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These appendices provide supplementary details and results of BAST. Appendix A contains additional1

details on Bayesian estimation and prediction. Supplementary simulation details and results can be2

found in Appendix B. Hyperparameter selection is also discussed in Appendix B. Finally, Appendix3

C provides the proof of Proposition 1.4

Appendix A Details on Bayesian Inference5

Appendix A.1 Estimation6

This appendix provides details on the Markov chain Monte Carlo (MCMC) algorithm discussed in7

Section 3.1. We use gm to denote the n-dimensional vector of fitted values at the training locations S8

from the mth RST partition, that is, the ith element of gm is g(si|πm, Tm, km,µm). Let Xπm be an9

n× km binary matrix where the (i, j)th element is 1 if and only if si is in the jth cluster under the10

partition πm. We write the partial residual term for the mth RST partition as11

rm = Y −
∑
` 6=m

g`.

Recall that our MCMC algorithm proceeds by successively sampling (π1, T1, k1,µ1),. . .,12

(πM , TM , kM ,µM ), and σ2 from their respective full conditional distributions. To sample from13

p(πm, Tm, km,µm|−) for each m = 1, . . . ,M , we first sample the RST partition with µm analyt-14

ically integrated out, by performing a birth, a death, a change, or a hyper move with probability15

rb(km) = 0.3, rd(km) = 0.3, rc(km) = 0.3, and rh(km) = 0.1, respectively. Adjustments are16

made to the probabilities for the boundary cases where km = 1 and km = k̄. This probability17

specification works well in our experiments, but one can modify it if desired. For the first three moves,18

the Metropolis-Hastings (M-H) acceptance ratio involves the integrated likelihood of Y given by19

L(Y|πm, Tm, km,−) ∝ |Pπm |−1/2 exp

(
−1

2
rTmP−1πmrm

)
,

where Pπm = σ2In+σ2
µXπmX

T
πm . The Sherman-Woodbury-Morrison formula is applied to simplify20

the computation of P−1πm and |Pπm |−1/2 as XπmX
T
πm has a reduced rank km.21

Conditional on a sample of (πm, Tm, km), we sample µm from p(µm|πm, Tm, km,−), which is22

given by23

[µm|πm, Tm, km,−] ∼ Nkm (Qmbm,Qm) ,

where Qm =
(

1
σ2X

T
πmXπm + 1

σ2
µ
Ikm

)−1
and bm = XT

πmrm/σ
2.24

Finally, we sample σ2 from its inverse-gamma full conditional given by25

[σ2|−] ∼ IG

(
n+ ν

2
,

1

2

[
νλs + ‖Y −

M∑
m=1

gm‖2
])

,
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Table S1: Prediction performance of BAST with M = 20 weak learners in the U-shape example.
Results of BART with various larger numbers of weak learners M are included for comparison.
Standard errors are given in parentheses.

BAST (M = 20) BART (M = 50) BART (M = 100) BART (M = 200)

σ = 0.1
MSPE 0.189 (0.009) 1.430 (0.343) 1.302 (0.259) 1.219 (0.251)
MAPE 0.188 (0.007) 0.408 (0.046) 0.382 (0.033) 0.380 (0.027)
Mean CRPS 0.142 (0.008) 0.353 (0.043) 0.324 (0.030) 0.318 (0.024)

σ = 0.5
MSPE 0.464 (0.044) 1.694 (0.362) 1.628 (0.277) 1.532 (0.166)
MAPE 0.491 (0.025) 0.682 (0.047) 0.695 (0.038) 0.711 (0.035)
Mean CRPS 0.371 (0.021) 0.557 (0.043) 0.553 (0.035) 0.554 (0.029)

σ = 1
MSPE 1.283 (0.127) 2.546 (0.380) 2.441 (0.246) 2.429 (0.224)
MAPE 0.888 (0.049) 1.085 (0.052) 1.099 (0.052) 1.120 (0.050)
Mean CRPS 0.693 (0.042) 0.870 (0.047) 0.861 (0.045) 0.870 (0.044)

where ‖·‖ is the Euclidean norm.26

Appendix A.2 Prediction in Two-dimensional Constrained Domains27

In this subsection we provide details on specifying the neighbor setNu for prediction at an unobserved28

location u in a constrained domain D ⊂ R2. A constrained Delaunay triangulation (CDT) mesh can29

be constructed on D such that every unobserved location of interest is contained in a triangle. In the30

case where at least one triangle vertex is in S , Nu is specified as those triangle vertices that belong to31

S. Prediction at u is then performed as stated in Section 3.2.32

In the extreme case where no triangle vertex is in S, we choose Nu to be all the triangle vertices33

(which lie on the domain boundary). To sample the cluster membership of u, we need to determine34

the cluster memberships for vertices on the domain boundary, which can be done by, for instance,35

assigning a boundary vertex to the same cluster as its nearest vertex in S with respect to the graph36

distance in the CDT mesh (when the number of vertices in the CDT graph is large, we expect this37

to well approximate the geodesic distance). Once we obtain the cluster memberships for boundary38

vertices, we can sample zm(u) from the cluster memberships of the vertices in Nu as in Section 3.2.39

Appendix B Supplementary Simulation Results40

We implement BAST in R and fit BART and SFS using R packages BART1 [2] and mgcv241

[3], respectively. The code for inGP is adopted from https://github.com/mu2013/42

Intrinsic-GP-on-complex-constrained-domain. Experiments are performed on a Linux43

machine with two 2.4GHz 14-core processors and 64GB memory. Code will be made publicly44

available upon request of revision or acceptance of the manuscript.45

Appendix B.1 U-shape Example46

To demonstrate that BAST is more efficient than its binary treed competitors in recovering irregularly47

shaped regions where discontinuities happen in complex domains, we compare BAST with M = 2048

to BART with various numbers of weak learners. The experiment setup is the same as in Section 4.149

except for the number of binary decision trees used in BART.50

As shown in Table S1, BAST outperforms BART even when BART uses more weak learners,51

confirming that BART needs much more rectangular partitions to approximate irregularly shaped52

discontinuity boundaries, while BAST can recover them with only a few RST edge cuts.53

Next, we consider selecting hyperparameters of BAST via cross-validation (CV) in the U-shape54

example with true noise standard deviation σ = 0.1. More specifically, for each replicate data set,55

we choose the number of weak learners M , the maximum number of clusters in each RST partition56

k̄, and the shrinkage parameter a that controls prior concentration around zero for µm using 5-fold57

CV within the training data based on MSPE. The candidate values for each hyperparameter are58
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Table S2: Candidate values of hyperparameters for CV in the U-shape example.

Method Hyperparameter Candidate values

BAST
# of weak learners M 20, 30, 50
Maximum # of clusters per partition k̄ 5, 10
µ-prior shrinkage parameter a 1, 2, 3

BART # of weak learners M 50, 100, 200
µ-prior shrinkage parameter a 1, 2, 3

Table S3: Prediction performance of BAST and BART with and without CV in the U-shape example
under noise level σ = 0.1. Standard errors are given in parentheses.

BAST-cv BAST-default BART-cv BART-default
MSPE 0.186 (0.011) 0.189 (0.009) 1.277 (0.306) 1.541 (0.530)
MAPE 0.182 (0.008) 0.188 (0.007) 0.390 (0.034) 0.436 (0.068)
Mean CRPS 0.135 (0.014) 0.142 (0.008) 0.331 (0.032) 0.380 (0.066)

summarized in Table S2, and a total of 18 hyperparameter combinations are considered for BAST.59

For comparision, we also choose the number of weak learners and the prior shrinkage parameter of60

µm for BART using 5-fold CV, and their candidate values can be also found in Table S2.61

Table S3 shows the performance of BAST and BART using the hyperparameters chosen by CV62

(referred to as BAST-cv and BART-cv, respectively). As a benchmark, the performance metrics63

for BAST and BART using the hyperparameters in Section 4.1 are also included (referred to as64

BAST-default and BART-default, respectively). The fine-tuned BAST-cv achieves better performance65

than BAST-default as expected, but the performance of them is close to each other, suggesting that66

BAST is robust to the choices of hyperparameters in this example. Both versions of BAST outperform67

BART with and without hyperparameter selection.68

Appendix B.2 Bitten Torus Example69

We consider the bitten torus example in Section 4.2 but with noise levels σ = 0.5 and σ = 1. The70

results are summarized in Table S4. Consistent to the finding under the noise level σ = 0.1, BAST71

performs the best among all three methods.72

As in Appendix B.1, we also experiment with choosing hyperparameters via 5-fold CV for the data73

sets with true noise level σ = 0.1. In addition to the BAST hyperparameters in Table S2, we also74

select K, the size of the predictive neighbor set Nu discussed in Section 3.2, from its candidate75

values {3, 4, 5, 6}. As shown in Table S5, BAST outperforms BART in both CV and default settings.76

Our results again confirm that BAST performs reasonably well even without hyperparameter tunning.77

Appendix C Proof of Proposition 178

Proof 1 For any spatially continuous partition π(S) with k clusters, it follows from Propositions 279

of Luo et al. [1] that there exists a spanning tree T of G and a set of k − 1 edges in T that induce80

π(S). Hence, conditional on T , the conditional probability for π(S) is strictly positive due to (2)81

and (4). To show T is within the support of (3), note that T is the MST of G given the edge weights82

satisfying ωe ∈ (0, 1/2) if e ∈ ET and ωe ∈ (1/2, 1) if e 6∈ ET . This completes the proof.83
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Table S4: Prediction performance of BAST and its competing methods in the bitten torus example
under different noise levels. Standard errors are given in parentheses.

BAST BART inGP

σ = 0.5
MSPE 0.754 (0.053) 1.358 (0.270) 2.601 (0.234)
MAPE 0.584 (0.024) 0.682 (0.045) 1.240 (0.069)
Mean CRPS 0.405 (0.022) 0.567 (0.043) —

σ = 1
MSPE 1.568 (0.140) 2.378 (0.354) 4.628 (3.117)*

MAPE 0.960 (0.048) 1.092 (0.062) 1.648 (0.469)*

Mean CRPS 0.706 (0.041) 0.904 (0.060) —
* The results for inGP under σ = 1 are based on 49 replicates due to numerical

errors in one replicate data set.

Table S5: Prediction performance of BAST and BART with and without CV in the bitten torus
example under noise level σ = 0.1. Standard errors are given in parentheses.

BAST-cv BAST-default BART-cv BART-default
MSPE 0.463 (0.055) 0.487 (0.012) 0.850 (0.141) 1.115 (0.287)
MAPE 0.287 (0.029) 0.307 (0.006) 0.370 (0.031) 0.406 (0.062)
Mean CRPS 0.216 (0.022) 0.225 (0.017) 0.310 (0.027) 0.355 (0.059)

[3] Wood, S. (2017). Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC,89

2nd edition.90
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