A Missing proofs

In this section, we present the missing proofs. Recall that for each item =, we perform query as
in Algorithm 2. In the proof below, we use arr’ to denote the arr in Algorithm 2 (with private
initialization) while arr denotes the arr in Algorithm 2 under non-private initialization (all zero

~

initialization) and the same set of hash functions. In addition, f(z) is the output estimated frequency,

f(x) is the actual frequency and f(x) is the non-private estimated frequency (the output of the
original Count-Min and CountSketch with the same set of hash functions). We first present the
following Lemma A.1, which gives a high probability bound for the Gaussian noises we add.

Lemma A.1 (Utility analysis). If there are % log(%) independent Gaussian noises sampled from
N(0,0?) (where o = %), denoted as o;; where i € [log(2/8)], j € [1/7], then with
probability 1 — £, for any i € [log(2/8)], j € [1/7],
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Proof of Lemma A.1. The lemma directly results from the concentration inequality of Gaussian
distribution and a union bound. O

Theorem A.2 (Restate Theorem 3.1). Private Count-Min satisfies p-zCDP regardless of the number

~

of queries. Furthermore, with probability 1 — 3, the output f(x) satisfies that

~ ~

V,0< f(z) — f(x) <2E.
In addition, for each item x, with probability 1 — (3,

~

0< f(z)— f(z) <v- N +2E.

Proof of Theorem A.2. Differential privacy directly results from the DP guarantee of Gaussian
Mechanism (Lemma 2.8) and post processing (Lemma 2.7).

According to Lemma A.1, we have with probability 1 — g, for all noises E + 055, where o;; ~
N(0,0?),i € [log(2/8)], 7 € [1/7], it holds that

0<FE+o4 <2E.

Under the above case that will happen with probability 1 — g, for all z and the corresponding arr,
arr’, it holds that

min(arr) < min(arr’) < min(arr + 2F - 1) < min(arr) + 2E.

Therefore, for all x,

~ ~ ~

f(@) < f(z) < f(z) +2E.

For the last conclusion (point-wise bound), by the property of Count-Min [Cormode and Muthukrish-
nan, 2005], we have for any item x, with probability 1 — é,

0 < min(arr) — f(z) <~v-N.
Therefore, for any item x, with probability 1 — 3, we have
f(z) = min(arr’) > min(arr) > f(z)

and
f(z) = min(arr’) < min(arr) + 2E < f(z) + v - N + 2E.

Then the proof is completed by plugging in the definition of E. O
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Theorem A.3 (Restate Theorem 3.2). Private CountSketch satisfies p-zCDP regardless of the number
of queries. Furthermore, the frequency query from Private CountSketch is unbiased and with
probability 1 — 3,

~ ~

Va,|f(z) - f(x)] < E.
In addition, for each item x, with probability 1 — 3,

[f(z) = f(x)| <7 N +E.

Proof of Theorem A.3. First of all, differential privacy directly results from the DP guarantee of
Gaussian Mechanism (Lemma 2.8) and post processing (Lemma 2.7).

~

Next we claim that the conclusion that Ef(x) = f(z) arises from symmetry. If we replace
{hiticpog(2/a) {9iticnog2/a): {0ijticnog2/mn.ien/y With {hitiepogz/p) {95} ieqog(2/)

—0ij bicllog(2/8)].j€[1/+] Where gi(x) = gi(z) and g;(2') = —gi(z’), V2’ # w, then the out-
puts under these two cases will be symmetric around f(x) and the probability distribution function at
these two cases are identical. Therefore, we have

~

Ef(x) = f(x). )

According to Lemma A.1, we have with probability 1 — g, for all noises o;; ~ N(0, 02)’ i c
[log(2/8)], j € [1/7], it holds that
|O‘ij| S E.

Under the above case that will happen with probability 1 — 8. we will prove that for all x,

~ ~

[f(z) = f(z)] < E.
Without loss of generality, we can assume that log % = 2k + 1, where k is a positive integer (we can

choose k to be the minimum integer such that 2k + 1 > log %).

Suppose that median(arr’) > mediam(arr) + E, then it holds that there are at least k + 1 elements
in arr’ that is larger than mediam(arr) + E due to the definition of median. Because |o;;| < E,
for all ¢, j, there are at least k + 1 elements in arr that is larger than mediam(arr), which leads to
contradiction. As a result, we have

f(z) — f(z) = median(arr’) — mediam(arr) < E.

Similarly, f(x) — f(z) > —E. Combining these two results, for all z, it holds that

~ ~

[f(z) = f(x)] < E.

Finally, we prove the point-wise bound. By the property of CountSketch [Charikar et al., 2002], we

have for any item x, with probability 1 — g,

[f(x) = f(z)] < - N.

Therefore, according to triangle inequality, for each item z, with probability 1 — 3,

~

[f(@) = fl@)[ <y N+ E.
Then the proof is completed by plugging in the definition of F. O

B Missing Quantile Algorithms

Gilbert et al. [2002] made the connection between frequency and quantiles to propose the first universe
based RSS quantile sketch in the turnstile model. Observe, that the relationship between frequency
and rank is that one can sum up all items’ frequency in the range of 0 to the item itself to estimate the
rank. However, this naive approach requires summing all items’ frequencies in the range, and the
error quickly escalates. A better approach is to break the range from 0 to item x into at most log U
dyadic intervals [Cormode et al., 2019] and then sum all frequencies for each dyadic interval to obtain
the estimation of the rank(x). Cormode and Muthukrishnan [2005] proposed the Dyadic Count-Min
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sketch (DCM) which uses Count-Min sketches for estimating the frequencies of each dyadic interval
with space complexity O(% log® U log %) and update time O(log U log %). Later, Wang et al.

[2013] leveraged the unbiased property of CountSketch and proposed the Dyadic CountSketch
(DCS) which replaces the Count-Min sketch with the CountSketch [Charikar et al., 2002] to further

improve the space complexity to O(% log'® U logl'g‘(%)) while maintaining the same update
time. DCS and DCM share the same update and query algorithms as shown below. DCM uses

O(% log U log °2¥) space for each Count-Min sketch and DCS uses O(% log”? U log1‘5(1“%U))

Ty
space for each CountSketch, where both of them use O(log %) rows. For more specific details,

[Cormode and Yi, 2020] provide a comprehensive analysis of linear and quantile sketches.

Algorithm 4 DCS/DCM Update(x, v)

: Input: Item z with value v € {—1,+1}, and an array of linear sketches {LSo, ..., LSiog v }.
:forj < 0,...,logU do
LS;.update(z, v)
z + |x/2]
end for
: Output: {LSq,...,LSics v}

QUBAERNE

Algorithm 5 DCS/DCM Query(z)

1: Input: Item x, and an array of linear sketches {LSo, ..., LSiog v}
2: R+ 0

3: fori <+ 0,...,logU do

4 if  is odd then

5: R + R+ LS;.query(z)

6 end if

7 z <+ |x/2]

8: end for

9: Output: R.

Based on the observations, DCS and DCM quantile sketches keeps log U number of linear sketches,
one for each dyadic interval. As a result, to update an item x with value v € {—1,+1}, DCS and
DCM need to update log U levels: they first map item x to a dyadic interval for the level and then
update the corresponding linear sketch, as shown in Algorithm 4. To estimate the rank of an item,
DCS and DCM first break the range into at most log U dyadic intervals and then query the frequency
for each interval from the corresponding linear sketch, as shown in Algorithm 5.

C Detailed Comparison for Private CountSketch
Recall that for some item z, ]?(ac) is the output estimated frequency, f(z) is the actual frequency and

f(x) is the non-private estimated frequency (the output of the original Count-Min and CountSketch
with the same set of hash functions). Let & denote the number of rows in our counter, and we choose
k =log % to bound the failure probability by 3. We first state both Pagh and Thorup [2022]’s results
and ours.

Our uniform bound (Theorem 3.2): sup,, \f(x) — f(@)| <E= 6(\/%)
Our lower bound (Theorem E.1): sup, | f(z) — f(z)| > Q(\/%)
Pagh and Thorup [2022]’s point-wise bound*: \f(a:) — f(x)] < non-private error bound + 5(\/% ).

There is a major difference between the analysis in [Pagh and Thorup, 2022] and ours. While Pagh

~

and Thorup [2022] focused on the point-wise bound for | f(z) — f(x)| , we focused on the uniform

~ ~

bound for sup,, | f(z) — f(x)|. We are interested in the trade-off between privacy and accuracy for the

*We reformulate the bound in [Pagh and Thorup, 2022] for comparison.

17



CountSketch. In particular, we want to answer the question of what additional error will be imposed
on the estimated frequency due to the Differential Privacy guarantee. As a result, our result shows

an uniform bound sup,, |f(:c) — f(2)] < E where E is a function of the desired accuracy, failure
probability, and privacy guarantee. To derive the point-wise bound for | f(z) — f(x)|, we can simply

combine our result with any point-wise bound for | f(z) — f(z)| (like the one in our work or [Pagh
and Thorup, 2022]) due to trlangular inequality. However, Pagh and Thorup [2022]’s analysis can not

imply even point-wise bound for | f(z) — f(x)|.

We agree that Pagh and Thorup [2022] has a tight point-wise bound for |f(:ﬂ) — f(z)| by using the
concentration of median. By comparing our analysis and [Pagh and Thorup, 2022] for | f(z) — f(z)|,

Pagh and Thorup [2022]’s point-wise bound removes the , /log % (B denotes failure probability) in

the lower order term E which is added to the original estimation error \f(q:) — f(x)|. However, the
difference may not be substantial. When the database is large (which is the usual case for why we

need to perform approximations), E is small compared to the | f(z) — f(z)|. Even for the extreme

case of setting S = le — 10, the amplification factor for calculating F is , /log % ~ 5.8, which E'is
still very likely to be small compare to | f(z) — f ().

We believe that none of the two results dominate each other. Both Pagh and Thorup [2022]’s point-

wise bound for |f ( ) — f(z)] and our uniform bound for |f ( ) — f(z)| are useful analysis for
understanding the Differentially Private CountSketch with Gaussian noise.

D Extension to the Data Stream Setting

Our Differentially Private Linear Sketches only guarantee Differential Privacy for the query of
database, i.e., the adversary is only allowed to query after the whole database passes our algorithm.
However, queries for data stream is also quite practical in real-life applications, i.e., the adversary
can query at any time. Take reinforcement learning (RL) as an instance, we can use differentially
private linear sketches to estimate the visitation number of all (state,action) pairs while preserving
privacy. If we only have linear sketches for database, we can only handle offline RL [Qiao and Wang,
2022b], while with linear sketches for data stream, we can deal with the more challenging online RL
[Qiao and Wang, 2022a, Qiao et al., 2022].

Our algorithms can be extended to the data stream setting with moderate modifications. Different
from our approach of adding noise at the beginning (Algorithm 3), we need to add noise after each
item passes our algorithm. To guarantee Differential Privacy under data stream, we can apply the
tree-based algorithm (as shown in Kairouz et al. [2021]) to add Gaussian noises to continuous data.
In this way, the algorithm is Differentially Private no matter how many times the adversary queries
the data stream and the additional error bound is the same scale as E in our main theorems, with
some extra multiplicative logarithmic terms.

E Lower Bound for the Additional Error due to Privacy

In this section, we provide a lower bound for CountSketch (the counterpart for Count-Min is similar

and we omit it here) showing that our analysis of sup,, |f ( )— f ( )| is tight. For simplicity, we
assume the counter arrays C' we use has shape k x d and k is odd, which means our upper bound E

for sup,, 1f(z) — f(z)] is 6(\/% ). Then according to our Algorithm 3, the noise we add has scale
(standard variance) \/% . The following theorem shows that if the universe is large enough, with

constant probability, sup,, \f(x) flz)] > Q(\/7 ), which matches our upper bound in Theorem
3.2 up to logarithmic terms.
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Theorem E.1. There exists constants c,p, such that if the size of universe satisfies U > ckd(1 +
L_k=1  for our Private CountSketch, there exists a database, with probability at least p,

d—1
. ~ k
Sgp|f(x)—f(x)l > \/;-

Proof of Theorem E.1. Fix some item x with its corresponding {h;(z), gi() };c[x)- For each i € [k],
we aim to find y; in universe such that h;(y;) = hi(x), h;(y;) # hj(x), Vi # i and g;(y;) = gi(x)
(this is replaced with g;(y;) = —gi(z) if i > %). For any item in the universe, due to the uniform
randomness of its hash functions, the probability it satisfies such conditions is Pr = 2171(1 — é)kfl.

Therefore, when U > ckd(1 + ﬁ)kfl for some constant ¢, with constant probability, we can find

{wi }ie[x) satisfying the previous conditions.

Next we can construct a database with only {z,y1,--- ,yx—_1}, where the frequency of z is some
large n,, and the frequencies of all y;’s are n,, that satisfies that n,, is much larger than E. Therefore,

the arr of = (without adding noise) consists of one n,, % numbers much larger than n, + E and
% numbers much smaller than n, — E. Finally, with high probability, the change from f(z) to

flz) is from ng to ng + N(0, %), which finishes our proof. O
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