
Errata

The original manuscript contained some typographical errors. None affect the substance of the claims:

E.1 On lines 222, 223, and 235, the word “maximizer” should be replaced by “minimizer” instead.

E.2 On line 247, the signature “Q :H⇥X! [�kT, kT]” should read “Q : H⇥X!R” instead.

E.3 On line 334, for LSTMs, “ELU activations” should be replaced by “tanh activations” instead.

E.4 Definition 2 and Proposition 2 erroneously omitted the constant Z�. See the correction in green:

Definition 2 (Structured Classification) Recall the ⇡✓-induced distribution p✓(⌧) :=
Q

t ⇡✓(xt|ht).
Denote with p̃� the un-normalized energy-based model such that p̃�(⌧) := exp(

P
t f�(ht, xt)), and

let Z� be folded into � as a learnable parameter. Define the structured classifier d✓,� : T ! [0, 1]:

d✓,�(⌧) :=

1
Z�

p̃�(⌧)

1
Z�

p̃�(⌧) + p✓(⌧)
(10)

Proposition 3 (Global Optimality) Let f� 2 RH⇥X , and let p✓ 2 �(T) be any distribution satisfy-
ing positivity: ps(⌧) > 0) p✓(⌧) > 0 (this does not require ⇡✓ be optimal for f�). Then Lenergy(�; ✓)
is globally minimized at F�(·)� logZ� = log ps(·), whence p� is self-normalized with unit integral.

E.5 The conclusion of Proposition 5 is missing a constant factor of �T . See the correction in green:

Proposition 5 (Gradient Equality) Let �k be the value taken by � after the k-th gradient update,
and let ✓⇤k be the associated minimizer for Lpolicy(✓;�k). Then r�Lenergy(�; ✓

⇤

k) = �T
2 r�L(✓⇤k,�).

That is, at ✓⇤k the energy gradient (of Equation 11) recovers the original gradient (from Equation 7).

A Proofs of Propositions666

For Lemmas 1 and 2, we first introduce some additional quantities to enable more compact notation; in667

particular, we adopt the value-function terminology from imitation learning. The following definitions668

are standard and immediate from the mapping given by Corollary 6, but are explicitly stated here for669

completeness. Recall that fs : H⇥ X ! [�k, k] for some finite k. At any state ht, define the “value670

function” to be the (forward-looking) expected sum of future quantities fs(hu, xu) for u = t, ..., T .671

Specifically, let V ⇡✓
s,t (h) : H! [�kT, kT] and Q⇡✓

s,t(h, x) : H⇥X ! [�kT, kT] be given as follows:672

V ⇡✓
s,t (h) := E⌧⇠p✓ [

PT
u=tfs(hu, xu)|ht = h]

Q⇡✓
s,t(h, x) := E⌧⇠p✓ [

PT
u=tfs(hu, xu)|ht = h, xt = x]

(13)

where the notation for both V ⇡✓
s,t and Q⇡✓

s,t is explicit as to their dependence on the policy ⇡✓ being673

followed, the source s under consideration, and the time t—unlike in typical imitation learning, we674

operate in a non-stationary (and non-Markovian) setting. For Lemma 1, we require an additional result:675

Lemma 7 (Expected Quality Difference) �F̄s(✓) = TE h⇠µs
x⇠⇡s(·|h)

Q⇡✓
s,t(h, x)�TE h⇠µs

x⇠⇡✓(·|h)
Q⇡✓

s,t(h, x).676

Proof. From Definition 2,677

�F̄s(✓) = E⌧⇠ps

P
t fs(ht, xt)� E⌧⇠p✓

P
t fs(ht, xt) (14)

= E⌧⇠ps

P
t(fs(ht, xt) + V ⇡✓

s,t (ht)� V ⇡✓
s,t (ht))� E⌧⇠p✓

P
t fs(ht, xt) (15)

= E⌧⇠ps

P
t(fs(ht, xt) + V ⇡✓

s,t+1(ht+1)� V ⇡✓
s,t (ht)) (16)

= E⌧⇠ps

P
t(Q

⇡✓
s,t(ht, xt)� V ⇡✓

s,t (ht)) (17)
= TEh⇠µs,x⇠⇡s(·|h)(Q

⇡✓
s,t(h, x)� V ⇡✓

s,t (h)) (18)

where the third line telescopes terms and uses the fact V ⇡
s,T+1(h) = 0. This derivation can be inter-678

preted as a non-stationary, non-Markovian analogue of the “performance difference” result in [99]. ⇤679

Lemma 1 Let maxf2RH⇥X

�
E h⇠µs

x⇠⇡s(·|h)
f(h, x)�E h⇠µs

x⇠⇡✓(·|h)
f(h, x)

�
 ✏. Then �F̄s(✓) 2 O(T 2✏).680

16

Proof. From Lemma 7,681

�F̄s(✓) = TEh⇠µs,x⇠⇡s(·|h)Q
⇡✓
s,t(h, x)� TEh⇠µs,x⇠⇡✓(·|h)Q

⇡✓
s,t(h) (19)

= TEh⇠µs [Ex⇠⇡s(·|h)Q
⇡✓
s,t(h, x)� Ex⇠⇡✓(·|h)Q

⇡✓
s,t(h, x)] (20)

 maxf2[�kT,kT]H⇥X TEh⇠µs [Ex⇠⇡s(·|h)f(h, x)� Ex⇠⇡✓(·|h)f(h, x)] (21)
 maxf2RH⇥X TEh⇠µs [Ex⇠⇡s(·|h)Tf(h, x)� Ex⇠⇡✓(·|h)Tf(h, x)] (22)

 T 2✏ (23)

where the final inequality applies the assumption from the lemma. For a similar derivation, note that682

this can be interpreted as a non-Markovian version of the “off-policy upper bound” result in [100]. ⇤683

Lemma 2 Let maxf2RH⇥X

�
E h⇠µs

x⇠⇡s(·|h)
f(h, x) � E h⇠µ✓

x⇠⇡✓(·|h)
f(h, x)

�
 ✏. Then �F̄s(✓) 2 O(T ✏).684

Proof. From Definition 1,685

�F̄s(✓) = E⌧⇠ps

P
t fs(ht, xt)� E⌧⇠p✓

P
t fs(ht, xt) (24)

= TEh⇠µs,⇡s(·|h)fs(h, x)� TEh⇠µ✓,⇡✓(·|h)fs(h, x) (25)
 maxf2[�k,k]H⇥X (TEh⇠µs,⇡s(·|h)f(h, x)� TEh⇠µ✓,⇡✓(·|h)f(h, x)) (26)
 maxf2RH⇥X (TEh⇠µs,⇡s(·|h)f(h, x)� TEh⇠µ✓,⇡✓(·|h)f(h, x)) (27)
 T ✏ (28)

where the final inequality applies the assumption from the lemma. Likewise for imitation learning,686

this derivation can be viewed as a non-Markovian analogue of the “reward upper bound” in [100]. ⇤687

For Propositions 3 and 4, we use the fact that training the structured classifier (Definition 2) using the688

energy loss (Equation 11) amounts to a specific form of (sequence-wise) noise-contrastive estimation,689

and where the “noise” p✓ employed happens to be adaptively trained via the policy loss (Equation 12):690

Proposition 3 (Global Optimality) Let f� 2 RH⇥X , and let p✓ 2 �(T) be any distribution satisfy-691

ing positivity: ps(⌧) > 0) p✓(⌧) > 0 (this does not require ⇡✓ be optimal for f�). Then Lenergy(�; ✓)692

is globally minimized at F�(·)� logZ� = log ps(·), whence p� is self-normalized with unit integral.693

Proof. Briefly, a noise-contrastive estimator [75] operates as follows: Suppose we have some data694

y 2 Y distributed as pdata(y). Consider that we wish to learn a model distribution pmodel, as follows:695

pmodel(y; a, b) := p̃model(y; a) exp(b) (29)

parameterized by a and b, where we emphasize that the model is not necessarily normalized as b is696

simply a learnable parameter. Also denote any noise distribution that can be sampled and evaluated:697

pnoise(y; c) (30)

parameterized by c. Now, define a classifier d(· ; a, b, c) as follows, which we shall train to discriminate698

between pdata and pnoise—that is, given some y, to represent the (posterior) probability that it is real:699

d(y; a, b, c) := �(log pmodel(y; a, b)� log pnoise(y; c)) (31)

where � indicates the usual sigmoid function, i.e. �(u) := 1/(1 + exp(�u)) for any u 2 R. The700

noise contrastive estimator maximizes the likelihood of the parameters a, b in d given pdata and pnoise:701

Lclass(a, b; c) := �Ey⇠pdata log d(y; a, b, c)� Ey⇠pnoise log
�
1� d(y; a, b, c)

�
(32)

In this optimization problem, a basic result is that Lclass attains a minimum at log pmodel = log pdata702

and that there are no other minima if pnoise is chosen such that pdata(y) > 0) pnoise(y) > 0 holds:703

see the “nonparametric estimation” result in [50]. Now, let us consider the following correspondence:704

�
Y, pdata, p̃model(· ; a), b, pnoise(· ; c)

�
:=

�
T , ps, p̃�,� logZ�, p✓

�
(33)

In other words, let the underlying space be that of trajectories Y := T ; let the data distribution be705

pdata := ps; let the model distribution be given by the un-normalized energy model p̃model(· ; a) := p̃�706

17

and partition function b = � logZ�; and let the noise distribution be given by rollouts of the policy,707

pnoise(· ; c) := p✓. Then it is easy to see that the classifier and its loss function correspond as follows:708

d✓,�(·) = d(· ; a, b, c)

Lenergy(�; ✓) = Lclass(a, b; c)
(34)

But then the optimality result above directly maps to the statement that Lenergy is globally minimized709

at F�(·)� logZ� = log ps(·) assuming that the positivity condition ps(⌧) > 0) p✓(⌧) > 0 holds.710

Technicality: Note that here p̃� is constrained as F�(⌧) :=
P

t f�(ht, xt) instead of being arbitrarily711

parameterizable, but this does not affect realizability as we assumed that Fs(⌧) :=
P

t fs(ht, xt). ⇤712

Proposition 4 (Asymptotic Consistency) Let �⇤ denote the minimizer for Lenergy(�; ✓), and let �̂⇤M713

denote the minimizer for its finite-data approximation—that is, where the expectations over ps and714

p✓ are approximated by M samples. Then under some mild conditions, as M increases �̂⇤M
p
�! �⇤.715

Proof. Continuing the exposition above, let LM
class(a, b; c) indicate the finite-data approximation of716

Lclass(a, b; c)—that is, by using M samples to approximate the true expectations over pdata and pnoise:717

L
M
class(a, b; c) := � 1

M

PM
m=1 log d(y(m)

data ; a, b, c)� 1
M

PM
m=1 log

�
1� d(y(m)

noise; a, b, c)
�

(35)

where the samples are drawn as y(m)
data ⇠ pdata and y(m)

noise ⇠ pnoise. Consider the following conditions:718

1. positivity: pdata(y) > 0) pnoise(y) > 0;719

2. uniform convergence: supa,b |L
M
class(a, b; c)� Lclass(a, b; c)|

p
�! 0; and720

3. the following matrix is full-rank: I :=
R

g(y)g(y)>pdata(y)pnoise(y)/(pdata(y)+pnoise(y))dy,721

where g(y) := r(a,b) log pmodel(y; a, b)|(a⇤,b⇤) and a⇤, b⇤ denote the optimal values of the model.722

Note that (1) is same as before, and (2) and (3) are analogous to standard assumptions in maximum723

likelihood estimation. Let â⇤

M , b̂⇤M denote the minimizers for LM
class(a, b; c). Under the preceding724

conditions, another basic result is that (â⇤

M , b̂⇤M) converges in probability to (a⇤, b⇤) as M grows: see725

the “consistency” result in [50]. But continuing the correspondence from before, it is easy to see that726

L
M
energy(�; ✓) = L

M
class(a, b; c) (36)

where we similarly define L
M
energy(�; ✓) to be the finite-data approximation of Lenergy(�; ✓)—that is,727

by using M samples to approximate the true expectations over ps and p✓, and y(m)
s ⇠ ps and y(m)

✓ ⇠ p✓:728

L
M
energy(�; ✓) := �

1
M

PM
m=1 log d✓,�(⌧

(m)
s)� 1

M

PM
m=1 log

�
1� d✓,�(⌧

(m)
✓)

�
(37)

which directly maps the above convergence result to the statement that as M increases �̂⇤M
p
! �⇤. ⇤729

Proposition 5 (Gradient Equality) Let �k be the value taken by � after the k-th gradient update,730

and let ✓⇤k be the associated minimizer for Lpolicy(✓;�k). Then r�Lenergy(�; ✓⇤k) = �
T
2r�L(✓

⇤

k,�).731

That is, at ✓⇤k the energy gradient (of Equation 11) recovers the original gradient (from Equation 7).732

Proof. From Equation 11,733

r�Lenergy(�; ✓
⇤

k) = r�
�
� E⌧⇠ps log d✓⇤k,�(⌧)� E⌧⇠p✓⇤

k
log

�
1� d✓⇤k,�(⌧)

��
(38)

= r�
�
� E⌧⇠ps log

p�(⌧)

p�(⌧) + p✓⇤k (⌧)
� E⌧⇠p✓⇤

k
log

p✓⇤k (⌧)

p�(⌧) + p✓⇤k (⌧)

�
(39)

= � E⌧⇠psr�(log p�(⌧)� log(p�(⌧) + p✓⇤k(⌧))) + E⌧⇠p✓⇤
k
r� log(p�(⌧) + p✓⇤k(⌧)) (40)

= � E⌧⇠ps

⇥
r� log p�(⌧)�

r�p�(⌧)

p�(⌧) + p✓⇤k (⌧)

⇤
+ E⌧⇠p✓⇤

k

r�p�(⌧)

p�(⌧) + p✓⇤k (⌧)
(41)

= � E⌧⇠ps

⇥
r� log p�(⌧)�

p�(⌧)r� log p�(⌧)

p�(⌧) + p✓⇤k (⌧)

⇤
+ E⌧⇠p✓⇤

k

p�(⌧)r� log p�(⌧)

p�(⌧) + p✓⇤k (⌧)
(42)

= � E⌧⇠ps

⇥
r� log p�(⌧)�

1
2r� log p�(⌧)

⇤
+ 1

2E⌧⇠p✓⇤
k
r� log p�(⌧) (43)

18

= 1
2E⌧⇠p✓⇤

k
r� log p�(⌧)�

1
2E⌧⇠psr� log p�(⌧) (44)

= 1
2E⌧⇠p✓⇤

k
r�(log p̃�(⌧)� logZ�)�

1
2E⌧⇠psr�(log p̃�(⌧)� logZ�) (45)

= 1
2

�
E⌧⇠p✓⇤

k
r�

P
t f�(ht, xt)� E⌧⇠psr�

P
t f�(ht, xt)

�
(46)

= 1
2

�
TEh⇠µ✓⇤

k
,x⇠⇡✓⇤

k
(·|h)r�f�(h, x)� TEh⇠µs,x⇠⇡s(·|h)r�f�(h, x)

�
(47)

= �T
2r�L(✓

⇤

k,�) (48)

where the fourth and fifth lines repeatedly use the identity rzpz ⌘ pzrz log pz for any pz parame-734

terized by z, and the sixth line uses the fact that the current value of ✓ (i.e. ✓⇤k) is the minimizer for735

Lpolicy(✓;�) at the current value of � (i.e. �k), hence it must be the case that p✓ = p� at those values.736

Note that this assumes that p� is normalized; in practice this will be approximately true, for instance737

if we pre-train � beforehand, using a fixed ⇡✓ pre-trained by maximum likelihood (see Appendix B).738

In the more general case of any arbitrary un-normalized p�, we only know p✓⇤k = 1
K�

p� for some con-739

stant K�; then we recover a generalized “weighted” version of Equation 7. From the fifth line above,740

r�Lenergy(�; ✓
⇤

k) = �E⌧⇠ps

⇥
r� log p�(⌧)�

p�(⌧)r� log p�(⌧)

p�(⌧) + p✓⇤k (⌧)

⇤
+ E⌧⇠p✓⇤

k

p�(⌧)r� log p�(⌧)

p�(⌧) + p✓⇤k (⌧)
(49)

= �E⌧⇠ps

⇥
r� log p�(⌧)�

K✓
K✓+1r� log p�(⌧)

⇤
+ K✓

K✓+1E⌧⇠p✓⇤
k
r� log p�(⌧) (50)

= K✓
K✓+1E⌧⇠p✓⇤

k
r� log p�(⌧)�

1
K✓+1E⌧⇠psr� log p�(⌧) (51)

= K✓
K✓+1E⌧⇠p✓⇤

k
r�(log p̃�(⌧)� logZ�)�

1
K✓+1E⌧⇠psr�(log p̃�(⌧)� logZ�) (52)

= K✓
K✓+1E⌧⇠p✓⇤

k
r�

P
t f�(ht, xt)�

1
K✓+1E⌧⇠psr�

P
t f�(ht, xt) (53)

= TK✓
K✓+1Eh⇠µ✓⇤

k
,x⇠⇡✓⇤

k
(·|h)r�f�(h, x)� T

K✓+1Eh⇠µs,x⇠⇡s(·|h)r�f�(h, x) (54)

This “weighting” is intuitive: If p� is un-normalized such that K� > 1, the energy loss automatically741

places higher weights on negative samples h ⇠ µ✓⇤k , x ⇠ ⇡✓⇤k(·|h) to bring it down; conversely, if742

p� is un-normalized such that K� < 1, the energy loss places higher weights on positive samples743

h ⇠ µs, x ⇠ ⇡s(·|h) to bring it up. (If p� is normalized, then K� = 1 and the weights are equal). ⇤744

B Details on Algorithm745

Policy Optimization Recall the policy update (Equation 12); this corresponds to entropy-regularized746

reinforcement learning using f�(h, x) as transition-wise reward function. Here we give a brief review747

of entropy-regularized reinforcement learning [45–47] in our context, as well as the practical method748

we employ (i.e. soft actor-critic). First, we introduce some standard notation. At any state h, define the749

(soft) “value function” to be the (forward-looking) expected sum of future rewards f�(h, x) as well750

as entropies H(⇡(·|h)). Specifically, let V ⇡✓
� (h) and Q⇡✓

� (h, x) be given as follows (we omit explicit751

notation for t, as any influence of time is implicit through dependence on variable-length histories):752

V ⇡✓
� (h) := E⌧⇠p✓ [

PT
u=tf�(hu, xu) + H(⇡✓(·|hu))|ht = h]

Q⇡✓
� (h, x) := f�(h, x) + E⌧⇠p✓ [

PT
u=t+1f�(hu, xu) + H(⇡✓(·|hu))|ht = h, xt = x]

(55)

Let ⇡✓⇤ denote the optimal policy (i.e. that minimizes loss Lpolicy), and Q⇡✓⇤

� its corresponding value753

function. An elementary result is that the optimal policy assigns probabilities to x proportional to the754

exponentiated expected returns of energy and entropy terms of all trajectories that begin with (h, x):755

⇡✓⇤(x|h) =
exp(Q

⇡✓⇤

� (h, x))
R
X

exp(Q
⇡✓⇤

� (h, x))dx
(56)

Now, for any transition policy ⇡✓ (i.e. not necessarily optimal with respect to f�), the value function756

Q⇡✓
� is the unique fixed point of the following (soft) Bellman backup operator B⇡✓

� :RH⇥X
!RH⇥X :757

(B⇡✓
� Q)(h, x) := f�(h, x) + Ex0⇠⇡✓(·|h0)[Q(h0, x0)� log ⇡✓(x

0
|h0)] (57)

and hence—in theory—Q⇡✓
� may be computed iteratively by repeatedly applying the operator B⇡✓

�758

starting from any function Q 2 RH⇥X ; this is referred to as the (soft) “policy evaluation” procedure.759

19

Using Q⇡✓
� , we may then perform (soft) “policy improvement” to update the policy ⇡✓ towards the760

exponential of its value function, and is guaranteed to result in an improved policy (in terms of Q⇡✓
�):761

✓0 argmin✓ DKL

⇣
⇡✓0(·|h)

�� exp(Q⇡✓
� (h, ·))

R
X

exp(Q⇡✓
� (h, x))dx

⌘
(58)

for all h 2 H. In theory, then, finding the optimal policy can be approached by repeatedly applying762

the above policy evaluation and policy improvement steps starting from any initial policy ⇡✓; this is re-763

ferred to as (soft) “policy iteration”. However, in large continuous domains (such as H⇥X) doing this764

exactly is impossible, so we need to rely on function approximation for representing value functions.765

Practical Algorithm Precisely, the soft actor-critic approach is to introduce a function approximator766

to represent the value function (i.e. the “critic”) parameterized by , in addition to the policy itself (i.e.767

the “actor”) parameterized by ✓, and to alternate between optimizing both with stochastic gradient de-768

scent [53]. Specifically, the actor performs soft policy improvement steps as before, but now using Q :769

Lactor(✓;�,) := Eh⇠B Ex⇠⇡✓(·|h)[log ⇡✓(x|h)�Q (h, x)] (59)

where B is a replay buffer of samples generated by ⇡✓ (that is, instead of enumerating all h 2 H, we770

are relying on h ⇠ B). Note that the normalizing constant is dropped as it does not contribute to the771

gradient. The critic is trained to represent the value function by minimizing squared residual errors:772

Lcritic(;�) := Eh,x⇠B(Q (h, x)�Qtarget
 (h, x))2 (60)

with (bootstrapped) targets:773

Qtarget
 (h, x) := f�(h, x) + Ex0⇠⇡✓(·|h0)[Q (h

0, x0)� log ⇡✓(x
0
|h0)] (61)

Together, this provides a way to minimize the policy loss Lpolicy (Equation 12). The complete Time-774

GCI algorithm simply alternates between this and minimizing the energy loss Lenergy (Equation 11):775

Lenergy(�; ✓) := �E⌧⇠ps log d✓,�(⌧)�E⌧⇠p✓ log
�
1�d✓,�(⌧)

�
(62)

Hence in Algorithm 1, gradient updates for the energy, policy, and critic are interleaved with policy776

rollouts. Note that several standard approximations are being used. First, the replay buffer provides777

samples h ⇠ B for optimizing the policy (in both actor and critic updates), instead of covering the778

entire space H (which is uncountable). Second, in the energy loss negative samples ⌧ ⇠ B are used in779

lieu of sampling fresh from p✓ at every iteration (this is known to give the benefit of providing more780

diverse negative samples). Finally, also per usual samples from the dataset ⌧ ⇠ D is used in lieu of ps.781

Practical Considerations First, in practice we must use a vector representation of histories h 2 H;782

here we use RNNs to encode histories into fixed-length vectors, which can then be treated as regular783

“states” in continuous space. Like our choice of policy optimization, this is also an arbitrary design784

choice—we could just as conceivably have used e.g. temporal convolutions, attention mechanisms, etc.785

Second, interleaving multiple gradient updates of different networks requires some care: In soft actor-786

critic itself, policy updates have to be sufficiently small, and/or critic updates have to be sufficiently787

frequent, to prevent divergence. The situation is analogous when interleaving this with energy gradient788

updates as well: Both actor and energy updates have to be sufficiently small, and/or critic updates have789

to be sufficiently frequent. That said, the energy updates are indeed decoupled from the policy updates:790

Regardless of how quickly/slowly the policy is learning, the energy can learn on their negative samples.791

In practice, we perform multiple critic updates for every update of the policy and energy functions.792

Finally, note that in large continuous domains such as H⇥X it is necessary to pre-train the networks793

beforehand such that optimization of the complete algorithm actually converges: On the one hand, the794

policy side requires a sufficiently good energy signal to actually make progress, and on the other hand,795

the energy side requires a sufficiently good policy providing challenging enough negative samples to796

actually make progress. Pre-training networks separately is standard in actor-critic methods (see for797

instance [35]); here we take a similar approach but with the addition of the energy update step as well:798

1. Policy-only: ⇡✓ is pre-trained using maximum likelihood;799

2. Energy-only: f� is pre-trained using Lenergy(�; ✓), holding ⇡✓ fixed;800

3. Critic-only: Q is pre-trained using Lcritic(;�), holding ⇡✓, f� fixed; and finally,801

4. All: f�, ⇡✓, and Q are trained on Lenergy(�; ✓), Lactor(✓;�,), and Lcritic(;�) (cf. Algorithm 1).802

20

C Details on Experiments803

Benchmark Algorithms Except where components are standardized (see below), we use the publicly804

available source code when constructing the benchmark algorithms; references are in the following:805

• T-Forcing [5]: (straightforward MLE with ground-truth conditioning)806

• P-Forcing [10]: https://github.com/anirudh9119/LM_GANS807

• C-RNN-GAN [18]: https://github.com/olofmogren/c-rnn-gan808

• COT-GAN [20]: https://github.com/tianlinxu312/cot-gan809

• RC-GAN [21]: https://github.com/ratschlab/RGAN810

• TimeGAN [12]: https://github.com/jsyoon0823/TimeGAN811

Dataset Sources We use the original source code for preprocessing sines and UCI datasets from812

TimeGAN (https://github.com/jsyoon0823/TimeGAN). For MIMIC-III, we extract 52 clinical813

covariates including vital signs (e.g. respiratory rate, heart rate, O2 saturation) and lab tests (e.g. glu-814

cose, hemoglobin, white blood cell count) aggregated every hour during their ICU stay up to 24 hours.815

• Sines [5]: https://github.com/jsyoon0823/TimeGAN816

• Energy [10]: archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction817

• Gas [18]: archive.ics.uci.edu/ml/datasets/Gas+sensor+array+temperature+modulation818

• Metro [20]: archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume819

• MIMIC-III [21]: https://physionet.org/content/mimiciii/1.4/820

Encoder Networks For fair comparison, analogous network components across all benchmarks share821

the same architecture. In particular, all components taking ht as input require an encoder network to822

learn to construct fixed-length vector representations of variable-length histories (x1, ..., x + t). To823

do so, these components use an LSTM network with a hidden layer of size 32 and tanh activations to824

compute hidden states. These are not shared: separate components have their own encoder networks.825

Task-Specific Networks For task-specific networks (i.e. mapping from ht and/or xt to task-specific826

output variables, we use a fully-connected network with two hidden layers of size 32 and ELU827

activations. Where both ht and xt serve as inputs, their vectors are concatenated. For instance,828

the energy network for TimeGCI contains one such network for computing f�, as well as trainable829

parameter for Z�. The same applies to the mapping from ht and/or xt to implicit generator outputs (as830

in C-RNN-GAN and RC-GAN), black-box discriminator output (as in P-Forcing, C-RNN-GAN, and831

RC-GAN), transition policy (as in T-Forcing and P-Forcing), and critic values (for TimeGCI). Note832

that TimeGAN and COT-GAN contain additional novelties (e.g. the embedding and recovery networks833

for generating/discriminating in latent space); these are kept as we use their original architectures.834

Replay Buffer The replay buffer B has a fixed size; once filled, new samples stored replace the oldest835

still in the buffer. Sampling from the buffer operates as follows: In updating the energy, we require836

⌧ ⇠ B (that is, in lieu of p✓, cf. Equation 62); this is done by randomly sampling a batch of trajectories837

from the replay buffer, without replacement. In policy the actor, we require h ⇠ B (cf. Equation838

59); this is done by first randomly sampling a batch of trajectories from the replay buffer, and then839

randomly sampling a cutoff time t to obtain a batch of subsequences ht. Finally, in updating the critic,840

we require h, x ⇠ B (cf. Equation 60); this is similarly done by first randomly sampling a batch of841

trajectories from the replay buffer, then randomly sampling a cutoff t to yield a batch of (ht, xt) pairs.842

Hyperparameters Throughout all experiments, we use the following hyperparameters for TimeGCI843

(and all benchmarks, wherever applicable). We use a replay buffer of size |B| = 10, 000 trajectories.844

The hidden dimension of both encoder and task-specific networks is set at 32. The entropy regular-845

ization (in the actor/policy loss) is set at ↵ = 0.2. The policy network is pre-trained for 2,000 steps,846

energy for 4,000, and critic for 20,000. The complete algorithm is trained for up to 50,000 steps with847

checkpointing and early stopping (triggerable every 1,000 steps, if performance does not improve).848

The learning rates are set as follows: For energy networks �energy = 0.0001, for policy networks849

�policy = 0.0001 (same for implicit generator networks), for critic networks �critic = 0.001, and for850

black-box discriminator networks �discrim = 0.001. (Note that the critic/discriminator networks are851

updated more greedily). Per usual in soft actor-critic algorithms, we also employ a lagged target critic852

network (i.e. used for bootstrapping); this is updated using polyak averaging at a rate of ⌧ = 0.005.853

Performance Metrics We use the original source code for computing the TSTR metric (i.e. Predic-854

tive Score), publicly available at: https://github.com/jsyoon0823/TimeGAN; this is straightfor-855

wardly modified to compute similar scores for horizons of lengths three (+3 Steps Ahead) and five (+5856

Steps Ahead). Likewise, we use the original source code for computing the cross-correlation score857

(x-Corr. Score), this is also publicly available at: https://github.com/tianlinxu312/cot-gan.858

21

https://github.com/anirudh9119/LM_GANS
https://github.com/olofmogren/c-rnn-gan
https://github.com/tianlinxu312/cot-gan
https://github.com/ratschlab/RGAN
https://github.com/jsyoon0823/TimeGAN
https://github.com/jsyoon0823/TimeGAN
https://github.com/jsyoon0823/TimeGAN
archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
archive.ics.uci.edu/ml/datasets/Gas+sensor+array+temperature+modulation
archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume
https://physionet.org/content/mimiciii/1.4/
https://github.com/jsyoon0823/TimeGAN
https://github.com/tianlinxu312/cot-gan

References859

[1] Jason Walonoski, Mark Kramer, Joseph Nichols, Andre Quina, Chris Moesel, Dylan Hall,860

Carlton Duffett, Kudakwashe Dube, Thomas Gallagher, and Scott McLachlan. Synthea: An861

approach, method, and software mechanism for generating synthetic patients and the synthetic862

electronic health care record. Journal of the American Medical Informatics Association, 2018.863

[2] Anna L Buczak, Steven Babin, and Linda Moniz. Data-driven approach for creating synthetic864

electronic medical records. BMC medical informatics and decision making, 2010.865

[3] Saloni Dash, Andrew Yale, Isabelle Guyon, and Kristin P Bennett. Medical time-series data866

generation using generative adversarial networks. International Conference on Artificial867

Intelligence in Medicine (AIME), 2020.868

[4] Qingsong Wen, Liang Sun, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time869

series data augmentation for deep learning: A survey. arXiv preprint, 2020.870

[5] Ronald J Williams and David Zipser. A learning algorithm for continually running fully871

recurrent neural networks. Neural Computation, 1989.872

[6] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level873

training with recurrent neural networks. International Conference on Learning Representations874

(ICLR), 2016.875

[7] Yoshua Bengio and Paolo Frasconi. An input output hmm architecture. Advances in neural876

information processing systems (NeurIPS), 1995.877

[8] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.878

International Conference on Machine Learning (ICML), 2009.879

[9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François880

Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural881

networks. Journal of Machine Learning Research (JMLR), 2016.882

[10] Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua883

Bengio. Professor forcing: A new algorithm for training recurrent networks. Advances in884

Neural Information Processing Systems (NeurIPS), 2016.885

[11] Ferenc Huszár. How (not) to train your generative model: Scheduled sampling, likelihood,886

adversary? International Conference on Learning Representations (ICLR), 2016.887

[12] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial888

networks. Advances in Neural Information Processing Systems (NeurIPS), 2019.889

[13] Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre Côté, Nan Rosemary Ke, and Yoshua890

Bengio. Z-forcing: Training stochastic recurrent networks. Advances in Neural Information891

Processing Systems (NeurIPS), 2017.892

[14] Ahmed M Alaa, Alex J Chan, and Mihaela van der Schaar. Generative time-series modeling893

with fourier flows. International Conference on Learning Representations (ICLR), 2020.894

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil895

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in896

neural information processing systems, pages 2672–2680, 2014.897

[16] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint,898

2014.899

[17] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn900

divergences. International Conference on Artificial Intelligence and Statistics (AISTATS),901

2018.902

[18] Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training.903

Advances in Neural Information Processing Systems (NeurIPS), 2016.904

[19] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Generating high-fidelity,905

synthetic time series datasets with doppelganger. ACM Internet Measurement Conference906

(IMC), 2019.907

22

[20] Tianlin Xu, Li K Wenliang, Michael Munn, and Beatrice Acciaio. Cot-gan: Generating908

sequential data via causal optimal transport. Advances in Neural Information Processing909

Systems (NeurIPS), 2020.910

[21] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series911

generation with recurrent conditional gans. arXiv preprint, 2017.912

[22] Giorgia Ramponi, Pavlos Protopapas, Marco Brambilla, and Ryan Janssen. T-cgan: Condi-913

tional generative adversarial network for data augmentation in noisy time series with irregular914

sampling. arXiv preprint, 2018.915

[23] Luca Simonetto. Generating spiking time series with generative adversarial networks: an916

application on banking transactions. 2018.917

[24] Moustafa Alzantot, Supriyo Chakraborty, and Mani Srivastava. Sensegen: A deep learning918

architecture for synthetic sensor data generation. In 2017 IEEE International Conference on919

Pervasive Computing and Communications Workshops (PerCom Workshops), pages 188–193.920

IEEE, 2017.921

[25] Shota Haradal, Hideaki Hayashi, and Seiichi Uchida. Biosignal data augmentation based on922

generative adversarial networks. In 2018 40th Annual International Conference of the IEEE923

Engineering in Medicine and Biology Society (EMBC), pages 368–371. IEEE, 2018.924

[26] Chi Zhang, Sanmukh R Kuppannagari, Rajgopal Kannan, and Viktor K Prasanna. Generative925

adversarial network for synthetic time series data generation in smart grids. In 2018 IEEE926

International Conference on Communications, Control, and Computing Technologies for Smart927

Grids (SmartGridComm), pages 1–6. IEEE, 2018.928

[27] Ahmed M Alaa, Boris van Breugel, Evgeny Saveliev, and Mihaela van der Schaar. How929

faithful is your synthetic data? sample-level metrics for evaluating and auditing generative930

models. International Conference on Machine Learning (ICML), 2021.931

[28] Aditya Grover, Jiaming Song, Alekh Agarwal, Kenneth Tran, Ashish Kapoor, Eric Horvitz, and932

Stefano Ermon. Bias correction of learned generative models using likelihood-free importance933

weighting. Advances in Neural Information Processing Systems (NeurIPS), 2019.934

[29] Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. Interna-935

tional Conference on Learning Representations (ICLR), 2019.936

[30] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Donahue, and937

Adam Roberts. Gansynth: Adversarial neural audio synthesis. International Conference on938

Learning Representations (ICLR), 2019.939

[31] Weili Nie, Nina Narodytska, and Ankit Patel. Relgan: Relational generative adversarial940

networks for text generation. International Conference on Learning Representations (ICLR),941

2019.942

[32] Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent943

Charlin. Language gans falling short. International Conference on Learning Representations944

(ICLR), 2020.945

[33] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets with946

singular value clipping. IEEE International Conference on Computer Vision (ICCV), 2017.947

[34] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing948

motion and content for video generation. IEEE Conference on Computer Vision and Pattern949

Recognition (CVPR), 2018.950

[35] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau,951

Aaron Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction.952

International Conference on Learning Representations (ICLR), 2017.953

[36] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. Advances in Neural Information954

Processing Systems (NeurIPS), 2000.955

[37] Peter D Grünwald, A Philip Dawid, et al. Game theory, maximum entropy, minimum discrep-956

ancy and robust bayesian decision theory. Annals of Statistics, 2004.957

23

[38] Farzan Farnia and David Tse. A minimax approach to supervised learning. Advances in Neural958

Information Processing Systems (NeurIPS), 2016.959

[39] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal960

entropy. Dissertation, Carnegie Mellon University, 2010.961

[40] Michael I Jordan. An introduction to probabilistic graphical models. 2003.962

[41] Taesup Kim and Yoshua Bengio. Deep directed generative models with energy-based probabil-963

ity estimation. International Conference on Learning Representations (ICLR), 2016.964

[42] Shuangfei Zhai, Yu Cheng, Rogerio Feris, and Zhongfei Zhang. Generative adversarial965

networks as variational training of energy based models. arXiv preprint, 2016.966

[43] Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron Courville. Cali-967

brating energy-based generative adversarial networks. International Conference on Learning968

Representations (ICLR), 2017.969

[44] Rithesh Kumar, Sherjil Ozair, Anirudh Goyal, Aaron Courville, and Yoshua Bengio. Maximum970

entropy generators for energy-based models. arXiv preprint, 2019.971

[45] Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft972

updates. Conference on Uncertainty in Artificial Intelligence (UAI), 2016.973

[46] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning974

with deep energy-based policies. International Conference on Machine Learning (ICML),975

2017.976

[47] Wenjie Shi, Shiji Song, and Cheng Wu. Soft policy gradient method for maximum entropy977

deep reinforcement learning. International Joint Conference on Artificial Intelligence (IJCAI),978

2019.979

[48] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,980

2018.981

[49] Josiah P Hanna and Peter Stone. Towards a data efficient off-policy policy gradient. AAAI982

Symposium on Data Efficient Reinforcement Learning (AAAI), 2018.983

[50] Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized984

statistical models, with applications to natural image statistics. Journal of Machine Learning985

Research (JMLR), 2012.986

[51] Ian J Goodfellow. On distinguishability criteria for estimating generative models. International987

Conference on Learning Representations (ICLR), 2015.988

[52] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning. MIT989

Press Cambridge, 2016.990

[53] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-991

policy maximum entropy deep reinforcement learning with a stochastic actor. International992

Conference on Machine Learning (ICML), 2018.993

[54] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning994

and structured prediction to no-regret online learning. International conference on artificial995

intelligence and statistics (AISTATS), 2011.996

[55] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, and Jan997

Peters. An algorithmic perspective on imitation learning. Foundations and Trends in Robotics,998

2018.999

[56] Alexandre Attia and Sharone Dayan. Global overview of imitation learning. arXiv preprint,1000

2018.1001

[57] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. International1002

conference on artificial intelligence and statistics (AISTATS), 2010.1003

[58] Umar Syed and Robert E Schapire. A reduction from apprenticeship learning to classification.1004

Advances in neural information processing systems (NeurIPS), 2010.1005

[59] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. Interna-1006

tional conference on Machine learning (ICML), 2000.1007

24

[60] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.1008

International conference on Machine learning (ICML), 2004.1009

[61] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy1010

inverse reinforcement learning. AAAI Conference on Artificial Intelligence (AAAI), 2008.1011

[62] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal1012

control via policy optimization. International conference on machine learning (ICML), 2016.1013

[63] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between1014

generative adversarial networks, inverse reinforcement learning, and energy-based models.1015

NeurIPS Workshop on Adversarial Training, 2016.1016

[64] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse1017

reinforcement learning. International Conference on Learning Representations (ICLR), 2018.1018

[65] Ahmed H Qureshi, Byron Boots, and Michael C Yip. Adversarial imitation via variational1019

inverse reinforcement learning. International Conference on Learning Representations (ICLR),1020

2019.1021

[66] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan1022

Tompson. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in1023

adversarial imitation. International Conference on Learning Representations (ICLR), 2019.1024

[67] Lionel Blondé and Alexandros Kalousis. Sample-efficient imitation learning via gans. Interna-1025

tional conference on artificial intelligence and statistics (AISTATS), 2019.1026

[68] Huan Xu and Shie Mannor. Distributionally robust markov decision processes. Mathematics1027

of Operations Research, 2012.1028

[69] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-1029

based learning. Predicting Structured Data, 2006.1030

[70] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative convnet.1031

International Conference on Machine Learning (ICML), 2016.1032

[71] Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models.1033

Advances in Neural Information Processing Systems (NeurIPS), 2019.1034

[72] Philip Bachman and Doina Precup. Data generation as sequential decision making. Advances1035

in Neural Information Processing Systems (NeurIPS), 2015.1036

[73] Arun Venkatraman, Martial Hebert, and J Bagnell. Improving multi-step prediction of learned1037

time series models. AAAI Conference on Artificial Intelligence (AAAI), 2015.1038

[74] Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K Reddy. Deep reinforcement1039

learning for sequence-to-sequence models. IEEE Transactions on Neural Networks and1040

Learning Systems (TNNLS), 2019.1041

[75] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation prin-1042

ciple for unnormalized statistical models. International Conference on Artificial Intelligence1043

and Statistics (AISTATS), 2010.1044

[76] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic1045

language models. International Conference on Machine Learning (ICML), 2012.1046

[77] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-1047

contrastive estimation. Advances in Neural Information Processing Systems (NeurIPS), 2013.1048

[78] Zhuang Ma and Michael Collins. Noise contrastive estimation and negative sampling for1049

conditional models: Consistency and statistical efficiency. Conference on Empirical Methods1050

in Natural Language Processing (EMNLP), 2018.1051

[79] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman1052

Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based neural1053

networks. Annual Meeting of the Association for Computational Linguistics (ACL), 2016.1054

[80] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial1055

nets with policy gradient. AAAI Conference on Artificial Intelligence (AAAI), 2017.1056

25

[81] Sidi Lu, Lantao Yu, Siyuan Feng, Yaoming Zhu, and Weinan Zhang. Cot: Cooperative training1057

for generative modeling of discrete data. International Conference on Machine Learning1058

(ICML), 2019.1059

[82] Haiyan Yin, Dingcheng Li, Xu Li, and Ping Li. Meta-cotgan: A meta cooperative training1060

paradigm for improving adversarial text generation. AAAI Conference on Artificial Intelligence1061

(AAAI), 2020.1062

[83] William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: better text generation via1063

filling in the_. International Conference on Learning Representations (ICLR), 2018.1064

[84] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation1065

via adversarial training with leaked information. AAAI Conference on Artificial Intelligence1066

(AAAI), 2018.1067

[85] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence1068

Carin. Adversarial feature matching for text generation. International Conference on Machine1069

Learning (ICML), 2017.1070

[86] Luis M Candanedo, Véronique Feldheim, and Dominique Deramaix. Data driven prediction1071

models of energy use of appliances in a low-energy house. Energy and buildings, 2017.1072

[87] Javier Burgués, Juan Manuel Jiménez-Soto, and Santiago Marco. Estimation of the limit1073

of detection in semiconductor gas sensors through linearized calibration models. Analytica1074

Chimica Acta, 2018.1075

[88] John Hogue. Hourly interstate 94 westbound traffic volume for mn dot atr station 301.1076

Minnesota Department of Transportation, 2018.1077

[89] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng, Mohammad1078

Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,1079

a freely accessible critical care database. Nature Scientific Data, 2016.1080

[90] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial1081

networks. https://github.com/jsyoon0823/TimeGAN, 2019.1082

[91] Tianlin Xu, Li K Wenliang, Michael Munn, and Beatrice Acciaio. Cot-gan: Generating se-1083

quential data via causal optimal transport. https://github.com/tianlinxu312/cot-gan,1084

2020.1085

[92] Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training.1086

https://github.com/olofmogren/c-rnn-gan, 2016.1087

[93] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series1088

generation with recurrent conditional gans. https://github.com/ratschlab/RGAN, 2017.1089

[94] Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua1090

Bengio. Professor forcing. https://github.com/anirudh9119/LM_GANS, 2016.1091

[95] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling1092

tabular data using conditional gan. Advances in Neural Information Processing Systems1093

(NeurIPS), 2019.1094

[96] Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and1095

Youngmin Kim. Data synthesis based on generative adversarial networks. International1096

Conference on Very Large Data Bases (VLDB), 2018.1097

[97] Mohammad Navid Fekri, Ananda Mohon Ghosh, and Katarina Grolinger. Generating energy1098

data for machine learning with recurrent generative adversarial networks. Energies, 2020.1099

[98] James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data1100

with differential privacy guarantees. International Conference on Learning Representations1101

(ICLR), 2019.1102

[99] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.1103

International Conference on Machine Learning (ICML), 2002.1104

[100] Gokul Swamy, Sanjiban Choudhury, Zhiwei Steven Wu, and J Andrew Bagnell. Of moments1105

and matching: Trade-offs and treatments in imitation learning. International Conference on1106

Machine Learning (ICML), 2021.1107

26

https://github.com/jsyoon0823/TimeGAN
https://github.com/tianlinxu312/cot-gan
https://github.com/olofmogren/c-rnn-gan
https://github.com/ratschlab/RGAN
https://github.com/anirudh9119/LM_GANS

	Introduction
	Synthetic Time Series
	Problem Setup
	Matching Local Moments
	Matching Global Moments

	Generating by Imitating
	Challenges of Learning
	Contrastive Imitation
	Optimization Algorithm

	Discussion
	Experiments
	Conclusion
	Proofs of Propositions
	Details on Algorithm
	Details on Experiments

