
Errata

The original manuscript contained some typographical errors. None affect the substance of the claims:

E.1 On lines 222, 223, and 235, the word “maximizer” should be replaced by “minimizer” instead.

E.2 On line 247, the signature “Q :H⇥X! [�kT, kT ]” should read “Q : H⇥X!R” instead.

E.3 On line 334, for LSTMs, “ELU activations” should be replaced by “tanh activations” instead.

E.4 Definition 2 and Proposition 2 erroneously omitted the constant Z�. See the correction in green:

Definition 2 (Structured Classification) Recall the ⇡✓-induced distribution p✓(⌧) :=
Q

t ⇡✓(xt|ht).
Denote with p̃� the un-normalized energy-based model such that p̃�(⌧) := exp(

P
t f�(ht, xt)), and

let Z� be folded into � as a learnable parameter. Define the structured classifier d✓,� : T ! [0, 1]:

d✓,�(⌧) :=

1
Z�

p̃�(⌧)

1
Z�

p̃�(⌧) + p✓(⌧)
(10)

Proposition 3 (Global Optimality) Let f� 2 RH⇥X , and let p✓ 2 �(T ) be any distribution satisfy-
ing positivity: ps(⌧) > 0 ) p✓(⌧) > 0 (this does not require ⇡✓ be optimal for f�). Then Lenergy(�; ✓)
is globally minimized at F�(·)� logZ� = log ps(·), whence p� is self-normalized with unit integral.

E.5 The conclusion of Proposition 5 is missing a constant factor of �T . See the correction in green:

Proposition 5 (Gradient Equality) Let �k be the value taken by � after the k-th gradient update,
and let ✓⇤k be the associated minimizer for Lpolicy(✓;�k). Then r�Lenergy(�; ✓

⇤

k) = �T
2 r�L(✓⇤k,�).

That is, at ✓⇤k the energy gradient (of Equation 11) recovers the original gradient (from Equation 7).

A Proofs of Propositions666

For Lemmas 1 and 2, we first introduce some additional quantities to enable more compact notation; in667

particular, we adopt the value-function terminology from imitation learning. The following definitions668

are standard and immediate from the mapping given by Corollary 6, but are explicitly stated here for669

completeness. Recall that fs : H⇥ X ! [�k, k] for some finite k. At any state ht, define the “value670

function” to be the (forward-looking) expected sum of future quantities fs(hu, xu) for u = t, ..., T .671

Specifically, let V ⇡✓
s,t (h) : H! [�kT, kT ] and Q⇡✓

s,t(h, x) : H⇥X ! [�kT, kT ] be given as follows:672

V ⇡✓
s,t (h) := E⌧⇠p✓ [

PT
u=tfs(hu, xu)|ht = h]

Q⇡✓
s,t(h, x) := E⌧⇠p✓ [

PT
u=tfs(hu, xu)|ht = h, xt = x]

(13)

where the notation for both V ⇡✓
s,t and Q⇡✓

s,t is explicit as to their dependence on the policy ⇡✓ being673

followed, the source s under consideration, and the time t—unlike in typical imitation learning, we674

operate in a non-stationary (and non-Markovian) setting. For Lemma 1, we require an additional result:675

Lemma 7 (Expected Quality Difference) �F̄s(✓) = TE h⇠µs
x⇠⇡s(·|h)

Q⇡✓
s,t(h, x)�TE h⇠µs

x⇠⇡✓(·|h)
Q⇡✓

s,t(h, x).676

Proof. From Definition 2,677

�F̄s(✓) = E⌧⇠ps

P
t fs(ht, xt)� E⌧⇠p✓

P
t fs(ht, xt) (14)

= E⌧⇠ps

P
t(fs(ht, xt) + V ⇡✓

s,t (ht)� V ⇡✓
s,t (ht))� E⌧⇠p✓

P
t fs(ht, xt) (15)

= E⌧⇠ps

P
t(fs(ht, xt) + V ⇡✓

s,t+1(ht+1)� V ⇡✓
s,t (ht)) (16)

= E⌧⇠ps

P
t(Q

⇡✓
s,t(ht, xt)� V ⇡✓

s,t (ht)) (17)
= TEh⇠µs,x⇠⇡s(·|h)(Q

⇡✓
s,t(h, x)� V ⇡✓

s,t (h)) (18)

where the third line telescopes terms and uses the fact V ⇡
s,T+1(h) = 0. This derivation can be inter-678

preted as a non-stationary, non-Markovian analogue of the “performance difference” result in [99]. ⇤679

Lemma 1 Let maxf2RH⇥X

�
E h⇠µs

x⇠⇡s(·|h)
f(h, x)�E h⇠µs

x⇠⇡✓(·|h)
f(h, x)

�
 ✏. Then �F̄s(✓) 2 O(T 2✏).680
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Proof. From Lemma 7,681

�F̄s(✓) = TEh⇠µs,x⇠⇡s(·|h)Q
⇡✓
s,t(h, x)� TEh⇠µs,x⇠⇡✓(·|h)Q

⇡✓
s,t(h) (19)

= TEh⇠µs [Ex⇠⇡s(·|h)Q
⇡✓
s,t(h, x)� Ex⇠⇡✓(·|h)Q

⇡✓
s,t(h, x)] (20)

 maxf2[�kT,kT ]H⇥X TEh⇠µs [Ex⇠⇡s(·|h)f(h, x)� Ex⇠⇡✓(·|h)f(h, x)] (21)
 maxf2RH⇥X TEh⇠µs [Ex⇠⇡s(·|h)Tf(h, x)� Ex⇠⇡✓(·|h)Tf(h, x)] (22)

 T 2✏ (23)

where the final inequality applies the assumption from the lemma. For a similar derivation, note that682

this can be interpreted as a non-Markovian version of the “off-policy upper bound” result in [100]. ⇤683

Lemma 2 Let maxf2RH⇥X

�
E h⇠µs

x⇠⇡s(·|h)
f(h, x) � E h⇠µ✓

x⇠⇡✓(·|h)
f(h, x)

�
 ✏. Then �F̄s(✓) 2 O(T ✏).684

Proof. From Definition 1,685

�F̄s(✓) = E⌧⇠ps

P
t fs(ht, xt)� E⌧⇠p✓

P
t fs(ht, xt) (24)

= TEh⇠µs,⇡s(·|h)fs(h, x)� TEh⇠µ✓,⇡✓(·|h)fs(h, x) (25)
 maxf2[�k,k]H⇥X (TEh⇠µs,⇡s(·|h)f(h, x)� TEh⇠µ✓,⇡✓(·|h)f(h, x)) (26)
 maxf2RH⇥X (TEh⇠µs,⇡s(·|h)f(h, x)� TEh⇠µ✓,⇡✓(·|h)f(h, x)) (27)
 T ✏ (28)

where the final inequality applies the assumption from the lemma. Likewise for imitation learning,686

this derivation can be viewed as a non-Markovian analogue of the “reward upper bound” in [100]. ⇤687

For Propositions 3 and 4, we use the fact that training the structured classifier (Definition 2) using the688

energy loss (Equation 11) amounts to a specific form of (sequence-wise) noise-contrastive estimation,689

and where the “noise” p✓ employed happens to be adaptively trained via the policy loss (Equation 12):690

Proposition 3 (Global Optimality) Let f� 2 RH⇥X , and let p✓ 2 �(T ) be any distribution satisfy-691

ing positivity: ps(⌧) > 0) p✓(⌧) > 0 (this does not require ⇡✓ be optimal for f�). Then Lenergy(�; ✓)692

is globally minimized at F�(·)� logZ� = log ps(·), whence p� is self-normalized with unit integral.693

Proof. Briefly, a noise-contrastive estimator [75] operates as follows: Suppose we have some data694

y 2 Y distributed as pdata(y). Consider that we wish to learn a model distribution pmodel, as follows:695

pmodel(y; a, b) := p̃model(y; a) exp(b) (29)

parameterized by a and b, where we emphasize that the model is not necessarily normalized as b is696

simply a learnable parameter. Also denote any noise distribution that can be sampled and evaluated:697

pnoise(y; c) (30)

parameterized by c. Now, define a classifier d(· ; a, b, c) as follows, which we shall train to discriminate698

between pdata and pnoise—that is, given some y, to represent the (posterior) probability that it is real:699

d(y; a, b, c) := �(log pmodel(y; a, b)� log pnoise(y; c)) (31)

where � indicates the usual sigmoid function, i.e. �(u) := 1/(1 + exp(�u)) for any u 2 R. The700

noise contrastive estimator maximizes the likelihood of the parameters a, b in d given pdata and pnoise:701

Lclass(a, b; c) := �Ey⇠pdata log d(y; a, b, c)� Ey⇠pnoise log
�
1� d(y; a, b, c)

�
(32)

In this optimization problem, a basic result is that Lclass attains a minimum at log pmodel = log pdata702

and that there are no other minima if pnoise is chosen such that pdata(y) > 0) pnoise(y) > 0 holds:703

see the “nonparametric estimation” result in [50]. Now, let us consider the following correspondence:704

�
Y, pdata, p̃model( · ; a), b, pnoise( · ; c)

�
:=

�
T , ps, p̃�,� logZ�, p✓

�
(33)

In other words, let the underlying space be that of trajectories Y := T ; let the data distribution be705

pdata := ps; let the model distribution be given by the un-normalized energy model p̃model( · ; a) := p̃�706
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and partition function b = � logZ�; and let the noise distribution be given by rollouts of the policy,707

pnoise( · ; c) := p✓. Then it is easy to see that the classifier and its loss function correspond as follows:708

d✓,�( ·) = d( · ; a, b, c)

Lenergy(�; ✓) = Lclass(a, b; c)
(34)

But then the optimality result above directly maps to the statement that Lenergy is globally minimized709

at F�(·)� logZ� = log ps(·) assuming that the positivity condition ps(⌧) > 0) p✓(⌧) > 0 holds.710

Technicality: Note that here p̃� is constrained as F�(⌧) :=
P

t f�(ht, xt) instead of being arbitrarily711

parameterizable, but this does not affect realizability as we assumed that Fs(⌧) :=
P

t fs(ht, xt). ⇤712

Proposition 4 (Asymptotic Consistency) Let �⇤ denote the minimizer for Lenergy(�; ✓), and let �̂⇤M713

denote the minimizer for its finite-data approximation—that is, where the expectations over ps and714

p✓ are approximated by M samples. Then under some mild conditions, as M increases �̂⇤M
p
�! �⇤.715

Proof. Continuing the exposition above, let LM
class(a, b; c) indicate the finite-data approximation of716

Lclass(a, b; c)—that is, by using M samples to approximate the true expectations over pdata and pnoise:717

L
M
class(a, b; c) := � 1

M

PM
m=1 log d(y(m)

data ; a, b, c)� 1
M

PM
m=1 log

�
1� d(y(m)

noise; a, b, c)
�

(35)

where the samples are drawn as y(m)
data ⇠ pdata and y(m)

noise ⇠ pnoise. Consider the following conditions:718

1. positivity: pdata(y) > 0) pnoise(y) > 0;719

2. uniform convergence: supa,b |L
M
class(a, b; c)� Lclass(a, b; c)|

p
�! 0; and720

3. the following matrix is full-rank: I :=
R

g(y)g(y)>pdata(y)pnoise(y)/(pdata(y)+pnoise(y))dy,721

where g(y) := r(a,b) log pmodel(y; a, b)|(a⇤,b⇤) and a⇤, b⇤ denote the optimal values of the model.722

Note that (1) is same as before, and (2) and (3) are analogous to standard assumptions in maximum723

likelihood estimation. Let â⇤

M , b̂⇤M denote the minimizers for LM
class(a, b; c). Under the preceding724

conditions, another basic result is that (â⇤

M , b̂⇤M ) converges in probability to (a⇤, b⇤) as M grows: see725

the “consistency” result in [50]. But continuing the correspondence from before, it is easy to see that726

L
M
energy(�; ✓) = L

M
class(a, b; c) (36)

where we similarly define L
M
energy(�; ✓) to be the finite-data approximation of Lenergy(�; ✓)—that is,727

by using M samples to approximate the true expectations over ps and p✓, and y(m)
s ⇠ ps and y(m)

✓ ⇠ p✓:728

L
M
energy(�; ✓) := �

1
M

PM
m=1 log d✓,�(⌧

(m)
s )� 1

M

PM
m=1 log

�
1� d✓,�(⌧

(m)
✓ )

�
(37)

which directly maps the above convergence result to the statement that as M increases �̂⇤M
p
! �⇤. ⇤729

Proposition 5 (Gradient Equality) Let �k be the value taken by � after the k-th gradient update,730

and let ✓⇤k be the associated minimizer for Lpolicy(✓;�k). Then r�Lenergy(�; ✓⇤k) = �
T
2r�L(✓

⇤

k,�).731

That is, at ✓⇤k the energy gradient (of Equation 11) recovers the original gradient (from Equation 7).732

Proof. From Equation 11,733

r�Lenergy(�; ✓
⇤

k) = r�
�
� E⌧⇠ps log d✓⇤k,�(⌧)� E⌧⇠p✓⇤

k
log

�
1� d✓⇤k,�(⌧)

��
(38)

= r�
�
� E⌧⇠ps log

p�(⌧)

p�(⌧) + p✓⇤k (⌧)
� E⌧⇠p✓⇤

k
log

p✓⇤k (⌧)

p�(⌧) + p✓⇤k (⌧)

�
(39)

= � E⌧⇠psr�(log p�(⌧)� log(p�(⌧) + p✓⇤k(⌧))) + E⌧⇠p✓⇤
k
r� log(p�(⌧) + p✓⇤k(⌧)) (40)

= � E⌧⇠ps

⇥
r� log p�(⌧)�

r�p�(⌧)

p�(⌧) + p✓⇤k (⌧)

⇤
+ E⌧⇠p✓⇤

k

r�p�(⌧)

p�(⌧) + p✓⇤k (⌧)
(41)

= � E⌧⇠ps

⇥
r� log p�(⌧)�

p�(⌧)r� log p�(⌧)

p�(⌧) + p✓⇤k (⌧)

⇤
+ E⌧⇠p✓⇤

k

p�(⌧)r� log p�(⌧)

p�(⌧) + p✓⇤k (⌧)
(42)

= � E⌧⇠ps

⇥
r� log p�(⌧)�

1
2r� log p�(⌧)

⇤
+ 1

2E⌧⇠p✓⇤
k
r� log p�(⌧) (43)
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= 1
2E⌧⇠p✓⇤

k
r� log p�(⌧)�

1
2E⌧⇠psr� log p�(⌧) (44)

= 1
2E⌧⇠p✓⇤

k
r�(log p̃�(⌧)� logZ�)�

1
2E⌧⇠psr�(log p̃�(⌧)� logZ�) (45)

= 1
2

�
E⌧⇠p✓⇤

k
r�

P
t f�(ht, xt)� E⌧⇠psr�

P
t f�(ht, xt)

�
(46)

= 1
2

�
TEh⇠µ✓⇤

k
,x⇠⇡✓⇤

k
(·|h)r�f�(h, x)� TEh⇠µs,x⇠⇡s(·|h)r�f�(h, x)

�
(47)

= �T
2r�L(✓

⇤

k,�) (48)

where the fourth and fifth lines repeatedly use the identity rzpz ⌘ pzrz log pz for any pz parame-734

terized by z, and the sixth line uses the fact that the current value of ✓ (i.e. ✓⇤k) is the minimizer for735

Lpolicy(✓;�) at the current value of � (i.e. �k), hence it must be the case that p✓ = p� at those values.736

Note that this assumes that p� is normalized; in practice this will be approximately true, for instance737

if we pre-train � beforehand, using a fixed ⇡✓ pre-trained by maximum likelihood (see Appendix B).738

In the more general case of any arbitrary un-normalized p�, we only know p✓⇤k = 1
K�

p� for some con-739

stant K�; then we recover a generalized “weighted” version of Equation 7. From the fifth line above,740

r�Lenergy(�; ✓
⇤

k) = �E⌧⇠ps

⇥
r� log p�(⌧)�

p�(⌧)r� log p�(⌧)

p�(⌧) + p✓⇤k (⌧)

⇤
+ E⌧⇠p✓⇤

k

p�(⌧)r� log p�(⌧)

p�(⌧) + p✓⇤k (⌧)
(49)

= �E⌧⇠ps

⇥
r� log p�(⌧)�

K✓
K✓+1r� log p�(⌧)

⇤
+ K✓

K✓+1E⌧⇠p✓⇤
k
r� log p�(⌧) (50)

= K✓
K✓+1E⌧⇠p✓⇤

k
r� log p�(⌧)�

1
K✓+1E⌧⇠psr� log p�(⌧) (51)

= K✓
K✓+1E⌧⇠p✓⇤

k
r�(log p̃�(⌧)� logZ�)�

1
K✓+1E⌧⇠psr�(log p̃�(⌧)� logZ�) (52)

= K✓
K✓+1E⌧⇠p✓⇤

k
r�

P
t f�(ht, xt)�

1
K✓+1E⌧⇠psr�

P
t f�(ht, xt) (53)

= TK✓
K✓+1Eh⇠µ✓⇤

k
,x⇠⇡✓⇤

k
(·|h)r�f�(h, x)� T

K✓+1Eh⇠µs,x⇠⇡s(·|h)r�f�(h, x) (54)

This “weighting” is intuitive: If p� is un-normalized such that K� > 1, the energy loss automatically741

places higher weights on negative samples h ⇠ µ✓⇤k , x ⇠ ⇡✓⇤k(·|h) to bring it down; conversely, if742

p� is un-normalized such that K� < 1, the energy loss places higher weights on positive samples743

h ⇠ µs, x ⇠ ⇡s(·|h) to bring it up. (If p� is normalized, then K� = 1 and the weights are equal). ⇤744

B Details on Algorithm745

Policy Optimization Recall the policy update (Equation 12); this corresponds to entropy-regularized746

reinforcement learning using f�(h, x) as transition-wise reward function. Here we give a brief review747

of entropy-regularized reinforcement learning [45–47] in our context, as well as the practical method748

we employ (i.e. soft actor-critic). First, we introduce some standard notation. At any state h, define the749

(soft) “value function” to be the (forward-looking) expected sum of future rewards f�(h, x) as well750

as entropies H(⇡(·|h)). Specifically, let V ⇡✓
� (h) and Q⇡✓

� (h, x) be given as follows (we omit explicit751

notation for t, as any influence of time is implicit through dependence on variable-length histories):752

V ⇡✓
� (h) := E⌧⇠p✓ [

PT
u=tf�(hu, xu) + H(⇡✓(·|hu))|ht = h]

Q⇡✓
� (h, x) := f�(h, x) + E⌧⇠p✓ [

PT
u=t+1f�(hu, xu) + H(⇡✓(·|hu))|ht = h, xt = x]

(55)

Let ⇡✓⇤ denote the optimal policy (i.e. that minimizes loss Lpolicy), and Q⇡✓⇤

� its corresponding value753

function. An elementary result is that the optimal policy assigns probabilities to x proportional to the754

exponentiated expected returns of energy and entropy terms of all trajectories that begin with (h, x):755

⇡✓⇤(x|h) =
exp(Q

⇡✓⇤

� (h, x))
R
X

exp(Q
⇡✓⇤

� (h, x))dx
(56)

Now, for any transition policy ⇡✓ (i.e. not necessarily optimal with respect to f�), the value function756

Q⇡✓
� is the unique fixed point of the following (soft) Bellman backup operator B⇡✓

� :RH⇥X
!RH⇥X :757

(B⇡✓
� Q)(h, x) := f�(h, x) + Ex0⇠⇡✓(·|h0)[Q(h0, x0)� log ⇡✓(x

0
|h0)] (57)

and hence—in theory—Q⇡✓
� may be computed iteratively by repeatedly applying the operator B⇡✓

�758

starting from any function Q 2 RH⇥X ; this is referred to as the (soft) “policy evaluation” procedure.759
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Using Q⇡✓
� , we may then perform (soft) “policy improvement” to update the policy ⇡✓ towards the760

exponential of its value function, and is guaranteed to result in an improved policy (in terms of Q⇡✓
� ):761

✓0  argmin✓ DKL

⇣
⇡✓0(·|h)

�� exp(Q⇡✓
� (h, ·))

R
X

exp(Q⇡✓
� (h, x))dx

⌘
(58)

for all h 2 H. In theory, then, finding the optimal policy can be approached by repeatedly applying762

the above policy evaluation and policy improvement steps starting from any initial policy ⇡✓; this is re-763

ferred to as (soft) “policy iteration”. However, in large continuous domains (such as H⇥X ) doing this764

exactly is impossible, so we need to rely on function approximation for representing value functions.765

Practical Algorithm Precisely, the soft actor-critic approach is to introduce a function approximator766

to represent the value function (i.e. the “critic”) parameterized by  , in addition to the policy itself (i.e.767

the “actor”) parameterized by ✓, and to alternate between optimizing both with stochastic gradient de-768

scent [53]. Specifically, the actor performs soft policy improvement steps as before, but now using Q :769

Lactor(✓;�, ) := Eh⇠B Ex⇠⇡✓(·|h)[log ⇡✓(x|h)�Q (h, x)] (59)

where B is a replay buffer of samples generated by ⇡✓ (that is, instead of enumerating all h 2 H, we770

are relying on h ⇠ B). Note that the normalizing constant is dropped as it does not contribute to the771

gradient. The critic is trained to represent the value function by minimizing squared residual errors:772

Lcritic( ;�) := Eh,x⇠B(Q (h, x)�Qtarget
 (h, x))2 (60)

with (bootstrapped) targets:773

Qtarget
 (h, x) := f�(h, x) + Ex0⇠⇡✓(·|h0)[Q (h

0, x0)� log ⇡✓(x
0
|h0)] (61)

Together, this provides a way to minimize the policy loss Lpolicy (Equation 12). The complete Time-774

GCI algorithm simply alternates between this and minimizing the energy loss Lenergy (Equation 11):775

Lenergy(�; ✓) := �E⌧⇠ps log d✓,�(⌧)�E⌧⇠p✓ log
�
1�d✓,�(⌧)

�
(62)

Hence in Algorithm 1, gradient updates for the energy, policy, and critic are interleaved with policy776

rollouts. Note that several standard approximations are being used. First, the replay buffer provides777

samples h ⇠ B for optimizing the policy (in both actor and critic updates), instead of covering the778

entire space H (which is uncountable). Second, in the energy loss negative samples ⌧ ⇠ B are used in779

lieu of sampling fresh from p✓ at every iteration (this is known to give the benefit of providing more780

diverse negative samples). Finally, also per usual samples from the dataset ⌧ ⇠ D is used in lieu of ps.781

Practical Considerations First, in practice we must use a vector representation of histories h 2 H;782

here we use RNNs to encode histories into fixed-length vectors, which can then be treated as regular783

“states” in continuous space. Like our choice of policy optimization, this is also an arbitrary design784

choice—we could just as conceivably have used e.g. temporal convolutions, attention mechanisms, etc.785

Second, interleaving multiple gradient updates of different networks requires some care: In soft actor-786

critic itself, policy updates have to be sufficiently small, and/or critic updates have to be sufficiently787

frequent, to prevent divergence. The situation is analogous when interleaving this with energy gradient788

updates as well: Both actor and energy updates have to be sufficiently small, and/or critic updates have789

to be sufficiently frequent. That said, the energy updates are indeed decoupled from the policy updates:790

Regardless of how quickly/slowly the policy is learning, the energy can learn on their negative samples.791

In practice, we perform multiple critic updates for every update of the policy and energy functions.792

Finally, note that in large continuous domains such as H⇥X it is necessary to pre-train the networks793

beforehand such that optimization of the complete algorithm actually converges: On the one hand, the794

policy side requires a sufficiently good energy signal to actually make progress, and on the other hand,795

the energy side requires a sufficiently good policy providing challenging enough negative samples to796

actually make progress. Pre-training networks separately is standard in actor-critic methods (see for797

instance [35]); here we take a similar approach but with the addition of the energy update step as well:798

1. Policy-only: ⇡✓ is pre-trained using maximum likelihood;799

2. Energy-only: f� is pre-trained using Lenergy(�; ✓), holding ⇡✓ fixed;800

3. Critic-only: Q is pre-trained using Lcritic( ;�), holding ⇡✓, f� fixed; and finally,801

4. All: f�, ⇡✓, and Q are trained on Lenergy(�; ✓), Lactor(✓;�, ), and Lcritic( ;�) (cf. Algorithm 1).802
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C Details on Experiments803

Benchmark Algorithms Except where components are standardized (see below), we use the publicly804

available source code when constructing the benchmark algorithms; references are in the following:805

• T-Forcing [5]: (straightforward MLE with ground-truth conditioning)806

• P-Forcing [10]: https://github.com/anirudh9119/LM_GANS807

• C-RNN-GAN [18]: https://github.com/olofmogren/c-rnn-gan808

• COT-GAN [20]: https://github.com/tianlinxu312/cot-gan809

• RC-GAN [21]: https://github.com/ratschlab/RGAN810

• TimeGAN [12]: https://github.com/jsyoon0823/TimeGAN811

Dataset Sources We use the original source code for preprocessing sines and UCI datasets from812

TimeGAN (https://github.com/jsyoon0823/TimeGAN). For MIMIC-III, we extract 52 clinical813

covariates including vital signs (e.g. respiratory rate, heart rate, O2 saturation) and lab tests (e.g. glu-814

cose, hemoglobin, white blood cell count) aggregated every hour during their ICU stay up to 24 hours.815

• Sines [5]: https://github.com/jsyoon0823/TimeGAN816

• Energy [10]: archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction817

• Gas [18]: archive.ics.uci.edu/ml/datasets/Gas+sensor+array+temperature+modulation818

• Metro [20]: archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume819

• MIMIC-III [21]: https://physionet.org/content/mimiciii/1.4/820

Encoder Networks For fair comparison, analogous network components across all benchmarks share821

the same architecture. In particular, all components taking ht as input require an encoder network to822

learn to construct fixed-length vector representations of variable-length histories (x1, ..., x + t). To823

do so, these components use an LSTM network with a hidden layer of size 32 and tanh activations to824

compute hidden states. These are not shared: separate components have their own encoder networks.825

Task-Specific Networks For task-specific networks (i.e. mapping from ht and/or xt to task-specific826

output variables, we use a fully-connected network with two hidden layers of size 32 and ELU827

activations. Where both ht and xt serve as inputs, their vectors are concatenated. For instance,828

the energy network for TimeGCI contains one such network for computing f�, as well as trainable829

parameter for Z�. The same applies to the mapping from ht and/or xt to implicit generator outputs (as830

in C-RNN-GAN and RC-GAN), black-box discriminator output (as in P-Forcing, C-RNN-GAN, and831

RC-GAN), transition policy (as in T-Forcing and P-Forcing), and critic values (for TimeGCI). Note832

that TimeGAN and COT-GAN contain additional novelties (e.g. the embedding and recovery networks833

for generating/discriminating in latent space); these are kept as we use their original architectures.834

Replay Buffer The replay buffer B has a fixed size; once filled, new samples stored replace the oldest835

still in the buffer. Sampling from the buffer operates as follows: In updating the energy, we require836

⌧ ⇠ B (that is, in lieu of p✓, cf. Equation 62); this is done by randomly sampling a batch of trajectories837

from the replay buffer, without replacement. In policy the actor, we require h ⇠ B (cf. Equation838

59); this is done by first randomly sampling a batch of trajectories from the replay buffer, and then839

randomly sampling a cutoff time t to obtain a batch of subsequences ht. Finally, in updating the critic,840

we require h, x ⇠ B (cf. Equation 60); this is similarly done by first randomly sampling a batch of841

trajectories from the replay buffer, then randomly sampling a cutoff t to yield a batch of (ht, xt) pairs.842

Hyperparameters Throughout all experiments, we use the following hyperparameters for TimeGCI843

(and all benchmarks, wherever applicable). We use a replay buffer of size |B| = 10, 000 trajectories.844

The hidden dimension of both encoder and task-specific networks is set at 32. The entropy regular-845

ization (in the actor/policy loss) is set at ↵ = 0.2. The policy network is pre-trained for 2,000 steps,846

energy for 4,000, and critic for 20,000. The complete algorithm is trained for up to 50,000 steps with847

checkpointing and early stopping (triggerable every 1,000 steps, if performance does not improve).848

The learning rates are set as follows: For energy networks �energy = 0.0001, for policy networks849

�policy = 0.0001 (same for implicit generator networks), for critic networks �critic = 0.001, and for850

black-box discriminator networks �discrim = 0.001. (Note that the critic/discriminator networks are851

updated more greedily). Per usual in soft actor-critic algorithms, we also employ a lagged target critic852

network (i.e. used for bootstrapping); this is updated using polyak averaging at a rate of ⌧ = 0.005.853

Performance Metrics We use the original source code for computing the TSTR metric (i.e. Predic-854

tive Score), publicly available at: https://github.com/jsyoon0823/TimeGAN; this is straightfor-855

wardly modified to compute similar scores for horizons of lengths three (+3 Steps Ahead) and five (+5856

Steps Ahead). Likewise, we use the original source code for computing the cross-correlation score857

(x-Corr. Score), this is also publicly available at: https://github.com/tianlinxu312/cot-gan.858
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