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Appendix contains more detailed explanations about datasets (A) and the experimental setup (B)1

for both pre-training and downstream tasks. We also cover linear evaluation results compared to2

state-of-the-art (C) and an ablation study on the input parameters (D).3

A Datasets4

A.1 Pre-training5

Following [1, 13], we use HowTo100M [12] and AudioSet [7] to pre-train VATT. The former contains6

1.2M unique videos, each providing multiple clips with audio and narration scripts resulting in 136M7

video-audio-text triplets in total. The narration scripts are extracted from speech audio using an8

off-the-shelf ASR. We use a subset of HowTo100M to comply with Youtube’s policies, which results9

in having almost 1M unique videos and less than 100M clips. AudioSet consists of 10-second clips10

sampled from two million videos from YouTube. The dataset contains a variety of audio events11

with their corresponding video without any narration, so we do not have any text input from this12

dataset. We do not use any labels from the datasets. We uniformly sample clips from these datasets; a13

mini-batch in the pre-training contains samples from both datasets. In order to fill in the empty text14

in AudioSet, we feed a sequence of zeros to the text Transformer and exclude those samples from the15

MIL-NCE loss.16

A.2 Downstream17

We evaluate the pre-trained VATT on a set of diverse, representative downstream tasks to test different18

aspects of the learned representations.19

Video action recognition: We evaluate the visual representations on UCF101 [21] (101 classes,20

13,320 videos), HMDB51 [11] (51 classes, 6,766 videos), Kinetics-400 [3] (400 classes, 234,58421

videos), Kinetics-600 [4] (600 classes, 366,016 videos), and Moments in Time [15] (339 classes,22

791,297 videos). Since UCF101 and HMDB51 are small datasets compared to the size of our model,23

we freeze the vision backbone and use its outputs to train a linear classifier. We use the split #1 results24

of the two datasets as a reference in our design exploration. For Kinetics-400, Kinetics-600, and25

Moments in Time, we fine-tune our vision backbone initialized from the pre-trained checkpoint.26

Audio event classification: We use ESC50 [17] (50 classes, 2000 audio clips) and AudioSet [7]27

(527 classes, ∼2M audio clips) to evaluate our audio Transformer on audio event classification. We28

use ESC50 to train a linear classifier on top of the frozen audio Transformer. We use the split #129

results of this dataset as a reference in our design exploration. We also use AudioSet to fine-tune our30

audio backbone initialized from the pre-trained checkpoint.31
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Zero-shot video retrieval: We evaluate the quality of our video-text common space representations32

by zero-shot text-to-video retrieval on two of the most established datasets in this area: YouCook2 [24]33

and MSR-VTT [22] with 3.1k and 1k video-text pairs, respectively. We follow the same evaluation34

pipeline described in [1] and report the Recall at 10 (R@10).35

Image classification: Although there exists a domain gap between images and the video datasets36

used for pre-training VATT, we test the learned vision Transformer in the image domain. We fine-tune37

the last checkpoint of the vision Transformer on ImageNet [5] with no modification to our architecture38

or the tokenization pipeline. We will elaborate on this in the sequel.39

B Experimental Setup40

B.1 Inputs41

During pre-training, we sample 32 frames at 10 fps for both pre-training datasets. For these frames,42

we randomly crop a temporally consistent spatial region whose relative area is in the range of [0.08,43

1] and its aspect ratio in [0.5, 2]. These crops are then resized to 224× 224, followed by a horizontal44

flip and color augmentation. The color augmentation follows [1] and randomizes brightness (max45

delta = 32/255), saturation (max delta = 0.4), contrast (max delta=0.4), and hue (max delta=0.2). We46

clip values to ensure the RGB is in [0, 1]. The audio waveforms are sampled in sync with the video47

frames at 48kHz. Both video and audio inputs are normalized between [-1, 1] for numerical stability.48

We use patch sizes of 4× 16× 16 and 128 for video and raw waveform tokenization, respectively.49

We use one-hot vectors to encode text sequences with the vocabulary size of 216, which is the same50

as word2vec [14]. The resulting sequence retains a maximum of 16 words by either clipping or51

padding. We use DropToken with a drop rate of 50% during pre-training. For video fine-tuning and52

evaluation, 32 frames with a temporal stride of 2 are sampled at 25 fps (2.56 seconds) with a crop53

size of 320 × 320 (with similar video augmentation during pre-training), and we do not drop any54

tokens. We do not change the input size for audio and text during evaluation.55

B.2 Network setup in VATT56

We use the same Transformer architecture described in the main paper with various sizes shown57

in Table 1. We use the Medium model for our modality-agnostic variant (VATT-MA). For the58

experiments with modality-specific Transformers, we use the Small and Base models for the text59

and audio modalities, respectively, while varying the model sizes for the video modality. This60

results in 3 variants for the modality-specific video-audio-text backbones: Base-Base-Small (BBS),61

Medium-Base-Small (MBS), and Large-Base-Small (LBS).

Model Layers Hidden Size MLP Size Heads Params

Small 6 512 2048 8 20.9 M
Base 12 768 3072 12 87.9 M
Medium 12 1024 4096 16 155.0 M
Large 24 1024 4096 16 306.1 M

Table 1: Details of the Transformer architectures in VATT.

62

B.3 Projection heads and contrastive losses63

We use dva = 512 and dvt = 256 for the projection to the common spaces Sva and Svt, respectively.64

We normalize the vectors before calculating the NCE and MIL-NCE objectives and use the tempera-65

ture of τ = 0.07 and the weight of λ = 1 in the loss defined in the paper. We choose these values66

following the previously established practice [1]; we may achieve better results by varying these67

hyper-parameters.68
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B.4 Pre-training setup69

We pre-train VATT from scratch using Adam [8] with an initial learning rate of 1e-4, 10k warmup70

steps, 500k steps in total, a batch size of 2048, and a quarter-period cosine schedule to anneal the71

learning rate from 1e-4 to 5e-5. In the exploration experiments, we use a batch size of 512 while72

keeping the rest of the training parameters the same. Our pipeline is implemented in Tensorflow73

(v2.4), and our models are trained for 3 days using 256 TPUs (v3).74

B.5 Video fine-tuning setup75

For video action recognition, we use the SGD with a momentum of 0.9 and an initial learning rate of76

0.005, 2.5k warmup steps, a batch size of 64, 100k steps in total, and a half-period cosine schedule77

to anneal the learning rate to 0. We use label smoothing with smoothing factor α = 0.1. The video78

frame resolution is 320 × 320, which results in an increase in the number of positional encoding79

weights. This increase is due to the fact that, in the pre-train time, we have 8+14+14 positional80

encoding buckets, while 8+20+20 positional buckets are required to completely encode 320/1681

horizontal and 320/16 vertical locations in fine-tune. To generate the new positional embeddings, we82

create a new set of positional encoding buckets by bi-cubic interpolation from the original buckets.83

After this step, we fine-tune the entire network, including the positional encoding buckets, end-to-end.84

We tried fixed positional embeddings (solely based on interpolation for the missing locations) and did85

not observe significant improvements. We uniformly sample 4 clips to cover the entire 10 seconds86

of the video and apply a standard 3-crop evaluation following [6]. We average the logits across the87

resulting 12 views before having the final class predictions.88

B.6 Audio fine-tuning setup89

For audio event classification, we use the SGD with a momentum of 0.9, an initial learning rate of90

0.2, 5k warmup steps, a batch size of 1024, 50k steps in total, and a half-period cosine schedule to91

anneal the learning rate to 0. We observe that increasing the effective receptive field improves the92

overall performance. We suggest that this might be due to the fact that the AudioSet annotations93

are multi-label and each event might occur in different temporal positions. Hence, we employ the94

duration of 6.4s with 24kHz sampling rate (153.6k total input samples). Similar to [9], we use95

mixup [23] on input-label (x-y) pairs in a mini-batch as below:96

x = αx1 + (1− α)x2, y = αy1 + (1− α)y2,

where the input-label pairs are randomly sampled from a mini-batch, and the mixing rate α is sampled97

from a Beta(5, 5) distribution. We also perform data balancing by penalizing the loss value of a98

sample with the inverse of the per-batch number of repetitive labels it carries. This is crucial for99

avoiding over-fitting since AudioSet has a long-tailed distribution, and a few dominant classes may100

disrupt the training [9].101

B.7 Image fine-tuning setup102

We finetune the pre-trained VATT on ImageNet for 50 epochs with 384× 384 input resolution, 512103

batch size, SGD with momentum of 0.9, cosine learning rate decay with an initial learning rate of104

8e-2, and label smoothing of 0.1. No weight decay is used.105

B.8 Linear evaluation setup106

We use a linear classifier with fixed backbones across all datasets and tasks. We observe that using107

matrix factorization on the classifier weight [19] leads to a more stable result across experiments. More108

specifically, we use a factorized weight C = UV ∈ Rd×c, where U ∈ Rd×n and V ∈ Rn×c are109

learnable weights. During training this classifier, we randomly choose a subset of the n components110

in U and V , hence leading to a low-rank classifier weight, C. The classifier weight, C, is trained111

using the Adam optimizer with a learning rate of 5e-4, a batch size of 64, a total of 50k training steps,112

and a sampling rate of 10% on its n = 128 components.113
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B.9 Zero-shot retrieval setup114

For zero-shot text-to-video retrieval, we use the 1k split of MSR-VTT and the entire test split of115

YouCook2 as the pool for retrieval. We use 224× 224 central crops for 32 frames with a temporal116

stride of 2 sampled at 25 fps. Since each input clip covers 2.56 seconds, and the full clip length is 10117

seconds, we average the embeddings over 4 uniformly sampled clips before calculating the similarity118

with a text query’s embedding. We `2-normalize each vector to assure that a dot product results in the119

cosine similarity.120

C Linear evaluation on frozen VATT121

We also test VATT’s ability to generalize to other datasets when the entire backbone is frozen. In122

this setting, we focus on the video and audio modalities and train a linear classifier on the outputs123

of the frozen backbones. In addition to the low-rank classifier (LRC) described in Section B, we124

also report the results of a SVM classifier following the same pipeline as [1]. Table 2 shows the125

performance of our model on three datasets. We observe that VATT does not outperform the best126

CNN counterparts in [1], and achieves comparable numbers to other baselines. This could suggest127

that VATT’s backbones learn less-linearly-separable feature, especially given that the contrastive128

estimation head includes non-linear projections.129

METHOD UCF101 HMDB51 ESC50

MIL-NCE [13] 83.4 54.8 -
AVTS [10] - - 82.3
XDC [2] - - 84.8
ELo [18] - 64.5 -
AVID [20] - - 89.2
GDT [16] - - 88.5
MMV [1] 91.8 67.1 88.9

VATT-Medium + SVM 89.2 63.3 82.5
VATT-Medium + LRC 89.6 65.2 84.7

VATT-MA-Medium + LRC 84.4 63.1 81.2

Table 2: Linear evaluation results for video action recognition on UCF101 and HMDB51 and audio
event classification on ESC50. MA refers to the modality-agnostic backbone.

D Ablation study on input parameters130

Since VATT takes raw multimodal signals as inputs, the choice of input size and how they are patched131

has a significant impact on the final performance. First, we alter the frame crop size and the number132

of sampled frames from each video clip while keeping the patch size fixed to 5× 16× 16. Table 3133

shows that using a small frame crop size and a larger number of frames hurts the video-related results,134

but it does not significantly change the audio classification numbers.135

Frame Size Patch Size UCF HMDB YC2 MSRVTT ESC

32×224×224 4×16×16 87.8 67.7 27.53 17.99 87
32×200×200 5×16×16 87.16 67.08 23.98 17.84 86.25
32×224×224 5×16×16 87.74 67.6 27.47 17.96 87
64×224×224 5×16×16 86.57 63.09 18.52 12.5 86.25

32×224×224 8×16×16 86.52 65.64 23.43 16.14 84
32×224×224 8×32×32 82.68 60.73 15.27 13.79 87

Table 3: Effect of video frame and patch size on downstream results.

Then, we keep the best frame size (32× 224× 224) and vary the video patch size. We find going136

beyond 4× 16× 16 along either the time or spatial dimensions is not helpful. We avoid patches that137

are smaller than 4× 16× 16 because of the significantly increaseed wall clock time in experiments.138
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Finally, we compare different audio patch sizes and perform an experiment using spectrograms, as139

opposed to the raw waveforms, as audio input. The goal is to see how the raw waveforms compare to140

the handcrafted spectrograms. We use the MEL spectrogram with 80 bins, the STFT length of 42141

ms, and the STFT step of 21 ms following a similar setup in [1]. Tables 4 summarize the results, in142

which we observe that the patch size of 128 gives rise to the best waveform-based results, and using143

spectrogram does not lead to any conclusive improvement. The experiment with the spectrograms144

demonstrates that VATT is able to learn semantic representations from raw audios. To the best of our145

knowledge, this is the first time that raw audio waveforms are used for multimodal self-supervised146

learning.147

Input Patch Size UCF HMDB YC2 MSRVTT ESC

Waveform 128 88.14 68.13 25.72 17.31 87.75
Waveform 256 87.74 66.1 24.19 16.55 83.75
Waveform 512 87.21 67.34 26.11 16.91 82.5
Waveform 1024 86.41 66.36 24.46 16.38 82.5

Spectrogram 16 × 5 88.3 67.52 26.62 16.86 88

Table 4: Effect of the audio input type and patch size on downstream results.
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