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Abstract

Inverse problems are paramount in Science and Engineering. In this paper, we con-1

sider the setup of Statistical Inverse Problem (SIP) and demonstrate how Stochastic2

Gradient Descent (SGD) algorithms can be used in the linear SIP setting. We3

provide consistency and finite sample bounds for the excess risk. We also propose4

a modification for the SGD algorithm where we leverage machine learning meth-5

ods to smooth the stochastic gradients and improve empirical performance. We6

exemplify the algorithm in a setting of great interest nowadays: the Functional7

Linear Regression model. In this case we consider a synthetic data example and8

examples with a real data classification problem.9

1 Introduction10

Inverse Problems (IP) might be described as the search of an unknown parameter (that could be a
function) that satisfies a given, known equation. Considering the notation:

y = A[f ] + noise,

where f and y are elements of given Hilbert spaces, we would like to compute (or estimate) f given11

the data y for some level of noise. Typically, IPs are ill-posed in the sense that the solution does12

not depend continuously on the data. There are several very important and impressive examples of13

IPs in our daily lives. Medical imaging has been using IPs for decades and it has shaped the area,14

as for instance, Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI). For an15

introductory text, see Vogel [2002].16

A vast literature of IPs is devoted to deterministic problems where the noise term is also a element of17

a Hilbert space and usually assumed small in norm, which is not usually verified in practice. In this18

work, we will take a different avenue, known as Statistical Inverse Problems (SIP). This approach is19

a formalization of IPs within a probabilistic setting, where the uncertainty of all measurements are20

properly considered. Our focus in this work is to propose a direct and practical method for solving21

SIP problems and, at the same time, provide theoretical guarantees for the excess risk performance of22

the algorithm we develop. Our algorithm is based on a gradient descent framework, where stochastic23

gradients (or base learner that approximates the stochastic gradients) are used to estimate general24

functional parameters.25

The paper is organized as follows. We finish this section contextualizing our paper in the broad26

literature and stating our main contributions. In Section 2, we formally introduce the learning27

problem that we analyze. In Section 3, we provide examples of practical problems that fits within28

our formulation. In Section 4 we provide our main results and algorithms. Finally, in Section 5 we29

provide numerical examples and a real data application for a Functional Linear Regression problem30

(FLR). Due to space constraints, some of the figures, proofs and experiments were moved to the31

supplementary material.32
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1.1 Contribution33

We provide a novel numerical method to estimate functional parameters in SIP problems using34

stochastic gradients. More precisely, we extend the properties and flexibility of SGD and boosting35

algorithms to a broader class of problems by bridging the gap between the IP and optimization36

communities.37

Whereas most of the IPs methods focus on regularization strategies to “invert" the operator A, we38

propose a gradient descent type of algorithm to estimate the functional parameter directly. Our39

algorithm works in the same spirit as Stochastic Gradient Descent algorithms with sample averaging.40

While results of SGD are well understood in the context of regression problems in finite and infinite41

dimensions and SGD is well understood in deterministic IPs, SGD have not yet been considered42

under the SIP formulation.43

We show that our procedure also ensures risk consistency in expectation and high probability under44

the statistical setting. Furthermore, we propose a modification in our algorithm to substitute the45

stochastic gradients by base learners similarly to boosting algorithms, Mason et al. [1999], Friedman46

[2001]. This modification improve a common challenge faced by SIP problems: the discretization47

procedures of the operator A that arises in SIP.48

1.2 Literature Review49

Historically, SIP was first introduced in Sudakovand and Khalfin [1964] where IPs from Mathematical50

Physics were recast into a statistical framework. For a more structured introduction, we forward the51

reader to Kaipio and Somersalo [2004]. Several advances were made in the parametric approach to52

SIP, where the unknown function is assumed to be completely described by an unknown parameter53

living in a finite dimensional space, see for instance Evans and Stark [2002]. In our paper, however,54

we will consider the nonparametric framework as described in Cavalier [2008]. In this setting, we see55

the IP as a search of an element of an infinite dimensional space.56

When considering IPs (and SIP, in particular), there are several ways to regularize the problem in order57

to deal with its ill-posedness. For instance, one could consider roughness penalty or a functional basis58

as in Tenorio [2001]. Additionally, one could examine Tikhonov and spectral cut-off regularizations59

as in Bissantz et al. [2007]. For many of those standard approaches, consistency under the SIP setting60

and rates of convergences were established. See for instance Bissantz et al. [2004], Bissantz and61

Holzmann [2008]. A thoroughly discussion of stochastic gradient algorithms is outside the scope of62

this work and we refer the reader to Zinkevich [2003], Nesterov et al. [2018] and references therein.63

Applications of Machine Learning (or Deep Learning, in particular) to solve IPs have been numerous64

in recent years, but, in our opinion, akin of the capabilities that these new techniques could bring to65

this area of research. Some attention have been given to imaging problems as in Jin et al. [2017] and66

Ongie et al. [2020]. Under deterministic IP, the paper Li et al. [2020] studies the regularization and67

convergence rates of penalized neural networks when solving regression problems. See also Adler68

and Öktem [2017] and Bai et al. [2020]. Other important references regarding SGD for deterministic69

IP are Jin et al. [2021], Tang et al. [2019], Jin et al. [2020].70

The main examples we bring in our paper is the class of Functional Linear Regression (FLR). This71

problem has drawn the attention of the statistical, econometric and computer science communities in72

the past decade, see Cai and Hall [2006], Yao et al. [2005], Hall and Horowitz [2007]. The usual73

methodology applied to this problem is the well-known FDA. For example, one could consider a74

prespecified basis functions to regularize the regression problem Goldsmith et al. [2011] or one could75

use the Functional Principal Component (FPC) basis, Morris [2015]. More recently, methods inspired76

in machine learning for standard linear regression problems were also extended to the FLR setting, see77

for instance James et al. [2009], Fan et al. [2015] for methods that are suitable for high dimensional78

covariates or interpretable in the LASSO sense. In this work we show how our modification to the79

SGD algorithm can be seen as an averaging of boosting estimators and can also be used to estimate80

FLR models in the high-dimensional setting.81
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2 Problem Formulation82

We start by fixing a probability space (Ω,A,P) and a vector space X of inputs. We denote the random83

input by X ∈ L2(Ω,A,P) taking values in X and consider the spaceL2(X) of functions g : X −→ Rd84

with inner product ⟨g1, g2⟩L2(X) = E[⟨g1(X), g2(X)⟩] and norm ∥g∥2L2(X) = E[∥g(X)∥2] < +∞,85

where ⟨·, ·⟩ and ∥ · ∥ are the inner product and norm of Rd.86

Similarly, we define the space L2(W) of functions from W taking values in Rk square-integrable with87

respect to the measure space (W,B, µ). Finally, we consider an operator A : L2(W) −→ L2(X).88

This operator defines a direct problem and we assume that it is known. Given f ∈ L2(W), we use89

the notation A[f ] ∈ L2(X), i.e. A[f ] is a square-integrable function A[f ] : X −→ Rd.90

We are interested in solving the statistical inverse problem related toA: jointly to observing samples of91

X taking values in X, we observe noisy samples of A[f◦](X), for some fixed, unknown f◦ ∈ L2(W),92

which we denote by Y:93

Y = A[f◦](X) + ϵ, (1)

where ϵ is a zero-mean random noise. The problem we will pore over in this paper is the estimation94

of f◦ based on this given sample.95

Let ℓ : Rd × Rd → R+ be a point-to-point loss function as, for example, the squared loss ℓ(y,y′) =96
1
2∥y − y′∥2. We define the populational risk as:97

RA(f) ≜ E[ℓ(Y, A[f ](X))],

and we would like to solve:98

inf
f∈F

RA(f), (2)

where F ⊂ L2(W) is a linear subspace with f◦ ∈ F . We will denote by ∂2 the partial derivative99

with respect to the second argument.100

Given a sample, we will study how to control the excess risk of a functional estimator f̂ of f◦:101

RA(f̂)− inf
f∈F

RA(f). (3)

Instead of taking the standard route of solving the Empirical Risk Minimization problem and later102

establishing results for (3), in 4 we show how our Algorithms allows us to control directly to tackle103

(3) directly by constructing stochastic gradients directly for the populational risk.104

3 Examples: motivation105

Before we formalize our results, we first motivate the study of Eq. (1) with a few of applications.106

Each of those problems have a myriad of solutions on their own. For more information on those IPs,107

see, for instance, Vogel [2002].108

Deconvolution. This type of inverse problems relate the values of Y and X through the following
convolution equation:

Y =

∫
W
k(X−w)f(w)dµ(w) + ϵ,

where X = W = Rd and the kernel k is known. In this case, we define the operator A as:

A[f ](x) =

∫
W
k(x−w)f(w)dµ(w).

Functional Linear Regression. Consider the scalar, multivariate response model of functional linear
regression: let X = L2([0, T ]) taking values in Rd, W = [0, T ], µ is the Lebesgue measure in [0, T ]
and Y is giving by the following model

Y =

∫ T

0

f(s)X(s)ds+ ϵ,
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where f ∈ L2(W) is taking values in R. Here we changed the notation from w to s in order to keep
the classical notation from FLR. In this case,

A[f ](x) =

∫ T

0

f(s)x(s)ds.

The model can be easily extended to deal with Y taking label values such as in a classification109

problem as we will show in the numerical studies.110

Due to space constraints, we provide examples in the FLR setting. In the supplementary material, we111

demonstrate how the Algorithms presented in Section 4.2 also in deconvolution problems.112

4 Theoretical Results and Algorithms113

In this paper, we consider the following set of assumptions.114

Assumption 4.1.115

1. A : L2(W) −→ L2(X) is a linear, bounded operator;116

2. ℓ is a convex and C2 function in its second argument;117

3. There exists θ0 > 0 such that, for all f, g ∈ L2(W),

sup
|θ|≤θ0

E[∂22ℓ(Y,A[f ](X) + θA[g](X))(A[g](X))2] <∞;

4. f◦ ∈ argminf∈F RA(f) and RA(f
◦) > −∞;118

5. supf,f ′∈F ∥f − f ′∥L2(W) = D <∞.119

Assumption 1 is our strongest one, since it imposes that our operator is linear and bounded. Nev-120

ertheless, linear SIPs encompass a wide class of problems of practical and theoretical interest for121

engineering, statistics and computer science communities among others, a few of them presented in122

Section 3. Moreover, the nonlinear case could be similarly studied with more cumbersome notation123

and assumptions. Assumption 2 is standard for gradient based algorithms and is commonly assumed124

in many learning problems. Assumption 3 is a mild integrability condition of the loss function com-125

monly satisfied in many practical situations. For instance, in the squared loss case, this assumption126

becomes E[(A[g](X))2] <∞, which is automatically satisfied since A[g] ∈ L2(X). Assumption 4 is127

needed so the problem we analyze indeed have a solution. Assumption 5 is stating that the diameter128

of the set F is finite.129

One should notice that our set of assumptions does include the class of ill-posed (linear) inverse130

problems since we do not need to assume that A is bijective. If that were the case, it is known that131

then A would have a bounded inverse, and then, the IP would not be ill-posed.132

In the next sections we provide our theoretical results. Instead of following the common approach of133

minimizing the Empirical Risk Minimization problem, we show how to compute stochastic gradients134

in order to control directly for the excess risk (3) both in expectation and in probability.135

4.1 Preliminaries136

Our first result allows us to compute the gradient of the populational risk at a given functional
parameter f . Before we present it, note that, by linearity, A : L2(W) → L2(X) is differentiable and,
for every f, g ∈ L2(W), we have that the directional derivative of A[f ] in the direction g is given by

DA[f ](g) = lim
δ→0

1

δ
(A[f + δg]−A[f ]) = A[g].

Note that the directional derivative does not dependent on the point f that we are evaluating the
gradient. Let A∗ denote the adjoint operator of A defined as the linear and bounded operator
A∗ : L2(X) −→ L2(W) such that1

⟨A[f ], g⟩L2(X) = ⟨f,A∗[g]⟩L2(W).

The following lemma holds true:137

1The adjoint of a linear, bounded operator always exists.
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Lemma 4.2. Under 1, 2 and 3 of Assumption 4.1 we have that
∇RA(f) = A∗[ϕ] ∈ L2(W),

where ϕ(x) = E[∂2ℓ(Y, A[f ](x)) |X = x].138

Proof. Firstly, define, for fixed (X,Y),139

ψ(δ) = ℓ(Y, A[f + δg](X)) = ℓ(Y, A[f ](X) + δA[g](X)).

Then, we get the directional derivative of the risk function in direction g by applying the Taylor140

formula for ψ as a function of δ around δ = 0:141

DRA(f)(g) = lim
δ→0

1

δ
(RA(f + δg)−RA(f))

= lim
δ→0

1

δ
E[ψ(δ)− ψ(0)]

= lim
δ→0

E
[
1

δ

(
δ∂2ℓ(Y, A[f ](X))A[g](X)

+ 1
2δ

2∂22ℓ(Y, A[f ](X) + θA[g](X))(A[g](X))2
)]
,

where θ comes from the Taylor formula and it is between −θ0 and θ0, for some fixed θ0 > 0. Hence,142

by Assumption 3, we find143

DRA(f)(g) = E[∂2ℓ(Y, A[f ](X))A[g](X)].

By the definition of ϕ and by conditioning in X, we find144

DRA(f)(g) = E[ϕ(X)A[g](X)] = ⟨ϕ,A[g]⟩L2(X) = ⟨A∗[ϕ], g⟩L2(W).

Finally, we get that the descent direction ∇RA(f) is given by A∗[ϕ] ∈ L2(W).145

By the linearity and boundedness of A∗, we find the following very useful representation for the146

gradient of RA:147

Lemma 4.3. Consider the case d = 1 for simplicity of notation. For each w ∈ W fixed, there exists
a kernel Φ(·;w) : X −→ R such that

A∗[g](w) = E[Φ(X;w)g(X)].

Proof. First, notice that φw(g) = A∗[g](w) is an element of the dual of L2(X). Hence, by the Riesz148

Representation Theorem, there exists a kernel Φ(·;w) : X −→ R such that, for all g ∈ L2(X),149

A∗[g](w) = φw(g) = ⟨Φ(·;w), g⟩L2(X) = E[Φ(X;w)g(X)],

as desired.150

Corollary 4.4. If ℓ is the squared loss function ℓ(y,y′) = 1
2∥y − y′∥2, then the gradient of the risk151

function with respect to f is given by152

∇RA(f) = −A∗[Y −A[f ]] = E[Φ(X;w)(A[f ](X))−Y(X)],

where Y(x) = E[Y |X = x].153

Because of the results above, it is possible to construct an unbiased estimator for the gradient for the154

risk function for any f . In fact, considering the case d = 1, for a given sample (x,y) and a fixed155

function f , we define, for any w ∈ W,156

uf (w;x,y) = Φ(x;w)(A[f ](x)− y). (4)
Therefore, conditioning in X, we find157

E[uf (w;X,Y)] = E[Φ(X;w)(A[f ](X)−Y)]

= E[E[Φ(X;w)(A[f ](X)−Y) |X]]

= E[Φ(X;w)(A[f ](X)− E[Y |X])]

= E[Φ(X;w)(A[f ](X)−Y(X))]

= ∇RA(f)(w).

The main benefit is that with only one observation we are able to compute an unbiased estimator for158

the gradient of the risk function under the true distribution.159
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4.2 Proposed Algorithms160

Inspired by Lemma 4.2, we propose the following SGD algorithm for SIP problems that we called161

SGD-SIP: given an initial guess f0, for each step i, we compute, following Eq. (4), an unbiased162

estimator ui for the gradient of the loss function. Next, we update an accumulated functional163

parameter by taking a stochastic gradient step in the direction of ui with step size αi. In the last164

step, we average all the accumulated gradient steps in the same spirit as Polyak and Juditsky [1992].165

The choice of the step size needs to satisfy two criteria:
∑n

i=1 αi sublinear in n, and nαn → ∞ as166

n→ +∞. We formally justify those desired properties in Theorem 4.5.167

Algorithm 1: SGD-SIP
input : sample {xi,yi}ni=1, operator A, initial guess f0
output : f̂n
ĝ0 = f0;
for 1 ≤ i ≤ n do

Compute ui(w) = Φ(xi;w)(A[ĝi−1](xi)− yi);
ĝi = ĝi−1 − αiui;

end
Set f̂n = 1

n

∑n
i=1 ĝi;

168

Algorithm 1 uses only one sample at a time in order to estimate the gradient of the true risk function.169

In order to preserve this property, we make the number of iterations equal to the sample size; it cannot170

be larger. This connects with the stopping rules in iterative algorithms in IP.171

Algorithm 1 has a limitation common to many approaches to Inverse Problems: one cannot hope to172

compute ui for every possible wi and some discretization of the operator A is needed, see Kaipio173

and Somersalo [2007]. Since the SGD-SIP algorithm only computes the stochastic gradient in the174

points of discretization, it risks overfitting the data and provides non-smooth estimators. Next, we175

motivate Algorithm 2 in order to overcome the discretization problem by leveraging machine learning176

methods.177

Consider that the space W was discretized in a grid of size nw. In order to fully estimate the function178

f̂n(w) for every w ∈ W, we consider a hypothesis class H and, in each step, we fit a function ĥ⋆i on179

the stochastic gradient ui in the discretized grid of W. Note that in this case, F will be given by the180

linear span of the class H. Each of these functions h⋆i can be seen as a base-learner in the same spirit181

of Boosting estimators, widely used in standard regression problem in the context of SIP Mason et al.182

[1999], Friedman [2001]. Next we present our algorithm ML-SGD.183

Algorithm 2: ML-SGD
input : sample {xi,yi}ni=1, discretization {wj}nz

j=1 of W, operator A, initial guess f0
output : f̂n
ĝ0 = f0;
for 1 ≤ i ≤ n do

for 1 ≤ j ≤ nw do
Compute ui(wj) = Φ(xi;wj)(A[ĝi−1](xi)− yi);

end
h⋆i ∈ argminh∈H

∑nz

j=1(ui(wj)− h(wj))
2;

ĝi = ĝi−1 − αih
⋆
i ;

end
Set f̂n = 1

n

∑n
i=1 ĝi;

184

The goal of ML-SGD is twofold. First, it allows us to interpolate the function h⋆j to points w185

not used in the discretization grid. Second, the ML procedure smooths the noise in each gradient186

step calculation leading to smoother approximations that helps avoiding over-fitting. We show in187

Section 5 and in the supplementary material the benefits of such an approximation when estimating188

the functional parameter f◦ in both simulated and empirical examples.189
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4.3 Main Result190

Our main result is a finite sample bound for the expected excess risk of Algorithm 1. The result also191

extends to Algorithm 2 in the case where the base learner are also unbiased estimators.192

Theorem 4.5. Under Assumption 4.1 and if the kernel Φ satisfies C = supx∈X ∥Φ(x, ·)∥2 < +∞2,193

we have the following performance guarantee for Algorithm 1:194

E
[
RA(f̂n)− inf

f∈F
RA(f)

]
≤ D2

2nαn
+
M(A,F)

n

n∑
i=1

αi,

where M(A,F) = C(E[|Y|2] + ∥A∥2D2) <∞.195

The proof of the theorem is provided in the supplementary material. Theorem 4.5 implies that if196

we pick the decreasing sequence {αi}ni=1 so that nαn → ∞ (αn cannot decrease too fast) but fast197

enough so that 1
n

∑n
i=1 αi → 0, then we get the convergence result. For instance, one could take198

αi = η/
√
i for some fixed number η normally taken to be in (0, 1). In this case, the excess risk199

decreases in expectation with rate O(1/
√
n).200

Theorem 4.5 also implies that the excess risk converges to zero in probability. For αi = η/
√
i it is

straightforward to check that

lim sup
n→+∞

P
(
RA(f̂n)− inf

f∈F
RA(f) > 0

)
= 0.

Finite sample bounds with high probability can also be provided under stronger assumptions about201

the stochastic gradients. See for instance Nemirovski et al. [2009].202

5 Functional Linear Regression: numerical results203

In this section, we provide two applications of the Functional Linear Regression problem. We first204

demonstrate the performance of both algorithms in simulated data and next we provide an example205

for generalized linear models, when predicting the presence or not of Multiple Sclerosis (MS) after206

receiving as input a tract profile of corpus callosum (CCA) obtained by Diffusion Tensor Imaging.207

As we have seen in Section 3, the operator in the FLR case is given by208

A[f ](x) =

∫ T

0

f(s)x(s)ds. (5)

Remember that in this example we are denoting w by s. Hence209

⟨A[f ], g⟩L2(X) = E[A[f ](X)g(X)]

= E

[∫ T

0

f(s)X(s)ds g(X)

]

=

∫ T

0

f(s)E [X(s) g(X)] ds = ⟨f,A∗[g]⟩L2(W)

where A∗ : L2(X) −→ L2(W) is given by

A∗[g](s) = E [X(s) g(X)] .

Therefore, we have Φ(x; s) = x(s), and using the squared loss, we find, as in Eq. (4),

ui(s) = xi(s)(A[ĝi−1](xi)− yi).

2This assumption is satisfied for all the examples analyzed in this paper.
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Figure 1: Example of cumulative credits for six different addresses across 501 data points. In red,
addresses associated with criminal activity, in blue, addresses associated with noncriminal activities.

5.1 Synthetic Data210

We will consider the simulation study presented in González-Manteiga and Martínez-Calvo [2011].211

Specifically, we set W = [0, 1], f◦(z) = sin(4πz), and X simulated accordingly a Brownian motion212

in [0, 1]. We also consider a noise-signal ratio of 0.2. We generate 100 samples of X and Y with213

the integral defining the operator A approximated by a finite sum of 1000 points in [0, 1]. For the214

observed data used in the algorithm procedure, we consider a coarser grid where and each functional215

sample is observed at only 100 equally-spaced times. For the ML-SGD algorithm, we used smoothing216

splines as base learners. We compared the results with a Functional Penalized Linear Regression217

(FPLR) with B-splines and cross-validation to select the number of basis expansion. In order to fit the218

PFLR model, we used the package refund Goldsmith et al. [2021] available in R. In the supplementary219

material we can see the estimated observation A[f̂n](xi) against the true values A[f◦](xi) using both220

the SGD-SIP and the ML-SGD algorithm essentially recovers the true function, with a noisier fit for221

the SGD-SIP. The benchmark algorithms also recovers the true function. We refer the reader to the222

supplementary material for more details about the simulation.223

5.2 Real Data Application224

Next we consider a classification problem in the FLR setting. The data set contains 3000 examples of
bitcoin wallets (address) and the respective cumulative credit in each wallet. Each address contain
501 equally spaced observations from April 2011 and April 2017. For each address, we also have
a category describing the category of the address. In Table 5.2 we present a summary of the data.
We refer the reader to the supplementary material for more information about the data set used
that we make available online. Here we use the cumulative credit curve at each point in time as
the explanatory variables X ∈ X = L2([0, 1]) and Y ∈ {−1, 1} as the predicted outcome for the
indicator variable that the category is darknet (addresses associated with ilegal activities). We propose
the following model with a the log-likelihood of the negative binomial as the loss function:

log
P (Y = 1|X)

P (Y = −1|X)
=

∫ T

0

f(s)X(s)ds.

category obs mean_credit_begin mean_credit_end
1 Darknet Marketplace 1512 234.41 1264.86
2 Exchanges 379 673.19 14026.14
3 Gambling 390 86.83 2369.12
4 Pools 374 1211.11 15334.20
5 Services/others 345 242.39 4094.89

Table 1: Summary information for the bitcoin wallet observations.

In Figure 1 we have the cumulative credit for 3 legal and 3 illegal accounts. We compare the SGD-SIP225

and ML-SGD algorithm with PFLR methods. For the ML-SGD algorithm, we use two types of base226
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Figure 2: Fitted curves for each of the methods described in Section 5.2.

learner, regression trees and cubic splines. The step sizes are taken to be equal of the form O(1/
√
i),227

where i = 1, · · · , n is the current step of the algorithm and n is the total number of steps/sample. For228

the PFLR algorithm, we use cubic splines with different degrees of freedom and quadratic penalty229

term. We highlight that those choices of splines and penalty term are widely used in the literature.230

In Table 5.2 we provide 3-fold cross validation for the accuracy and kappa metrics. The SGD-SIP231

Algorithm achieved the best average performance in terms of accuracy. The same performance is232

achieved by the Functional PLR with cubic splines with number of knots equal to 30 and penalization233

for the derivative of the estimate. The ML-SGD algorithm with smooth splines with 30 degrees of234

freedom also achieved similar performance with a smoother estimator. In Figure 2 we show the final235

function fit for each of the methods listed in Table 5.2. We refer the reader to the supplementary236

material for results under different choices of step size, number of knots and base functions for the237

PFLR model, other metrics and confusion matrices. In order to fit the PFLR mode, we used the238

package refund Goldsmith et al. [2021] available in R.239

fold_1 fold_2 fold_3 avg_accuracy
ML-SGD-spline(k = 20) 0.78 0.79 0.78 0.79
ML-SGD-spline(k = 10) 0.74 0.74 0.70 0.73

ML-SGD-tree(depth = 20) 0.79 0.78 0.77 0.78
SGD-SIP 0.80 0.80 0.80 0.80

FPLR(k = 10) 0.75 0.74 0.72 0.74
FPLR(k = 20) 0.82 0.79 0.80 0.80
Table 2: Results for three fold cross-validation.

6 Conclusion240

In this work, we provided a novel numerical method to solve SIP based on stochastic gradients241

with theoretical guarantees for the excess risk. Moreover, we have shown how one can improve242

algorithmic performance by estimating base-learners for each stochastic gradient in the same spirit243

as boosting algorithms. Our “framework" can be applied in a variety of settings ranging from244

deconvolution problems to FLR problems and others. We demonstrate the performance of our method245

with numerical studies and also with a real world application data and comparing with widely used246

techniques in the FLR setting.247
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A Functional Gradient for the Deconvolution Problem357

Remember that the operator A is given by358

A[f ](x) =

∫
W
k(x−w)f(w)dµ(w). (6)

Hence,359

⟨A[f ], g⟩L2(X) = E[A[f ](X)g(X)]

= E
[(∫

W
k(X−w)f(w)dµ(w)

)
g(X)

]
=

∫
W
E[k(X−w)g(X)]f(w)dµ(w)

= ⟨f,A∗[g]⟩L2(W),

where
A∗[g](w) = E[k(X−w)g(X)].

Therefore, we have Φ(x;w) = k(x−w), and using the squared loss, we find, as in Eq. (4),

ui(w) = k(xi −w)(A[ĝi−1](xi)− yi).

We highlight here the need to use each observation only once in order to compute the stochastic360

gradient so we can have precisely n steps for the SGD-SIP/ML-SGD algorithm. In this case, the361

samples can be used to provide unbiased estimators for the gradient of the risk function under the362

populational distribution.363

B Numerical Studies: Synthetic Data364

In this section we present the numerical studies of our proposed algorithms with standard benchmarks365

from the literature. We studied both the Functional Linear Regression problem and the Deconvolution366

problem. We remind the reader that the same framework can also be used to solve different types of367

inverse problems under a statistical framework, such as ODEs and PDEs.368

B.1 Functional Linear Regression369

Recall 5 where for the FLR problem our goal is to recover f◦ when we have access to observations of
the form

Y = A[f◦](X) + ϵ,

where the operator A is given by370

A[f ](x) =

∫ T

0

f(s)x(s)ds. (7)

Recall the data generating process described in 5.1. We set W = [0, 1], f◦(z) = sin(4πz), and X371

simulated accordingly a Brownian motion in [0, 1]. We also consider a noise-signal ratio of 0.2. We372

generate 3000 samples of X and Y with the integral defining the operator A approximated by a finite373

sum of 1000 points in [0, 1]. For the observed data used in the algorithm procedure, we consider a374

coarser grid where and each functional sample is observed at only 100 equally-spaced times. For the375

ML-SGD algorithm, we used smoothing splines as base learners. We compare our algorithm with376

the Landweber method, which is a Gradient Descent version for deterministic Inverse Problems and377

Functional Penalized Linear Regression (FPLR). For the ML-SGD,SGD and Landweber method, the378

step sizes were taken fixed to be (100/
√

(n)) (which satisfy the requirements discussed after 4.5).379

Table 3: MSE results for three fold cross-validation.
fold_1 fold_2 fold_3

ML-SGD-spline(k = 20, eta = 1.5) 1.8E-05 1.6E-05 1.5E-05
ML-SGD-spline(k = 20, eta = 1) 2.8E-05 3.0E-05 2.3E-05

ML-SGD-tree(depth = 10) 1.5E-03 1.7E-03 1.3E-03
SGD 1.6E-03 1.6E-03 1.1E-03

Landweber 1.6E-03 1.6E-03 1.1E-03
FPLR(k = 5) 9.3E-03 9.5E-03 9.5E-03

FPLR(k = 10) 9.3E-03 9.5E-03 9.5E-03
FPLR(k = 15) 9.3E-03 9.5E-03 9.5E-03

In ?? and ?? we present the Mean Absolute Error and Mean Square Error for out-of-sample predictions380

of the outcome Y using three-folds cross valudation. In ?? we have an example of a plot for the381

ML-SGD method with smoothing splines with 15 degrees of freedom. We also added an estimator for382

the SGD algorithm and FPLR with 15 knots. All the procedures essentially recovers the true f◦ with a383

slightly worse (and noiser) estimator for the SGD.384
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Table 4: MAE results for three fold cross-validation.
fold_1 fold_2 fold_3

ML-SGD-spline(k = 20, eta = 1.5) 3.4E-03 3.2E-03 3.1E-03
ML-SGD-spline(k = 20, eta = 1) 4.2E-03 4.4E-03 3.9E-03

ML-SGD-tree(depth = 10) 3.1E-02 3.3E-02 2.8E-02
SGD 3.2E-02 3.2E-02 2.6E-02

Landweber 3.2E-02 3.2E-02 2.6E-02
FPLR(k = 5) 7.7E-02 7.8E-02 7.8E-02

FPLR(k = 10) 7.7E-02 7.8E-02 7.8E-02
FPLR(k = 15) 7.7E-02 7.8E-02 7.8E-02

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Z

V
al

ue FPCR
ML_SGD
SGD

Figure 3: Functional parameter estimated with SGD-SIP, ML-SGD, FPLR and the respective true
function.

B.2 Deconvolution385

For the deconvolution problem we examine the following numerical exercise. We take two choices of386

functional parameters for Eq. (6), as a peak function:387

f(z) = e−w2

. (8)

We consider the kernel to be given by

k(z) = 1{z≥0}

and the following parameters for the data generating process. First we discretize the space W =388

[−10, 10] with increments h = 0.01. We use the same for the space X = [−10, 10]. Next, we use389

the discretized space to generate the true values A[f ] where we approximate the integral by a finite390

sum. The second step is to generate the random observations. For that, we consider a coarser grid391

for X, with grid hobs = 0.1, i.e. 10 times less information than the simulation used to generate the392

true observations. This reproduces the fact that in practice one cannot hope to observe the functional393

data over all points. Moreover, when computing the operator A in our algorithm, we again consider a394

coarser grid for W, with grid hobs = 0.1. We then add iid noise terms N(0, 2) to the observations395

A[f ] collected from the coarse grid. For the ML-SGD algorithm (Algorithm 2), we used smooth396

splines with 5 degrees of freedom as H in order to estimate the stochastic gradients. We compare our397

algorithms with the well-known landweber iteration, which resambles the standard Gradient Descent398

algorithm when ignoring noise and using all the samples available in all the iterations. We start with399

f0(z) = 0 in all the algorithms.400

In Figure 4 we can see that ML-SGD outputs a smooth estimator for the functional parameter f◦ while401

the other two methods tends to overfit the data. The situation is worse for the Landweber method,402

which requires a better understanding in when stopping the procedure due to the reuse of all the data403

available in every iteration.404
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Figure 4: Deconvolution: COmparison with Landweber. True values are shown as the black points.

C Proof of Theorem 4.5405

Proof. First, it is straightforward to check that RA is convex in F : if f, g ∈ F and λ ∈ [0, 1], then406

RA(λf + (1− λ)g) = E[ℓ(Y, A[λf + (1− λ)g](X))]

= E[ℓ(Y, λA[f ](X) + (1− λ)A[g](X))]

≤ E[λℓ(Y, A[f ](X))] + E[(1− λ)ℓ(Y, A[g](X))]

= λRA(f) + (1− λ)RA(g).

For simplicity of notation we will denote the norm and inner product in L2(W) by ∥ · ∥ and ⟨·, ·⟩.407

Moreover, we assume d = 1. The multivariate case follows similarly.408

By the Algorithm 1 procedure, we have that409

1

2
∥ĝi − f◦∥2 =

1

2
∥ĝi−1 − αiui − f◦∥2

=
1

2
∥ĝi−1 − f◦∥2 − αi⟨ui, ĝi−1 − f◦⟩+ α2

i

2
∥ui∥2

=
1

2
∥ĝi−1 − f◦∥2 − αi⟨ui −∇RA(ĝi−1), ĝi−1 − f◦⟩+ α2

i

2
∥ui∥2 − αi⟨∇RA(ĝi−1), ĝi−1 − f◦⟩

≤ 1

2
∥ĝi−1 − f◦∥2 − αi⟨ui −∇RA(ĝi−1), ĝi−1 − f◦⟩+ α2

i

2
∥ui∥2 − αi(RA(ĝi−1)−RA(f

◦)),

where the last inequality follows from convexity of the loss function (Assumption 2). Rearranging
terms we get

RA(ĝi−1)−RA(f
◦) ≤ 1

2αi

(
∥ĝi−1 − f◦∥2 − ∥ĝi − f◦∥

)
+
αi

2
∥ui∥2−⟨ui−∇RA(ĝi−1), ĝi−1−f◦⟩.

Summing over i leads to410

n∑
i=1

RA(ĝi−1)−RA(f
◦) ≤

n∑
i=1

1

2αi

(
∥ĝi−1 − f◦∥2 − ∥ĝi − f◦∥2

)
+

n∑
i=1

αi

2
∥ui∥2

−
n∑

i=1

⟨ui −∇RA(ĝi−1), ĝi−1 − f◦⟩.
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For the first term, by Assumption 5, we find411

n∑
i=1

1

2αi

(
∥ĝi−1 − f◦∥2 − ∥ĝi − f◦∥2

)
=

n∑
i=2

(
1

2αi
− 1

2αi−1

)
∥ĝi−1 − f◦∥2

+
1

2α1
∥ĝ0 − f◦∥2 − 1

2αn
∥ĝn − f◦∥2

≤
n∑

i=2

(
1

2αi
− 1

2αi−1

)
D2 +

1

2α1
D2 =

D2

2αn
,

since ĝi ∈ F for all i = 1, . . . , n.412

To bound the second term, notice that413

∥ui∥2 = ∥Φ(xi, ·)(yi −A[ĝi−1](xi))∥2 = ∥Φ(xi, ·)∥2 · |yi −A[ĝi−1](xi)|2

≤ 2∥Φ(xi, ·)∥2 · (|yi|2 + |A[ĝi−1](xi)|2).

Hence, if we take C = supx∈X ∥Φ(x, ·)∥2 < +∞, we find414

E[∥ui∥2] ≤ 2CE[(|Y|2 + |A[ĝi−1](X)|2)] = 2C(E[|Y|2] + ∥A[ĝi−1∥2L2(X))

≤ 2C(E[|Y|2] + ∥A∥2∥ĝi−1∥2L2(X)) ≤ 2C(E[|Y|2] + ∥A∥2D2).

Finally, for the third term, note that, after taking expectation, the tower property and the fact that ui is415

an unbiased estimator of the gradient of RA (see Eq. (4)) give that416

E[⟨ui −∇RA(ĝi−1), ĝi−1 − f◦⟩] =
∫
W
E[(ui(w)−∇RA(ĝi−1)(w))(ĝi−1(w)− f◦(w))]dµ(w)

=

∫
W
E[E[(ui(w)−∇RA(ĝi−1)(w))(ĝi−1(w)− f◦(w)) | Di−1]]dµ(w)

=

∫
W
E[(E[ui(w) | Di−1]−∇RA(ĝi−1)(w))(ĝi−1(w)− f◦(w))]dµ(w)

=

∫
W
E[(E(X,Y)[Φ(X,w)(A[ĝi−1](X)−Y)]−∇RA(ĝi−1)(w))(ĝi−1(w)− f◦(w))]dµ(w)

=

∫
W
E[(∇RA(ĝi−1)(w)−∇RA(ĝi−1)(w))(ĝi−1(w)− f◦(w))]dµ(w) = 0,

where Di−1 denotes the σ-algebra generated by the data {xk,yk}i−1
k=1 and E(X,Y) is the expectation417

only with respect to (X,Y).418

Again, by convexity of the risk function, RA(f̂n) ≤ 1
n

∑n
i=1 RA(ĝi). Therefore,

E
[
RA(f̂n)−RA(f

◦)
]
≤ D2

2nαn
+

1

2n

n∑
i=1

αiE[∥ui∥2] ≤
D2

2nαn
+
C(E[|Y|2] + ∥A∥2D2)

n

n∑
i=1

αi,

and the theorem is proved.419

D Dataset420

A link for a github webpage with the data will be provided. The link is omitted at the moment to421

not reveal the authors identity.422
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