126

a good model, assuming m is sufficiently large for users to train the remaining parameters locally. In127

comparison to alternating minimization, the sample complexity is better by a factor of k.128

In summary, we initiate a systematic study of differentially private model personalization in the129

practically important few-shot (or per-user sparse data) learning regime. We propose using users’130

data to learn a strong common representation/embedding using differential privacy, that can in turn be131

used to learn sample efficient models for each user. Using a simple but foundational problem setting,132

we demonstrate rigorously that this technique can indeed learn accurate common representation as133

well as personalized models, despite users housing only a small number of data points.134

3



1.2 Related Work135

Personalization Frameworks: Model personalization is a special case of multitask or few-shot136

learning [9, 24] where the goal is to leverage shared structure amongst multiple tasks to better learn137

the individual tasks. There are many different frameworks for multi-task learning, each capturing a138

different kind of shared structure. In the context of model personalization, where tasks correspond to139

users, two broad approaches stand out.140

“Neighboring models”. This approach assumes that while each user learns their own model, all or a141

fraction of the models are close to each other thus can be learned together [17, 24].142

“Common representation”. This approach, which we adopt in this paper, assumes a low-dimensional143

shared subspace where all points can be represented and now each user/task can learn a sample144

efficient model to solve the individual task [46, 37]. A common instantiation is a DNN architecture in145

which the weights in the last layer are user-specific but other weights are shared. Algorithmically, this146

second approach is more complex since it entails simultaneously finding an accurate representation147

of data and models building upon those representations. But several studies [37, 46] have shown it to148

be significantly more effective than other approaches like neighboring models.149

Recent works on this approach (e.g. [43, 46, 21, 39]) follow a similar training strategy to ours—150

that is, they alternatively update the shared representation using gradient descent and then finetune151

individual classifiers [37, 29, 46]. In particular, the Almost-No-Inner-Loop (ANIL) method by [37]152

is most similar to the alternating optimization method that we adopt (see Algorithm 1). Theoretical153

understanding of these methods generally lag significantly behind their empirical success. However,154

several interesting recent results explain the effectiveness of these methods on simple tasks [12,155

45]. Most of the papers in this domain focus on the linear regression problem with a shared low-156

dimensional representation that we study [45, 10, 47]. They show that one can provide much better157

estimates for the shared representation, and overall prediction error, by pooling information than158

would be possible for individual users acting alone. These existing analyses do not allow for noise159

in the iterations. In fact, for the general problem, the noise can lead to suboptimal solutions. Thus,160

a key contribution of our work is to show that in a widely studied setting, alternating minimization161

converges even when the minimization of U is noisy.162

Privacy: In our setting, the data set is made up of users’ individual data sets D1, ..., Dn, where163

each Dj potentially contains many records (labeled training examples). Users interact via a central164

algorithm, which we assume for simplicity to be implemented correctly and securely (either by a165

trusted party or using cryptographic techniques like multiparty computation). This algorithm provides166

output to each of the users. We aim to control what those outputs leak about the users’ input data.167

That is, presence/absence of user and its entire data should not affect the outputs significantly. This168

notion is known as user-level or task-level privacy and has been widely studied in the literature169

[33, 30], albeit mostly without personalization component. The only works we are aware of that look170

at personalization (or multitask learning more generally) with user-level guarantees are [18] and [23].171

Geyer et al. [18] consider the “neighboring models” approach, which cannot work in the setting we172

study. Jain et al. [23] consider matrix completion, which can be viewed as a version of our setting in173

which training examples are limited to indicator vectors (items from a known discrete set).174

A few studies attempt to provide only record-level privacy – a significantly weaker notion of privacy175

where presence/absence of only single record should be undetected by the output of the model.176

While the notion has been studied extensively for the standard non-personalized models [26, 8], for177

personalized models the literature is somewhat limited [20, 31]. The work of [31] discusses both task-178

and record-level privacy, but ultimately provides only algorithms that satisfy the weaker guarantee.179

As mentioned above, our goal is to provide strong user-level privacy guarantees so such methods do180

not apply in our case.181

1.3 Notation182

We denote all matrices with bold upper case letters (e.g., A), and all vectors with bold lower case183

letters (a). Unless specified explicitly, all vectors are column vectors. We denote the clipping184

operation on a vector a as clip (a; ζ) = a ·min
{

1, ζ
‖a‖2

}
.185
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2 Background on Privacy186

Billboard model: In this paper, we operate in the billboard model [19] of differential privacy [14,187

13, 35]. Consider n users, and a computing server. The server runs a differentially private algorithm188

on sensitive information from the users, and broadcasts the output to all the users. Each user j ∈ [n]189

can then use the broadcasted output in a computation that solely relies on her data. The output of190

this computation is not made available to other users. A block schematic is shown in Figure 1. One191

important attribute of the billboard model is that it trivially satisfies joint differential privacy [27].192

User-level privacy protection: In this work, we provide user-level privacy protection [15]. I.e.,193

from the output of the algorithm available to an adversary, they will not be able to detect the194

presence/absence of all the data samples belonging to a single user. Correspondingly, in the definition195

of differential privacy below (Definition 2.1), a “record” consists of all the data samples belonging to196

a single user. Furthermore, we adhere to the replacement model of privacy, where the protection is197

with respect to the replacement of a user with another, instead of the presence/absence of a user.198

Definition 2.1 (Differential Privacy [14, 13, 35]). A randomized algorithm A is (ε, δ)-differentially
private if for any pair of data sets D and D′ that differ in one record (i.e., |D4D′| = 1), and for all
S in the output range of A, we have

Pr[A(D) ∈ S] ≤ eε ·Pr[A(D′) ∈ S] + δ,

where probability is over the randomness of A. Similarly, an algorithm A is (α, ρ)- Rényi differ-199

entially private (RDP) if Dα (A(D)||A(D′)) ≤ ρ, where Dα is the Rényi divergence of order α.200

201

3 Model Personlization via Private Alternating Minimization202

User 1 User 2 User 3 User n

Compute embedding  

Differentially Private Global Computation

T rounds

Sensitive 
data

Output of 
DP compute

Broadcast

...

Figure 1: User-compute interaction in the
billboard model. Shaded boxes represent
privileged computation. U refer to the com-
mon embedding function, and vj refers to the
model for user j ∈ [n].

In this section, we first provide a generic/meta al-203

gorithm for private model personalization (Algo-204

rithm 1 (Algorithm APriv-AltMin)). The main idea is205

to alternate between two states for T iterations, i.e.,206

for t ∈ [T ], (i) Estimate the best embedding ma-207

trix U (t) based on the current personalized models208 [
v

(t)
1 , . . . ,v

(t)
n

]
while preserving user-level (α, ρ)-209

RDP, and (ii) update the personalized modes based210

on the updated embedding matrix U (t). Finally, out-211

put Upriv ← U (T+1), which will be used by each212

user j ∈ [n] to train her final personalized model213

vprivj . While Algorithm APriv-AltMin is a fairly nat-214

ural method for model personalization, to the best215

of our knowledge, this is the first work that formally216

studies the privacy/utility trade-offs under user-level217

privacy. Prior works [39, 36] have used similar ideas218

in the non-private meta-learning setting. The estima-219

tion of the embedding matrix can be implemented by220

any differentially private convex optimization algorithm (e.g., DP-SGD [41, 4, 1]). As discussed221

in Section 4, for specific case of linear regression, we can perturb the sufficient statistics to obtain222

differential privacy guarantee, and then optimize over it. A similar idea was used in [40, 38].223

We provide a formal description in Algorithm 1. In Section 4, we instantiate it in the context of224

personalized linear regression. There, we also provide formal excess population risk guarantees under225

some data generating assumption. Since Line 6 guarantees (α, ρ)-RDP, and disjoint sets of users are226

used in each iteration, we can conclude that the whole algorithm guarantees (α, ρ)-RDP.227

4 Instantiating Algorithm APriv-AltMin with Linear Regression228

In this section, we instantiate Algorithm APriv-AltMin (Algorithm 1) in the context of linear regression.229

While our privacy guarantees hold for any instantiation of the training data, the utility guarantees230

hold under the following data generating assumption.231
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Algorithm 1 APriv-AltMin: Differentially Private Alternating Minimization Meta-algorithm

Require: Data sets from each user j ∈ [n]: Dj = {(xij ∈ Rd, yij ∈ R) : i ∈ [m]} for m
mod 4 = 0, rank of the projector: k, privacy parameters: (α, ρ), number of iterations: T , initial
rank-k subspace matrix: Uinit, loss function: `.

1: Initialize U (1) ← Uinit.
2: Randomly permute the users j ∈ [n] via permutation π ∼unif [n]. Set j ← π(j),∀j ∈ [n].
3: for t ∈ [T ] do
4: St ←

[
1 + d (t−1)n

T e, d tnT e
]
.

5: Each user j ∈ [St] independently solves v(t)
j ← arg min

‖v‖2≤Rk
4
m

∑
i∈[m/4]

`
(
〈(U (t))>xij ,v〉; yij

)
.

6: Estimate U (t+1) ← arg min
U∈K

4
m·|St|

∑
i∈[m/4+1,m/2],j∈St

`
(
〈U>xij ,v(t)

j 〉; yij
)

under (α, ρ)-

RDP, where K is the set of all rank-k matrices with orthonormal columns in Rd×k.
7: end for
8: Upriv ← U (T+1).

Data generation: We instantiate the problem description in Section 1.1 as follows. There is a232

fixed model v∗j ∈ Rk for each user j ∈ [n], and a fixed rank-k matrix with orthonormal columns233

U∗ ∈ Rd×k across all users. Let V ∗ := [v∗1| · · · |v∗n]. For each feature vector xij ∈ Rd, the response234

yij is given by:235

yij = 〈(U∗)>xij ,v∗j 〉+ zij , zij ∼ N (0, σ2
F). (2)

In Theorem 4.2, we provide the privacy and utility guarantee for an instantiation of Algorithm 1236

(Algorithm APriv-AltMin) where the loss function is `
(
〈U>xij ,v〉; yij

)
=
(
yij − 〈U>xij ,v〉

)2

.237

We will adhere to Assumptions 4.1 for the utility analysis.238

Assumption 4.1 (Assumptions for Utility Analysis). Let λi > 0 be the i-th eigenvalue239

of 1
n

(
V ∗ (V ∗)

>
)

, and let µ := max
j∈[n]

∥∥v∗j∥∥2
/
√
kλk be the incoherence parameter. Let240

Noise-to-signal ratio be NSR = σF√
λk

. We assume: (i) ∀i ∈ [m], j ∈ [n],xij ∼iid241

N (0, 1)d, and corresponding yij be generated using (2), (ii) m = Ω̃
(
(1 + NSR) · k + k2

)
,242

(iii) n = Ω̃

(
λ1

λk
· µ2dk + d

(
σ2
F
k + µ2λk

)2

+ ∆(ε,δ) ·
(
NSR2 + µ2k

)
d3/2

)
. Here, Ω̃(·) hides243

polylog (n,m, k).244

Theorem 4.2 (Main Result. Bound on Excess Risk). Let V priv = [vpriv1 , . . . ,vprivn ] with245

vprivj ← arg min
v∈Rk

2

m

∑
m
2 <i≤m

(
yij − 〈(Upriv)>xij ,v〉

)2
.

Let Assumption 4.1 hold. Then, Algorithm APriv-AltMin with parameters in Lemma 4.4 and ∆(ε,δ) :=246 √
16 log(1/δ)

ε outputs Upriv such that i) it is (ε, δ)-differentially private, and ii) it has the following247

excess population risk:248

E
[
RiskPop(

(
Upriv,V priv

)
; (U∗,V ∗))

]
≤

= O

(
∆(ε,δ)(σ

2
F + µ2k2dλk)(µ4k3d2)

n2
+
σ2
Fµ

4k2d

nm

)
· polylog (d, n) +

(
k

m
+ 1

)
σ2
F.

249

See supplementary material for the proof.250

Remark 1. Let us understand the bound above for a simple setting where the personal model for251

each user v∗j ∼ N (0, 1)k. Assuming large enough n, this implies that λk ≈ 1 and µ ≈ Õ(1).252

Now even when V ∗ is known a priori, to obtain a reasonable estimate of U∗, we need to solve the253

following linear regression problem while ensuring DP: Upriv = min
U

∑
ij(yij − 〈xij(v∗j )>,U〉)2.254
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Algorithm 2 Instantiating Line 6 of Algorithm 1 ( Algorithm APriv-AltMin)

Require: Set of users at time step t ∈ [T ]: St. Current models:
{
v

(t)
j : j ∈ St

}
, data samples:

{(xij , yij) : j ∈ St, i ∈ [m]}, privacy parameter: ∆(ε,δ), clipping threshold for model: η, clip-
ping threshold for response: ζ.

1: W ij = clip
(

#          »

xijv
>
j ; η

)
and ỹij = clip (yij ; ζ) for all i ∈ [m/4 + 1,m/2], j ∈ St.

2: W priv ←
∑

j∈St,i∈[m/4+1,m/2]

W ijW
>
ij +Nsym

(
0,m2η4∆2

(ε,δ)/4
)dk×dk, and

bpriv ←
∑

j∈St,i∈[m/4+1,m/2]

ỹijW ij +N
(
0,m2ζ2η2∆2

(ε,δ)/4
)dk

3:
#»
Z(t+1) ← arg min

u∈Rdk

4
m·|St|

(
u>W privu− 2u>bpriv

)
4: return U (t+1) ← Q part of the QR-decomposition of Z(t+1)

Note that xij(v∗j )
> is isotropic. Now, without differential privacy, the information theoretical255

optimal estimation error is Θ
(
σ2
F · dknm

)
, where dk is the size of the linear regression problem256

and mn is the number of samples. Now, if we were to solve the above regression problem with257

DP, the best known algorithm [40] will have an additional error of Õ
((
κ · dknε

)2)
, where κ =258

σF + maxij ‖xij(v∗j )>‖F · ‖U
∗‖F = Õ(σF +

√
dk2). Note that the first two terms in Theorem 4.2259

indeed match O
((
κ · dknε

)2
+ σ2

F · dknm
)

up to an additional factor of k and up to polylog (d, n)260

factors. Finally, the last error term in the above theorem is due to excess risk in estimating v∗ for a261

given user with m samples, and is information theoretically optimal.262

Remark 2. Under the assumption in Remark 1 and for σF = 0, the sample complexity for Theo-263

rem 4.2 is n = ω̃(k2.5d1.5/ε + d) and m = ω̃(k2). Note that, for ε → ∞, the complexity is O(k)264

worse than the information theoretic optimal. Furthermore, the sample complexity suffers from an265

additional
√
d for constant ε compared to non-private case. Even for standard linear regression,266

a similar additional
√
d factor is present in the sample complexity bound [40]; we leave further267

investigation into the optimal sample complexity for future work.268

In Section 4.1, we show an instantiation of AlgorithmAPriv-AltMin (Algorithm 1) s.t. if the embedding269

matrix (Uinit) is initialized well, then Upriv
(
Upriv

)>
converges in ‖ · ‖F to U∗(U∗)>. In270

Section 4.2, we provide an algorithm to obtain a good initialization of the embedding matrix (Uinit).271

Combining these two results imply Theorem 4.2.272

4.1 Local Subspace Convergence273

In Algorithm 2, we instantiate Line 6 of Algorithm APriv-AltMin. For any matrix A ∈ Rd1×d2 ,274

let
#»

A ∈ Rd1d2 be the vectorized representation with columns of A placed consecutively. Let275

Nsym(0, σ2)d×d denote a Wigner matrix with entries drawn i.i.d. from N (0, σ2). The privacy276

guarantee of Algorithm 2 is presented in Lemma 4.3 and the local subspace guarantee in Lemma 4.4.277

Lemma 4.3 (Privacy guarantee). If we set ∆(ε,δ) =
√

8 log(1/δ)/ε, then instantiation of Algorithm278

APriv-AltMin with Algorithm 2 is (ε, δ)-differentially private in the billboard model.279

Lemma 4.4 (Local Subspace Convergence). Recall Assumptions 4.1. In Algorithm 2, let model280

clipping threshold η = Õ(µ
√
λkdk), and response clipping threshold ζ = Õ

(
σF + µ

√
kλk

)
. Let the281

number of iterations of Algorithm 1 (Algorithm APriv-AltMin) be T = Ω
(

log
(

(λ1/λk)
NSR+∆(ε,δ)

))
. Finally,282

assume Uinit be s.t. ‖(I − U∗ (U∗)
>

)Uinit‖F ≤ λk
32λ1

. We have the following for Algorithm 1283

(Algorithm APriv-AltMin), instantiated with Algorithm 2, w.p. at least 1− 1/n10 (over the randomness284

of data generation and the algorithm):285

∥∥∥(I−U∗ (U∗)
>
)
Upriv

∥∥∥
F

= Õ

(
∆(ε,δ)(NSR + µ

√
dk2)µ

√
k2d2

n
+
NSR · µ

√
kd√

nm

)
.
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Here, the noise-to-signal-ratio NSR = σF√
λk

and privacy parameter ∆(ε,δ) =

√
8 log(1/δ)

ε . In Õ(·),286

we hide polylog (d, n).287

See supplementary material for the proofs. The analysis of Lemma 4.4 roughly follows the analysis288

of alternating minimization [45], while accounting for the noise introduced due to privacy. At each289

iteration, we show that the embedding subspace gets closer in the Frobenius norm, and each of the290

personalized models gets closer in the `2-norm.291

4.2 Initialization Algorithm292

In Algorithm 3, we describe a private estimator for the estimation of U∗. This estimator eventually293

gets used in initializing the linear regression instantiation of Algorithm 1. We provide the privacy and294

subspace closeness guarantees in Lemma 4.5 and 4.6, with proofs in supplementary material.295

Algorithm 3 APriv-init: Private Initialization Algorithm for Algorithm APriv-AltMin

Require: Data sets from each user j ∈ [n]: Dj = {(xij ∈ Rd, yij ∈ R) : i ∈ [m]}, clipping bound
for response: ζ, noise standard dev. for privacy: ∆(ε,δ), and rank of the orthonormal basis: k.

1: W ij ← sym

(
x(2i)jx

>
(2i+1)j

‖x(2i)j‖2·‖x(2i+1)j‖2
· clip

(
y(2i)j ; ζ

)
· clip

(
y(2i+1)j ; ζ

))
for all i ∈ [m/2] and j ∈

[n]. Here, sym(W ) makes a matrix ∈Rd×d symmetric by replicating the upper triangle.

2: MNoisy ← 2
nm

( ∑
i∈[m/2],j∈[n]

W ij +Nsym

(
0,∆2

(ε,δ)ζ
4m2

)d×d)
.

3: Upriv ← Top-k eigenvectors of MNoisy as columns.

Lemma 4.5 (Privacy guarantee). If we set ∆(ε,δ) =
√

8 log(1/δ)/ε, Algorithm 3 (Algorithm296

APriv-init) is (ε, δ)-differentially private.297

Lemma 4.6 (Subspace closeness). Recall Assumptions 4.1. Let the clipping bound for response be
ζ = Õ(σF + µ

√
kλk). We have the following for Algorithm 3 (Algorithm APriv-init) w.p. at least

1− 1/n10:∥∥∥(I−U∗ (U∗)
>
)
Upriv

∥∥∥
2

= Õ

(
∆(ε,δ)

(
NSR2 + µ2k

)
d3/2

n
+

(NSR2 + µ2k)
√
d√

nm

)
.

Here, privacy parameter ∆(ε,δ) =

√
8 log(1/δ)

ε . In Õ(·), we hide polylog (d, n).298

The proof goes via direct analysis of the distance between the estimated subspace from the training299

examples, and the true subspace. While the convergence guarantee in Lemma 4.6 is unconditional, it300

is weaker than Lemma 4.4, especially in its dependence on k and NSR.301

Lemma 4.6 implies that under Assumption 4.1,
∥∥∥(I−U∗ (U∗)

>
)
Upriv

∥∥∥
F

= O
(
λ1

λk

)
, which302

is sufficient to satisfy the initialization condition in Lemma 4.4. Hence, if we initialize U using303

Algorithm 3 (Algorithm APriv-init) with a disjoint set of samples for each user, it immediately follows304

that the the local convergence guarantee in Lemma 4.4 is indeed a global convergence guarantee.305

5 Exponential Mechanism based Model Personalization306

In this section, we take a more general approach towards outputting a projector Upriv that approxi-307

mately minimizes the excess population risk without worrying about actually estimating the projector308

onto U∗. Here, as we only care about low-excess risk, as opposed to subspace closeness, we can guar-309

antee better convergence under milder assumptions. Recall the loss function LPop(U ,V ) from (1).310

We want to optimize min
U∈K

(
min

V ∈Rd×n,‖vj‖2≤C
LPop(U ,V )

)
while ensuring ε-DP in the billboard311

model. (Here K ∈ Rd×k is the set of matrices with orthonormal columns, and vj corresponds to312

the j-th column of V .) To that end, we will use the exponential mechanism [34], over an `F -net of313

radius φ over K. The algorithm is presented in Algorithm 4 (Algorithm AExp).314
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Algorithm 4 AExp: Joint Differentially Private ERM via Exponential Mechanism

Require: Data sets from each user j ∈ [n]: Dj = {(xij ∈ Rd, yij ∈ R) : i ∈ [m]} where m
mod 2 = 0, model `2-norm constraint: C, clipping bound on the projected features: Lf (see
Theorem 5.2 below), privacy parameter: ε, and rank of the orthonormal basis: k, net width: φ,
loss function: ` : R× R→ R with ξ being the Lipschitz constant of the first parameter.

1: Define a score function for any rank-k matrix with orthonormal columns U ∈ Rd×k as

score (U) =
∑
j∈[n]

(
min
‖vj‖2≤C

2
m

∑
i∈[m/2]

`
(
〈clip

(
U>xij ;Lf

)
,vj〉; yij

))
.

2: Define a net N φ of ‖ · ‖F -radius φ over matrices with orthonormal columns in Rd×k.
3: Sample Upriv ∈ N φ with Pr[Upriv = U ] ∝ exp

(
− εn

8LfCξ
· score (U)

)
.

4: Each user j ∈ [n] independently estimates vprivj ← arg min
‖v‖2≤C

2
m

m∑
i=m/2+1

`
(
〈
(
Upriv

)>
xij ,v〉; yij

)
.

The privacy analysis of AlgorithmAExp follows from the standard analysis of exponential mechanism,315

and the utility analysis goes via first proving an excess empirical risk bound, and then appealing to316

uniform convergence to get to excess population risk bound.317

Theorem 5.1 (Privacy guarantee). Algorithm 4 is ε-differentially private in the billboard model.318

Theorem 5.2 (Utility guarantee). Suppose the loss function ` is ξ-Lipschitz in the first parameter,
and C is the bound on the constraint set. Set the net size φ = 1/(εn) in Algorithm 4. Assuming that
the feature vectors are drawn i.i.d. from N (0, 1)d, and setting Lf = 40

√
d · log(nm), we have

E
[
RiskPop(

(
Upriv,V priv

)
; (U∗,V ∗))

]
= O

(
ξC ·

(√
k2d3

εn
+

√
d√
nm

+

√
k√
m

))
·polylog (d, n) .

Here, U∗ and V ∗ are any fixed parameters from the corresponding domains.319

See supplementary material for the proofs of Theorems 5.1 and 5.2.320

Comparison of the utility guarantee to Theorem 4.2: The utility guarantee for Algorithm AExp321

(Theorem 5.2) is much more general than that in Theorem 4.2. Unlike Theorem 4.2, it allows322

arbitrary Lipschitz loss function `, and any distribution over the feature vectors. However, for linear323

regression with i.i.d. spherical normal feature vectors and setting the diameter of the constraint set324

C =
√
k, one can make Theorems 4.2 and 5.2 comparable. Theorem 4.2 shows an excess population325

risk Õ
(
k5d3

ε2n2 + k
m

)
whereas Theorem 5.2 gives Õ

(√
k3d3

εn +
√

k2

m

)
. Theorem 4.2 is tighter in the326

regime where n = Ω(k3.5d1.5/ε). This difference is comparable to the so-called fast rates [42].327

However, the sample complexity of Theorem 5.2 is better in terms of m by a factor of k1.5.328

6 Conclusion329

In this paper we studied the problem of personalized supervised learning with user-level differential330

privacy. Through our framework and Algorithm 1, we demonstrated that we can indeed learn accurate331

shared linear representation of the data, despite a limited number of samples-per-user and while332

preserving each user’s privacy. Our error bounds and sample complexity bounds are nearly optimal333

in key parameters and are in fact, comparable to the best known bounds available for a much simpler334

linear regression problem.335

Limitations and Future Directions: This work leads to several interesting questions: (i) In our336

model, can we provide similar privacy/utility trade-offs for deep networks based embedding functions337

instead of a linear embedding function, (ii) Can we make a variant of the exponential mechanism338

algorithm computationally feasible?, and (iii) Empirically validate the privacy/utility trade-offs on339

real world data sets.340

Broader Impact: As more and more ML models are personalized for user tastes, ensuring privacy341

of individuals’ data is paramount to a fair, responsible system. We provide a rigorous framework to342

design such solutions, which hopefully will motivate practitioners and researchers to make privacy as343

a first class citizen while designing their personalization based ML system.344
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A Missing Proofs from Section 4487

A.1 Proof of Lemma 4.3488

Proof. We will show that W priv and bpriv in Algorithm 2 guarantee differential privacy. As the489

arg min can be computed given the two quantities, it will guarantee differential privacy by sequential490

composition.491

For any j, denote Aj =
∑
i∈[m/4+1,m/2] W ijW

>
ij and bj =

∑
i∈[m/4+1,m/2] ỹijW ij . For any492

iteration t, let A =
∑
j∈St Aj and b =

∑
j∈St bj . Considering neighboring datasets D and D′ such493

that user j’s data in D is replaced by user j∗’s. If j /∈ St in iteration t, A and b will be the same.494

Otherwise, A would change by ∆A = Aj∗ −Aj and b by ∆b = bj∗ − bj . We will bound the two495

quantities.496

• For ∆A: According to the definitions, we have ‖W ij‖2 ≤ η. Consider the Frobenius497

norm of matrix W ijW
>
ij . For any vector x, we have

∥∥xx>∥∥
F

=
√∑

p,q x
2
px

2
q =498 √∑

p x
2
p

∑
q x

2
q = ‖x‖22. Therefore, we have

∥∥∥W ijW
>
ij

∥∥∥
F

= ‖W ij‖22 ≤ η2, and thus499

‖Aj‖F ≤ mη
2/4, and ‖∆A‖F ≤ ‖Aj‖F + ‖Aj∗‖F ≤ mη

2/2.500

• For ∆b: Again according to definition, we have |ỹij | ≤ ζ for any j. Thus ‖bj‖2 ≤ mηζ/4501

for any j, and ‖∆b‖2 ≤ mηζ/2.502

Applying Gaussian mechanism, adding noise N (0,m2η2ζ2∆2
(ε,δ)/4)dk to b guarantees503

(α, α/(2∆2
(ε,δ)))-RDP. As for A, adding N (0,m2η4∆2

(ε,δ)/4)dk×dk to the vectorized version of504

A guarantees (α, α/(2∆2
(ε,δ)))-RDP. We can reshape the vectorized A to get the matrix version,505

which is a postprocessing step and does not affect the privacy guarantee. Notice that A is a symmetric506

matrix. We can thus copy its upper triangle to the lower, which is equivalent to adding a symmetric507

Gaussian matrix to A as stated in the algorithm.508

By sequential composition, one run of Algorithm 2 guarantees (α, α/∆2
(ε,δ))-RDP. Notice that Algo-509

rithm 1 calls Algorithm 2 for T times on disjoint sets of users. So by parallel composition, Algorithm 1510

guarantees (α, α/∆2
(ε,δ))-RDP, which translates to

(
α

∆2
(ε,δ)

+ log(1/δ)
α−1 , δ

)
-DP for any ε, δ by stan-511

dard conversion from RDP to approximate DP. Optimizing over α, we get
(

1
∆2

(ε,δ)

+
2
√

log(1/δ)

∆(ε,δ)
, δ

)
-512

DP. Solving ∆(ε,δ) from 1
∆2

(ε,δ)

+
2
√

log(1/δ)

∆(ε,δ)
≤ ε, we have ∆(ε,δ) ≥

√
log(1/δ)+

√
log(1/δ)+ε

ε . There-513

fore, if ε ≤ log(1/δ), it suffices to guarantee (ε, δ)-DP by setting ∆(ε,δ) =

√
8 log(1/δ)

ε .514

A.2 Proof of Lemma 4.5515

Proof. We will show that publishing MNoisy guarantees differential privacy. As W ij’s and MNoisy
516

are all symmetric, for privacy analysis, it suffices to consider the upper triangles of them. Let up (X)517

denote the upper triangle of matrix X flatten into a vector. Let wij = up (W ij), w =
∑
i,j wij ,518

and w̃ =
∑
i,j wij + up

(
Nsym

(
0,∆2

(ε,δ)ζ
4m2

)d2)
. It is easy to see that MNoisy can be formed519

by postprocessing w̃. We will thus prove the privacy property of w̃, which directly translate to the520

privacy guarantee of MNoisy.521

Consider neighboring datasets D and D′ such that user j’s data in D is replaced by user j∗’s data in522

D′. Then the corresponding w would differ by
∑
iwij∗ −

∑
iwij . We will analyze its `2 norm. For523

any i and j, we have524 ∥∥∥∥∥ x(2i)jx
>
(2i+1)j∥∥x(2i)j

∥∥
2
·
∥∥x(2i+1)j

∥∥
2

· clip
(
y(2i)j ; ζ

)
· clip

(
y(2i+1)j ; ζ

)∥∥∥∥∥
F

≤ζ2

∥∥∥x(2i)jx
>
(2i+1)j

∥∥∥
F∥∥x(2i)j

∥∥
2
·
∥∥x(2i+1)j

∥∥
2

= ζ2. (3)
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where ‖·‖F denotes the Frobenius norm. The inequality follows from the definition of the clipping525

operation, and the equality follows because for two vectors a, b, we have
∥∥ab>∥∥2

F
=
∑
p,q(apbq)

2 =526 ∑
p a

2
p ·
∑
q b

2
q = ‖a‖22 ‖b‖

2
2. Therefore, we have ‖wij‖2 ≤ ζ2 for any i, j, which implies527

‖
∑
iwij∗ −

∑
iwij‖2 ≤

∑
i ‖wij∗‖2 +

∑
i ‖wij‖2 ≤ mζ2 for any j, i.e., the `2 sensitivity528

of w is mζ2.529

Using Gaussian mechanism, adding noise N (0,m2ζ4∆2
(ε,δ)I) to w guarantees (α, α/(2∆2

(ε,δ)))-530

RDP for any order α ≥ 1, which translates to
(

α
2∆2

(ε,δ)

+ log(1/δ)
α−1 , δ

)
-DP for any ε, δ > 0. Optimiz-531

ing over α, it translates to
(

1
2∆2

(ε,δ)

+

√
2 log(1/δ)

∆(ε,δ)
, δ

)
-DP. Solving 1

2∆2
(ε,δ)

+

√
2 log(1/δ)

∆(ε,δ)
≤ ε, we get532

∆(ε,δ) ≥
√

log(1/δ)+
√

log(1/δ)+ε√
2ε

. Therefore, if ε ≤ log(1/δ), it suffices to guarantee (ε, δ)-DP by533

setting ∆(ε,δ) =

√
8 log(1/δ)

ε .534

A.3 Proof of Lemma 4.6535

Proof. Let M = 2
nm

∑
i∈[m/2],j∈[n]

W ij and Unon-priv be the matrix with the top-k eigenvec-536

tors of M as columns. Let Πpriv = Upriv
(
Upriv

)>
and Π∗ = U∗ (U∗)

>. Notice that537 ∥∥Π∗ −Πpriv
∥∥

2
≤
∥∥Π∗ −Πnon-priv

∥∥
2

+
∥∥Πnon-priv −Πpriv

∥∥
2
. We bound the first term via538

Lemma A.1 below. In order to bound the second term, first notice that the k-th eigenvalue of M539

(in Algorithm 3) (denoted by λ̂k) is lower bounded as follows. This follows with high probability540

from (18) by choosing appropriate β in Lemma A.1, polynomial in n−1.541

λ̂k ≥
λk
d
−O

(√
µ4k2λk log(dn)

dnm

)
= Ω

(
λk
d

)
(4)

Now, we can use [16, Theorem 7] to directly bound
∥∥Πnon-priv −Πpriv

∥∥
F

=542

O

(
∆(ε,δ)d

√
dk log(dn)

n·λk

)
, and correspondingly

∥∥Πnon-priv −Πpriv
∥∥

2
= O

(
ζ2∆(ε,δ)d

√
d log(dn)

n·λk

)
.543

Setting ζ as in the lemma statement, and observing rotation invariant property of the norms, completes544

the proof.545

Lemma A.1 (Non-private subspace closeness). Let Πnon-priv = Unon-priv
(
Unon-priv

)>
, and

Π∗ = U∗ (U∗)
>. Following the assumption in Lemma 4.6, we have the following for Algorithm 3

(Algorithm APriv-init) w.p. at least 1− β (over the randomness of data generation and the algorithm):

∥∥Π∗ −Πnon-priv
∥∥

2
= Õ

(√
dζ4 log(d/β)

λ2
knm

)
.

546

Proof. By Gaussian concentration we have w.p. at least 1−β/2, ∀i ∈ [m], j ∈ [n], |〈xij ,U∗ ·v∗j 〉| ≤547

µ
√
kλk ·

√
2 ln(4nm/β) and |zij | ≤ σF

√
2 ln(4nm/β). Hence, if we set the clipping threshold for548

the response yij to be ζ =
(
µ
√
kλk + σF

)√
2 ln(4nm/β), then w.p. at least 1− β/2, clipping will549

not have any impact on the analysis. Call this event A. We will perform the linear-algebra analysis550

below without conditioning on this event, but our application of matrix Bernstein [49, Theorem 1.4]551

will rely on this bound.552

We first note that for a Gaussian random vector x, we have553

E
[

x

‖x‖2
x>
]

= E
[
xx>

x>x
‖x‖2

]
=

I
d
· E [‖x‖2] =

Γ
(
d+1

2

)
d
√

2Γ
(
d
2

) I ' 1√
d
I (5)
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This can be seen by first noting that the magnitude of a random Gaussian vector is independent of554

its direction (i.e., the Gaussian measure with identity covariance is a product measure in spherical555

coordinates, trivial from the fact that it is spherically symmetric), then explicitly evaluating the556

expected normalized outer product xx>

x·x . Term-by-term, this evaluation reduces to E
[

x[i]x[j]∑d
i=1 x[i]2

]
.557

Symmetry implies this expectation is 0 for i 6= j and 1
d for i = j. Finally we apply a well-known558

formula for the expected Euclidean norm of a Gaussian random vector [44]. We now have (6) and (7)559

(as a measure of bias and variance) for any i ∈ [m/2], j ∈ [n]. Here, ‖W ij‖2 is the operator norm560

of W ij .561

E [W ij ] = E

[
x(2i)j∥∥x(2i)j

∥∥
2

x>(2i)j

(
U∗v∗j

(
v∗j
)>

(U∗)
>
)
·

x(2i+1)j∥∥x(2i+1)j

∥∥
2

x>(2i+1)j

]
' 1

d
U∗
(
v∗j
(
v∗j
)>)

(U∗)
>

(6)

‖W ij‖2 ≤ ζ
2 (7)

Therefore, by (6) we have the following. Here, V ∗ = [v∗1| · · · |v∗n].562

B =
4

nm

∑
i∈[m/4],j∈[n]

E [W ij ] ' U∗

 1

dn

n∑
j=1

v∗j
(
v∗j
)> (U∗)

>
=

2

dn
U∗
(
V ∗ (V ∗)

>
)

(U∗)
>

(8)

We will now bound

∥∥∥∥∥ 4
nm

∑
i∈[m/4],j∈[n]

W ij −B

∥∥∥∥∥
2

using Matrix Bernstein’s inequality [48, Theorem563

1.4]. Let Aij = W ij− 1
d ·U

∗
(
v∗j
(
v∗j
)>)

(U∗)
>. Clearly, E [Aij ] = 0, and ‖Aij · 1A‖2 ≤ ζ

2+C2

d .564

Now, in the following we bound

∥∥∥∥∥ ∑
i∈[m/4],j∈[n]

E
[
A2
ij

]∥∥∥∥∥
2

. Let Π∗j be the projector onto the eigenspace565

of U∗v∗j
(
v∗j
)>

(U∗)
>. We have the following in (9).566

∑
i∈[m/4],j∈[n]

E
[
A2
ij

]
=

∑
i∈[m/4],j∈[n]

E
[
W 2

ij

]
− m

4d2

∑
j∈[n]

U∗v∗j
(
v∗j
)>

(U∗)
>
U∗v∗j

(
v∗j
)>

(U∗)
>

=
∑

i∈[m/4],j∈[n]

E
[
W 2

ij

]
− m

4d2

∑
j∈[n]

∥∥U∗v∗j∥∥4

2
·Π∗j (9)

We now bound E
[
W 2

ij

]
the first term in (9). We have the following.567

E
[
W 2

ij

]
= E

[
x(2i)jx

>
(2i)j∥∥x(2i)j

∥∥
2

U∗
(
v∗j
(
v∗j
)>)

(U∗)
> x(2i+1)jx

>
(2i+1)j∥∥x(2i+1)j

∥∥
2

x(2i+1)jx
>
(2i+1)j∥∥x(2i+1)j

∥∥
2

U∗
(
v∗j
(
v∗j
)>)

(U∗)
> x(2i)jx

>
(2i)j∥∥x(2i)j

∥∥
2

]

= E

[
1∥∥x(2i)j

∥∥2
2

x(2i)jx
>
(2i)j ·U∗

(
v∗j
(
v∗j
)>)

(U∗)
>
x(2i+1)jx

>
(2i+1)jU

∗
(
v∗j
(
v∗j
)>)

(U∗)
>
x(2i)jx

>
(2i)j

]

= E

[
1∥∥x(2i)j

∥∥2
2

x(2i)jx
>
(2i)j ·U∗

(
v∗j
(
v∗j
)>)

(U∗)
>
U∗
(
v∗j
(
v∗j
)>)

(U∗)
>
x(2i)jx

>
(2i)j

]
(10)

In the last equality, we have used independence to evaluate the outer product in the middle of568

the expression. This operation can be viewed as evaluating a chain of conditional expectations:569

E [ABA] = E [E [ABA|A]] = E [A · E [B|A] ·A] = E [A · E [B] ·A]. Separating the norm of570

U∗v∗j (U
∗v∗j )

> from projection onto its range, we see571
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E
[
W 2

ij

]
= E

[∥∥U∗v∗j∥∥4

2∥∥x(2i)j

∥∥2

2

x(2i)jx
>
(2i)j ·Π

∗
j · x(2i)jx

>
(2i)j

]

= E

[∥∥U∗v∗j∥∥4

2∥∥x(2i)j

∥∥2

2

x(2i)jx
>
(2i)j · (Π

∗
j )
> ·Π∗j · x(2i)jx

>
(2i)j

]

=
∥∥U∗v∗j∥∥4

2
· E

[∥∥Π∗jx(2i)j

∥∥2

2
·
x(2i)jx

>
(2i)j∥∥x(2i)j

∥∥2

2

]
(11)

To estimate the expectation on the right, we let a = Π∗jx(2i)j and b = (I−Π∗j )x(2i)j , and note that572

a and b are independent. So we are interested in evaluating573

E

[
‖a‖22

(a + b)(a + b)>

‖a‖22 + ‖b‖22

]
= E

[
‖a‖22

‖a‖22 + ‖b‖22
(aa> + bb>)

]
+ E

[
‖a‖22

‖a‖22 + ‖b‖22
(ab> + ba>)

]
(12)

The second expectation is 0, as can be noted by symmetry. That is, conditioning on b and ‖a‖2 yields574

the integral of a spherically symmetric random variable. We can then bound:575

E

[
‖a‖22

(a + b)(a + b)>

‖a‖22 + ‖b‖22

]
4 E

[
‖a‖22
‖b‖22

aa>

]
+ E

[
‖a‖22

]
E

[
bb>

‖b‖22

]

= E

[
1

‖b‖22

]
E
[
‖a‖42

]
Π∗j + η

(
I−Π∗j

)
(13)

for some η > 0. E
[

1
‖b‖22

]
= O

(
1
d

)
and E

[
‖a‖42

]
= O(1), so the first term is on the order of 1

d ·Π
∗
j .576

We evaluate η by cyclically permuting the trace:577

η(d− 1) = tr
(
η
(
I−Π∗j

))
= tr

(
E

[
bb>

‖b‖22

])
= E

[
tr

(
bb>

‖b‖22

)]
= E

[
tr

(
b>b

‖b‖22

)]
= 1

(14)

so that η = 1
d−1 = O

(
1
d

)
.578

Putting together (13) and (14) with (11), we see579

E
[
W 2

ij

]
4 O

(∥∥U∗v∗j∥∥4

2

d

)
· I (15)

From (9) and (15) we have the following.580 ∥∥∥∥∥∥
∑

i∈[m/2],j∈[n]

E
[
A2
ij

]∥∥∥∥∥∥
2

= O

m
d

∑
j∈[n]

∥∥U∗v∗j∥∥4

2

 = O

(
mnµ4k2λ2

k

d

)
(16)

Therefore we may apply Matrix Bernstein’s inequality [49, Theorem 1.4] by restricting nonzero581

values to the previously defined event A where clipping plays no role, ensuring the pointwise bound582

‖Aij · 1A‖2 ≤ ζ2 + µ2kλk
d . Notice that this restriction can only strengthen the bound (16). So we583

have the following.584

Pr

∥∥∥∥∥∥ 4

nm

∑
i∈[m/4],j∈[n]

Aij · 1A

∥∥∥∥∥∥
2

≥ 4t

nm

 ≤ d·exp

− t2/2

O
(
nmµ4k2λ2

k

d

)
+
(
ζ2 + C2

d

)
· t3

 ≤ β

2

(17)
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Setting t =
√

log(d/β) ·Ω
(

max

{√
nmµ4k2λ2

k

d ,
(
ζ2 + µ2kλk

d

)√
log(d/β)

})
in (17) suffices, by585

setting up and solving the associated quadratic. Therefore, since P [Ac] ≤ β
2 , w.p. at least 1− β we586

have:587

∥∥∥∥∥∥ 4

nm

∑
i∈[m/4],j∈[n]

Aij

∥∥∥∥∥∥
2

≤
√

log(d/β)·O

(
max

{
µ2kλk√
dnm

,
(ζ2 + µ2kλk/d)

√
log(d/β)

nm

})
= O

(√
ζ4 · log(d/β)

dnm

)
(18)

588

The last equality in (18) follows from the assumption mn =589

Ω

(
d
(
ζ2 + µ2kλk

d

)2

· log(d/β)/(µ2kλk)2

)
. With (18) in hand, we now use the Davis-590

Kahn Sin Θ-theorem [11] from matrix perturbation theory to bound
∥∥Πnon-priv −Π∗

∥∥
2
. We use the591

following variant in Lemma A.2.592

Lemma A.2 (Sin Θ-Theorem [11]). Let G and H be two PSD matrices. Let Π
(i)
G be the projector

onto the top-i eigenvectors of G, and let eig(i)(G) be the i-th largest eigenvalue of G. Define these
quantities correspondingly for H . Then, the following is true.(

eig(i)(G)− eig(j+1)(G)
)
·
((

I−Π
(j)
H

)
Π

(i)
G

)
≤ ‖G−H‖2

593

Let G = ι
dnU

∗
(
V ∗ (V ∗)

>
)

(U∗)
> for ι chosen via constants suppressed for clarity in (8) and594

H = 4
nm

∑
i∈[m/4],j∈[n]

W ij . Note that both G and H are PSD matrices. Furthermore, from (18) we595

have ‖G−H‖2 = O

(√
ζ4·log(d/β)

dnm

)
w.p. ≥ 1 − β. Recall that Πnon-priv is the projector onto596

the rank-k approximation of H . Following the notation of Lemma A.2, and by assumption
√
nm =597

Ω
(√

dζ4 log(d/β)
)

, we have eig(k) (G) = λk
d , eig(k)

(
Πnon-priv

)
∈
[
eig(k)(G)

2 , 2 · eig(k) (G)
]
,598

and eig(k+1)
(
Πnon-priv

)
≤ eig(k)(G)

2 . Here, λk is the k-th eigenvalue of U∗
(

1
nV
∗ (V ∗)

>
)

(U∗)
>,599

which equals the k-th eigenvalue of 1
nV
∗ (V ∗)

>. Also, notice that the projector onto G equals Π∗600

as long as λk > 0, which is true by assumption.601

Therefore, from Lemma A.2 we have the following w.p. at least 1− β.602

∥∥(I−Π∗) Πnon-priv
∥∥

2
= O


√

ζ4·log(d/β)
dnm

eig(k) (G)

 (19)

∥∥(I−Πnon-priv
)

Π∗
∥∥

2
= O


√

ζ4·log(d/β)
dnm

eig(k) (G)

 (20)

Furthermore, notice that
∥∥Π∗ −Πnon-priv

∥∥
2
≤
∥∥(I−Π∗) Πnon-priv

∥∥
2

+
∥∥(I−Πnon-priv

)
Π∗
∥∥

2
.603

Plugging in the value of eig(k) (G) in (19) and (20) completes the proof.604

A.4 Proof of Theorem 4.2605

Proof. Let b = 〈a,U∗v∗〉+ w, where a ∼ N (0, 1)d, w ∼ N (0, σ2
F), U∗ ∈ Rd×k is a matrix with606

orthonormal columns, and v∗ ∈ Rk. Consider the loss function L(U ,v) = Ea,w

[
(b− 〈a,Uv〉)2

]
,607
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where U ∈ Rd×k is a matrix with orthonormal columns and v ∈ Rk. We have,608

L(U ,v) = E
[(
a> (U∗v∗ −Uv) + w

)2]
= (U∗v∗ −Uv)

> E
[
aa>

]
(U∗v∗ −Uv) + σ2

F

= ‖U∗v∗ −Uv‖22 + σ2
F. (21)

We consider v̂ = arg min
v

∥∥∥y −X>Ûv
∥∥∥2

2
=
(
Û
>
XX>Û

)−1

Û
>
Xy, where Û ∈ Rd×k is some609

matrix with orthonormal columns, X ∼ N (0, 1)
d×m and y = X>U∗v∗+w (with w ∼ N (0, σ2

F)m.610

Notice that the inverse exists w.p. at least 1− 1
m10 as long as m = Ω(k).611

In the following, we will bound L(Û , v̂). To do so, we will first bound
∥∥∥U∗v∗ − Ûv

∥∥∥2

2
in (21).612

Assume, Π̂ = ÛÛ
>

, Π∗ = U∗ (U∗)
>, ∆ = Π̂−Π∗ , and ‖∆‖2 ≤ Γ. We have,613

E
[∥∥∥U∗v∗ − Û v̂

∥∥∥2

2

]
= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
Xy −U∗v∗

∥∥∥∥2

2

]

= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
XX>U∗v∗ −U∗v∗ + Û

(
Û
>
XX>Û

)−1

Û
>
Xw

∥∥∥∥2

2

]

= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
XX>U∗v∗ −U∗v∗

∥∥∥∥2

2

]
+
k

m
σ2
F

= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
XX>

(
ÛÛ

>
·U∗v∗ + (I− ÛÛ

>
)U∗v∗

)
−U∗v∗

∥∥∥∥2

2

]
+
k

m
σ2
F

= E

[∥∥∥∥Û (Û>XX>Û
)−1

Û
>
XX>ÛÛ

>
U∗v∗ −U∗v∗

∥∥∥∥2

2

]
+
k

m
σ2
F

=
∥∥∥ÛÛ

>
U∗v∗ −U∗v∗

∥∥∥2

2
+
k

m
σ2
F

= ‖(Π∗ + ∆)U∗v∗ −U∗v∗‖22 +
k

m
σ2
F

= ‖∆U∗v∗‖22 +
k

m
σ2
F

≤ Γ2 ‖U∗v∗‖22 +
k

m
σ2
F (22)

Therefore, by (22) and (21), we have the following.614

E
[
L(Û , v̂)

]
≤ Γ2 ‖U∗v∗‖22 +

(
k

m
+ 1

)
σ2
F (23)

Let Πpriv = Upriv
(
Upriv

)>
. (23) immediately implies,615

RiskPop(
(
Upriv,V priv

)
; (U∗,V ∗)) ≤

∥∥Πpriv −Π∗
∥∥2

2
· µ2kλk +

(
k

m
+ 1

)
σ2
F (24)

Plugging in the bounds from Lemma 4.4 (and instantiating via Lemma 4.6) completes the proof.616

A.5 Proof of Lemma 4.4617

Proof. Consider the t-th iteration of Algorithm 1. We first simplify the notation, i.e., let U = U (t)
618

and U+ = U (t+1), vj = v
(t)
j .619

Now, the clipping parameters are set large enough so that under the data generation assumptions620

(Assumption 4.1), there is no "clipping". So the updates in the Algorithm 1 and Algorithm 2 reduce621
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to:622

vj =

 2

m

∑
i∈[m/2]

U>xijx
>
ijU

−1 2

m

∑
i∈[m/2]

yij ·U>xij

 ,

H(j) =
2

m

∑
i∈[m/2+1,m]

xijx
>
ij ,

r(t) =
∑
j∈St

 2

m

∑
i∈[m/2+1,m]

xijzij

v>j + g(t),

Û = Ã−1

∑
j∈St

H(j)U∗v∗jv
>
j + r(t)

 ,

U+ = ÛR−1, (25)

where U+ and R are obtained by QR decomposition of Û . Also, g(t) ∼ ηζ∆(ε,δ) · N (0, 1)dk, and623

Ã : Rd×k → Rd×k is defined as:624

Ã(U) = A(U) + G(U) with

A(U) =
2

m

∑
i∈[m/2+1,m]

H(j)Uvjv
>
j , and G(U) =

∑
ab

〈Gab,U〉eae>b ,

where ea is the a-th standard canonical basis vector, and for
#     »

Gab being the vectorized version of625

Gab, Ḡ = [
#     »

G11;
#     »

G12; . . . ;
#     »

Gab; . . .
#     »

Gdk] ∼ ηζ∆(ε,δ) · Nsym(0, 1)dk×dk. Note that A and G, and626

consequently Ã, are self-adjoint operator i.e. 〈Ã(U), Ū〉 = 〈U , Ã(Ū)〉 for all U , Ū . Furthermore,627

letW(U) = U
∑
j vjv

>
j .628

Note that the update for vj is same as the update in the non-private Alternating Minimization629

algorithm (similar to Algorithm 1 of [45]). Now, let Q = (U∗)>U , and ∆ ∈ Rd×k be such that630

∆j = vj −Q−1v∗j . Using Lemma A.4, we get:631

‖vj‖2 ≤ Õ
(
µ2k

n
λtk

)
, λk ≤ 2λtk,

max
j
‖∆j‖2 ≤ Õ

(
‖(I −U∗(U∗)>)U‖ · µ

√
kλk

)
+ σF

√
k log n

m
, (26)

where λti is the i-th eigenvalue of 1
n

∑
j vjv

>
j .632

Now, using standard calculations, we get:633

Û −U∗Q (27)

=Ã−1

∑
j

H(j)U∗Q(Q−1v∗j − vj)v
>
j +

∑
ij

zijxijv
>
j + g(t) − G(U∗Q)


=W− 1

2

(
W 1

2 Ã−1W 1
2

)
W− 1

2

∑
j

H(j)U∗Q(Q−1v∗j − vj)v
>
j +

∑
ij

zijxijv
>
j + g(t) − G(U∗Q)


=U∗Q

∑
j

(Q−1v∗j − vj)v
>
j

∑
j

vjv
>
j

−1

+ F + F̃ , (28)
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where for E =W 1
2 Ã−1W 1

2 − I ,634

F =W− 1
2 EW− 1

2

(
U∗Q(Q−1v∗j − vj)v

>
j

)
+W− 1

2 (I + E)W− 1
2

∑
j

(H(j) − I)U∗Q(Q−1v∗j − vj)v
>
j +

∑
ij

zijxijv
>
j

 ,

F̃ =W− 1
2 (I + E)W− 1

2

(
g(t) − G(U∗Q)

)
.

Using Lemma A.3 and the assumption on n, ∆(ε,δ), we get:635

‖E‖F ≤
1

32
. (29)

Furthermore, using Lemma A.6, we get w.p. ≥ 1− 1/n100,636

‖F ‖F ≤ Õ

(
µ log n ·

√
κdk2T

mn
‖(I −U∗(U∗)>)U‖F

)
+

√
µ2dkT log n

mn
· σF√

λk
. (30)

Finally, using Lemma A.7, we get w.p. ≥ 1− 1/n100,637 ∥∥∥F̃∥∥∥
F
≤ Õ

(
(
√
kη2 + ηζ)∆(ε,δ)

√
dk

nλk

)
. (31)

That is, by setting n = Ω̃
(
λ1

λk
· µ2dk

)
and m = Ω̃

(
(1 + NSR) · k + k2

)
(as per Assumption 4.1),

we get:

‖F ‖F ≤
1

64
,
∥∥∥F̃∥∥∥

F
≤ 1

64
.

Similarly, using n and m as specified in Assumption 4.1 and Lemma A.6, for M =

U∗Q
∑
j(Q

−1v∗j − vj)v
>
j

(∑
j vjv

>
j

)−1

, we get

‖M‖F ≤
1

64
.

Finally, due to the initialization condition, σmin(Q) ≥ 1/2. Thus, using standard calculations (for
example, see Lemma A.3 in [45]), we get:

‖R−1‖ ≤ 4,

where Û = U+R.638

Note that U∗Q
∑
j(Q

−1v∗j − vj)v
>
j

(∑
j vjv

>
j

)−1

lies along U∗, so does not contribute to the639

error
∥∥(I −U∗(U∗)>)U+

∥∥
F

. Hence,640 ∥∥(I −U∗(U∗)>)U+
∥∥
F
≤
∥∥∥F + F̃

∥∥∥
F

∥∥R−1
∥∥
F
≤ 4

∥∥∥F + F̃
∥∥∥
F

≤ 4Õ

(
µ log n ·

√
κdk2T

mn
‖(I −U∗(U∗)>)U‖F +

√
µ2dkT log n

mn
· σF√

λk
+

(
√
kη2 + ηζ)∆(ε,δ)

√
dk

nλk

)
,

≤ 1

4

∥∥(I −U∗(U∗)>)U
∥∥
F

+ Õ

(√
µ2dkT log n

mn
· σF√

λk
+

(
√
kη2 + ηζ)∆(ε,δ)

√
dk

nλk

)
. (32)

The result now follows by applying the above bound for all t and by using: η = Õ(µ
√
λkdk),641

ζ = Õ
(
σF + µ

√
kλk

)
, i.e.,

√
kη2 + ηζ = λkÕ((NSR + µ

√
dk2)µ

√
dk).642

Lemma A.3. Consider the setting of Lemma 4.4 and the notation introduced in the proof above. Let643

E =W 1
2 Ã−1W 1

2 − I . Then, w.p. ≥ 1− 1/n100: ‖E‖F ≤ 1
32 .644

21



Proof. Using Lemma A.5 and (26), we get: ‖W− 1
2AW− 1

2 − I‖F ≤ 1/32, where I(U) = U .645

Furthermore, ‖W− 1
2GW− 1

2 ‖F ≤ 8σPriv-1

√
dk
nλk

by using the bound on λtk given in (26). The646

result now follows by combining the above two given bounds.647

Lemma A.4 (Restatement of Lemma A.1 of [45]). Consider the setting of Lemma 4.4 and the648

notation introduced in the proof above. Then, if ‖(I − U∗(U∗)>)U‖ ≤ Õ(λkλ1
) and if m ≥649

Ω̃
(
(1 + NSR) · k + k2

)
, we have w.p. ≥ 1− 1/n101:650

‖vj‖2 ≤ Õ
(
µ2k

n
λtk

)
, λk ≤ 2λtk,

max
j
‖∆j‖2 ≤ Õ

(
‖(I −U∗(U∗)>)U)‖ · µ

√
kλk

)
+ σF

√
k log n

m
.

Lemma A.5 (Restatement of Lemma A.7 of [45]). Consider the setting of Lemma 4.4 and the
notation introduced in the proof above. Let mn ≥ Õ(µ2dk2), then w.p. ≥ 1− 1/n100:

‖E‖F ≤ Õ

(√
µ2dk2

mn

)
.

Lemma A.6 (Restatement of Lemma A.2 of [45]). Consider the setting of Lemma 4.4 and the
notation introduced in the proof above. Then, if mn ≥ Õ(µ2dk2), we have (w.p. ≥ 1− 1/n80):∥∥∥∥∥∥∥U∗Q

∑
j

(Q−1v∗j − vj)v
>
j

∑
j

vjv
>
j

−1
∥∥∥∥∥∥∥
F

≤ Õ

(
√
κ‖(I −U∗(U∗)>)U‖F +

σF√
λk
·
√
k

m

)
,

‖F ‖F ≤ Õ

(
µ log n ·

√
κdk2T

mn
‖(I −U∗(U∗)>)U‖F

)
+

√
µ2dkT log n

mn
· σF√

λk
.

Lemma A.7. Consider the setting of Lemma 4.4 and the notation introduced in the proof above. Let
‖E‖ ≤ 1/2. Then, w.p. ≥ 1− 1/n100:∥∥∥F̃∥∥∥

F
≤ Õ

(
(
√
kη2 + ηζ)∆(ε,δ)

√
dk

nλk

)
.

Proof. Note that,651 ∥∥∥F̃∥∥∥
F
≤ ‖W− 1

2 (I + E)W− 1
2 ‖ · ‖g(t) − G(U∗Q)‖ ≤ 2

nλk
(‖g(t)‖+ ‖G(U∗Q)‖F )

≤ 2

nλk
(‖g(t)‖+

√
k‖G‖2). (33)

The lemma now follows by using the fact that:
∥∥g(t)

∥∥
2
≤ Õ(ηζ

√
dk) and ‖G‖2 ≤ Õ(η2

√
dk) with652

probability 1− 1/n100.653

B Missing Proofs from Section 5654

Proof of Theorem 5.1. We are going to proof that the sampling step in Algorithm 4 guarantees ε-DP.655

Let S0(D) =
∑
j∈[n]

2
m

∑
i∈[m/2]

`
(
〈clip

(
U>0 xij ;Lf

)
,v0; yij〉

)
, where U0 is fixed rank-k matrix656

with orthonormal columns in Rd×k, and v0 ∈ Rk, ‖v0‖2 ≤ C is a fixed vector. The sampling step in657

Algorithm 4 is identical to the following658

Pr[Upriv = U ] ∝ exp

(
− ε

8LfCξ
· (score (U)− S0(D))

)
. (34)
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Let L(U ;D) = score (U)− S0(D). Consider any neighboring data sets D and D′ such that user j659

in D is replace by user j′ in D′. We now bound the sensitivity L(U ;D)− L(U ;D′). We have660

L(U ;D)− L(U ;D′)

=

[
min

‖vj‖2≤C

2

m

∑
i

`
(
〈clip

(
U>xij ;Lf

)
,vj〉; yij

)
− 2

m

∑
i

`
(
〈clip

(
U>0 xij ;Lf

)
,v0〉; yij

)]

−

[
min

‖vj′‖2≤C
2

m

∑
i

`
(
〈clip

(
U>xij′ ;Lf

)
,vj′〉; yij′

)
− 2

m

∑
i

`
(
〈clip

(
U>0 xij′ ;Lf

)
,v0〉; yij′

)]
(35)

Consider the first term. Let v∗j be the minimizer of the first term. We have661

2

m

∑
i

(
`
(
〈clip

(
U>xij ;Lf

)
,v∗j 〉; yij

)
− `(〈clip

(
U>0 xij ;Lf

)
,v0〉; yij)

)
≤ 2

m

∑
i

ξ
∣∣∣〈clip(U>xij ;Lf) ,v∗j 〉 − 〈clip(U>0 xij ;Lf) ,v0〉

∣∣∣
≤ 2

m

∑
i

ξ
(∥∥∥clip(U>xij ;Lf)∥∥∥

2

∥∥v∗j∥∥2
+
∥∥∥clip(U>0 xij ;Lf)∥∥∥

2
‖v0‖2

)
≤2ξLfC,

where the first inequality follows because ` is ξ-Lipschitz in the first parameter, and the last inequality662

follows from the bound on the norm of v. Similar can be shown for the second term of (35). Therefore,663

the sensitivity of the score function, i.e. (35), is upper bounded by 4ξLfC.664

The rest of the proof follows from standard exponential mechanism argument [34].665

Proof of Theorem 5.2. First, to bound the size of the net N φ we use classic covering number bound666

from [5, Lemma 3.1]. We have
∣∣N φ

∣∣ = O

((
9
√
k

φ

)(2d+1)·k
)

, since ‖ · ‖F of the matrices, over667

which the net is built, is
√
k. Let U∗ = arg min

U∈K
score (U).668

First, we show that score
(
Ũ
)
− score (U∗) is small for any Ũ ∈ N φ. For any Ũ , we have,669

score
(
Ũ
)
≤ score (U∗) + ξC

∑
j∈[n]

2

m

∑
i∈[m/2]

∥∥∥clip(Ũ>xij ;Lf)− clip
(

(U∗)
>
xij ;Lf

)∥∥∥
2

= score (U∗) + ξC
∑
j∈[n]

2

m

∑
i∈[m/2]

∥∥∥∥(Ũ −U∗
)>

xij

∥∥∥∥
2

, (36)

with probability ≥ 1− 1/n10. The first step follows from the Lipschitzness of ` and ‖v‖2 ≤ C, and670

the second step follows because the choice of Lf will not introduce any effect due to clipping w.p. at671

least 1− 1
n10 . We will condition the rest of the analysis on this.672

Let M = Ũ −U∗ with columns [ma : a ∈ [k]]. By the definition of the net, we have
k∑
a=1
‖ma‖22 ≤673

φ2. Since the feature vectors are drawn i.i.d. from N (0, 1)
d, we have 〈ma,xij〉 ∼ N

(
0, ‖ma‖22

)
.674

Therefore, by standard Gaussian concentration and union bound, we have w.p. at least 1 − 1
n10 ,675

∀i ∈ [m/2], j ∈ [n], a ∈ [k], |〈ma,xij〉| ≤ ‖ma‖2 · polylog (n). Therefore,
∥∥∥M>xij

∥∥∥
2
≤676

φ · polylog (n). Substituting back to (36), we have677

score
(
Ũ
)
≤ score (U∗) + ξCnφ · polylog (n) . (37)

23



Second, we aim to show that Upriv and Ũ are close. For any γ, we have678

Pr
[
score

(
Upriv

)
− score

(
Ũ
)
≥ γ

]
≤
∣∣N φ

∣∣ · exp
(
− ε

8ξLfC
·
(
score

(
Ũ
)

+ γ
))

exp
(
− ε

8ξLfC
· score

(
Ũ
))

=
∣∣N φ

∣∣ · exp

(
− εγ

8ξLfC

)
. (38)

Setting γ appropriately, we have w.p. at least 1− β,679

score
(
Upriv

)
− score

(
Ũ
)
≤

8ξCLf log
(
|N φ|/β

)
ε

= O

(
ξCLfdk

ε
log

(
k

φβ

))
. (39)

Now we show a bound on the excess empirical risk. Combining (37) and (39), we have680

score
(
Upriv

)
≤ score (U∗) +O

(
ξCLfdk

ε
log

(
k

φβ

)
+ ξCnφ · polylog (n)

)
.

Let LERM(U ,V ) = 2
mn

∑
i∈[m/2],j∈[n]

`
(
〈U>xij ,vj〉; yij

)
, and V̂ = min

V
LERM(Upriv,V ), i.e., the681

minimizer for score
(
Upriv

)
. The above inequality directly transfers to682

LERM(Upriv, V̂ ) ≤ LERM(U∗,V ∗) +O

(
ξCLf · dk

εn
log

(
k

φβ

)
+ ξCφ · polylog (n)

)
(40)

Setting φ = 1
εn and plugging in Lf = O(

√
d log(nm)), the above inequality becomes,683

LERM(Upriv, V̂ ) ≤ LERM(U∗,V ∗) +O

(
ξC
√
k2d3

εn

)
· polylog (n) . (41)

Finally, to complete the proof, we need to translate the excess empirical risk bound into excess684

population risk bound. Recall the following definition of population risk.685

LPop(U ;V ) = E(i,j)∼u[m/2]×[n],(xij ,yij)∼τ

[
`
(
〈U>xij ,vj〉; yij

)]
(42)

We have the following.686

LPop(Upriv;V priv)− LPop(U∗,V ∗)

=
(
LPop(Upriv;V priv)− LPop(Upriv,V ∗)

)
+
(
LPop(Upriv,V ∗)− LPop(U∗,V ∗)

)
(43)

We will bound the two terms separately. For the first term LPop(Upriv,V priv)−LPop(Upriv,V ∗),687

notice that Upriv and V priv are independent as they are trained on disjoint data. This implies ∀i ∈688

{m/2 + 1, · · · ,m}, j ∈ [n], w.p. at least 1− 1
min{d,n}10 ,

∥∥∥(Upriv
)>

xij

∥∥∥
2
≤
√
k · polylog (d, n).689

Since the loss functions have the form `(〈
(
Upriv

)>
x,v〉; y), by standard uniform convergence690

bound [2], we have the following.691

LPop(Upriv,V priv)− LPop(Upriv,V ∗) = O

(
ξC

√
k

m

)
· polylog (d, n) (44)

Then we bound the second term LPop(Upriv,V ∗)− LPop(U∗,V ∗) in (43). We can write the inner692

product 〈U>x,v〉 as 〈U ,xv>〉. Therefore, if we vectorize U by concatenating its the columns as693
#»

U , and vectorize xv> by concatenating its columns as #»z , the inner product equals to 〈z, #»

U〉. The694

loss function can be written as `(〈U>x,v〉; y) = `
(
〈z, #»

U〉; y
)

. We define zij as the vectorized695

version of xij(v
∗
j )
>. With probability at least 1 − 1

min{d,n}10 , ∀i ∈ [m/2], j ∈ [n], ‖zij‖2 ≤696
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C
√
d · polylog (d, n). By standard uniform convergence bound [2] and the bound on the empirical697

Rademacher complexity below, we have698

LPop(Upriv,V ∗)− LPop(U∗,V ∗)

≤ LERM(Upriv, V̂ )− LERM(U∗,V ∗) +O

(
ξC

√
d

nm

)
· polylog (d, n) . (45)

Combining (41), (45), (44) into (43) and translating the high-probability to expectation statement699

completes the proof.700

Bound on Rademacher complexity: We aim to compute the Rademacher complexity of701

〈U ,
∑
ij xijv

>
j 〉 =

∑
ij〈xij ,Uvj〉. We will follow [32, Theorem 11] with small modification702

in the Cauchy-Schwartz step.703

Let θ be a vector of length nd that is formed by concatenating Uvj for all j. For any i, j, let x̃ij be a704

vector of length dn, such that the j-th “block” (of length d) is xij and the rest of the entries are 0. So705

we can express 〈xij ,Uvj〉 as 〈x̃ij , θ〉. We have706

〈x̃ij , θ〉 = 〈xij ,Uvj〉 ≤ ‖xij‖2 ‖Uvj‖2 ≤ C ‖xij‖2 ,

where the last step follows because U is orthonormal and ‖vj‖2 ≤ C. Also, because the data707

is drawn from a normal distribution, we have E
[
‖x̃ij‖22

]
= E

[
‖xij‖22

]
= d. The Rademacher708

complexity is C
√
d√

mn
following the same argument as [32, Theorem 11].709

25


	Introduction
	Contributions
	Related Work
	Notation

	Background on Privacy
	Model Personlization via Private Alternating Minimization
	Instantiating Algorithm APriv-AltMin with Linear Regression
	Local Subspace Convergence
	Initialization Algorithm

	Exponential Mechanism based Model Personalization
	Conclusion
	Missing Proofs from Section 4
	Proof of Lemma 4.3
	Proof of Lemma 4.5
	Proof of Lemma 4.6
	Proof of Theorem 4.2
	Proof of Lemma 4.4

	Missing Proofs from Section 5

