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Abstract While Weighted Lasso sparse regression has appealing statistical guarantees that would 8

entail a major real-world impact in �nance, genomics, and brain imaging applications, 9

it is typically scarcely adopted due to its complex high-dimensional space composed by 10

thousands of hyperparameters. On the other hand, the latest progress with high-dimensional 11

hyperparameter optimization (HD-HPO) methods for black-box functions demonstrates that 12

high-dimensional applications can indeed be e�ciently optimized. Despite this initial success, 13

HD-HPO approaches are mostly applied to synthetic problems with a moderate number of 14

dimensions, which limits its impact in scienti�c and engineering applications. We propose 15

LassoBench, the �rst benchmark suite tailored for Weighted Lasso regression. LassoBench 16

consists of benchmarks for both well-controlled synthetic setups (number of samples, noise 17

level, ambient and e�ective dimensionalities, and multiple �delities) and real-world datasets, 18

which enables the use of many �avors of HPO algorithms to be studied and extended to 19

the high-dimensional Lasso setting. We evaluate 6 state-of-the-art HPO methods and 3 20

Lasso baselines, and demonstrate that Bayesian optimization and evolutionary strategies 21

can improve over the methods commonly used for sparse regression while highlighting 22

limitations of these frameworks in very high-dimensional and noisy settings. 23

1 Introduction 24

We identi�ed a class of hyperparameter optimization (HPO) problems in the broad machine learning 25

community, namely Least Absolute Shrinkage and Selection Operator (LASSO or Lasso) models [19], 26

which are under-explored in the high-dimensional hyperparameter optimization (HD-HPO) set- 27

ting [35]. In many real-world applications [6], the number of observations is typically signi�cantly 28

smaller than the number of features. In such situations, favorable linear models would fail with- 29

out the use of certain constraints, such as convex ℓ1-type penalties [3, 6, 19]. The objective of 30

such penalties is to favor sparse solutions with few active features for prediction. Hyperparam- 31

eters associated with such penalties are used to balance between favoring sparse solutions and 32

minimizing the prediction error. As real-world applications, such as detecting signals in brain 33

imaging [52], genomics [20], or �nance [42], include thousands of features, it is common to rely 34

on a single hyperparameter for all features, which is the Lasso [49] when the data �tting term is 35

mean squared error. In contrast, in Weighted Lasso regression (wLasso) each feature in a dataset 36

has an individual hyperparameter. However, the common approach with a single hyperparameter, 37

whose seminal paper [49] has been cited more than 40,000 times, would eventually introduce 38

bias in the prediction and eliminate some important features [13]. On the other hand, the latest 39

progress in HD-HPO [53, 39, 31, 11, 21] opens up the possibility to use one hyperparameter per 40

feature. Hyperparameter improvement of such an high-dimensional space could bene�t in the 41

aforementioned real-world applications. 42
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Bayesian optimization (BO) has recently emerged as a powerful technique for the global optimization 43

of expensive-to-evaluate black-box functions [4, 15, 45]. Even though BO is a sample-e�cient 44

and robust approach for optimizing black-box functions [45], a critical limitation is the number of 45

parameters that BO can optimize. For example, [39] and [15] state that BO is still impractical for 46

more than 15−20 parameters. Thus, one of the most important goals in the �eld is to expand BO to a 47

higher dimensional space that is noted as the ambient space of the objective function [31]. To achieve 48

this, high-dimensional Bayesian optimization (HD-BO) algorithms commonly found in the literature 49

exploit the sparsity of a high-dimensional problem to generate a low-dimensional subspace that is 50

de�ned in low dimensions, the so-called e�ective dimensionality of an ambient space [31, 39, 53]. 51

Further, local-search methods, such as the evolutionary strategy CMA-ES method [21, 22] and the 52

trust-region-based BO method TuRBO [11] do not depend on a low-dimensional subspace and work 53

well in a high-dimensional setting. 54

The objective of this paper is to introduce a benchmark suite that has the potential to improve the 55

state-of-the-art on a class of popular supervised learning models while providing a platform for 56

research in HD-HPO. Therefore, we introduce the benchmark suite LassoBench, which is based on 57

a model called wLasso [3, 6, 19], which has appealing statistical guarantees [6, 54, 5]. 58

The main contributions of this paper are: 59
60

• We introduce LassoBench, a high-dimensional benchmark for HPO of wLasso models. 61

LassoBench introduces an easy-to-use set of classic baselines for Lasso. It handles both 62

synthetic and real-world benchmarks and exposes to the user features, such as SNR (i.e., noise 63

level), user-de�ned e�ective dimensionality subspaces, and multi-information sources (MISO). 64
65

• We provide an extensive evaluation using state-of-the-art HPO methods (both based on BO and 66

evolutionary strategies) against the LassoBench baselines. Our �ndings demonstrate that these 67

methods can improve over the commonly used methods for sparse regression. 68

In the following Sec. 2, we discuss the related work followed by the Lasso background in Sec. 3. 69

In Sec. 4, we introduce the LassoBench benchmark suite. Results in Sec. 5 showcase how recent 70

HD-HPO methods [33, 22, 11, 31, 39] can compete with the well-established baselines. Sec. 6 71

provides conclusions and future work with the limitations included in Sec. 7. 72

2 Related Work 73

Optimization Benchmarks: Our work is inspired by benchmark packages for HPO, such as the 74

newly proposed HPOBench [9] and its predecessor HPOlib [8]. HPOBench provides diverse 75

and easy-to-use benchmarks with a focus on reproducibility and multi-�delity. It uses standard 76

functions commonly found in the literature similarly to HPOlib [8]. In Auto-WEKA [48], a HD- 77

HPO benchmark, the problem is de�ned in a complex hierarchical search space. In general, these 78

benchmarks are both computationally expensive and do not provide information about the e�ective 79

dimensionality. The COCO platform [23] includes a set of handcrafted synthetic functions for low- 80

dimensional HPO methods. In PROFET [28], o�ine generated data is used to create a generative 81

meta-model with a low-dimensional search space. The benchmarks in HPO-B [2] are derived from 82

OpenML [51] focusing on reproducibility and transfer learning. 83

High-dimensional Black-box Optimization Methods: A common approach to address HD-BO 84

problems is to map the ambient space to a low-dimensional subspace using a linear embedding. 85

REMBO [53] and its extension ALEBO [31] de�ne a linear embedding as a random projection drawn 86

from the standard normal distribution or the unit hypersphere. A di�erent approach is to use 87

hashing and sketching as in HeSBO [39]. Furthermore, a linear embedding can be learned during 88

the optimization [18]. Alternatively, TuRBO [11] splits the search space into one or multiple trust 89

regions (TRs) to model locally the black-box function with Gaussian processes (GP) [44]. Then, 90
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the most promising region is selected using a multi-armed bandit approach across these TRs. The 91

unbounded HPO method Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [21] builds 92

its local search on the principle of biological evolution. In each iteration, new con�gurations are 93

sampled according to a multivariate normal distribution conditioning on the best-found individual. 94

The performance of HD-HPO is often tested on a selected set of widely adopted benchmarks [2, 25, 8] 95

that su�er from several limitations. The dimensionality of the common low-dimensional analytic 96

functions is often increased by adding axis-aligned dummy variables. However, this does not 97

resemble real settings. Further, the e�ective dimensionality for real-world applications is often 98

not known and the sparsity of the ambient space is rather low as found in the rover trajectory 99

planning [11] and MOPTA08 [10]. 100

Multi-information Source Optimization Frameworks: For expensive-to-evaluate benchmarks, it 101

is common to have low-cost information sources that describe the objective function less accurately 102

but signi�cantly faster [30]. Hyperband [33] and BOHB [12] are early-stopping methods that 103

sequentially allocate to relevant con�gurations a prede�ned resource (e.g., a larger number of 104

epochs), which can be noted as an information source. Other MISO algorithms [24, 43, 47, 30, 26] 105

have been proposed to jointly select the input con�guration and the information source to balance 106

the exploration and query cost. In [43, 30, 46, 26], each source is approximated with a separate 107

independent GP ignoring the correlation between di�erent sources which is later addressed in [47]. 108

3 Background 109

Learning or optimization problems are often de�ned with fewer equations than unknowns, which 110

results in in�nitely many solutions. Therefore, it is impossible to identify which candidate solution 111

would be indeed the “correct” one without some additional assumptions. Following Occam’s razor, 112

one can assume that solutions are simple, as measured by the number of features used for prediction. 113

3.1 Lasso Regression 114

To encourage sparse solutions, the absolute-value norm ℓ1 is added to a least-squares loss [49]: 115

#∗(_) ∈ arg min

# ∈R3

1

2=
‖~ − X# ‖2

2
+

3∑
9=1

6_ (V 9 ) , (1)

with ~ ∈ R=
is the target signal, X ∈ R=×3

is the design matrix (with features as columns and 116

rows as data points), # ∈ R3
are the regression coe�cients, and 6_ (·) are feature-wise regularizers. 117

For the choice

∑3
9=1 6_ (V 9 ) = 4_ ‖# ‖

1
(ℓ1-penalty), this is commonly referred to as Lasso (Least 118

Absolute Shrinkage and Selection Operator). The hyperparameter _ in Eq. (1)
1

balances the standard 119

least-squares estimation and the ℓ1 regularization which promotes sparsity. For a speci�ed _, the 120

optimization problem in Eq. (1) is typically solved with coordinate wise optimization [16] or a 121

proximal gradient method [14]. When _ goes to zero, Eq. (1) reduces to standard least-squares, while 122

a large _ eliminates variables by shrinking most coe�cients down to zero. The Lasso approach 123

revolves around �nding the optimal _∗ ∈ R3
for the inner optimization problem Eq. (1) as 124

_∗ ∈ arg min

_∈R3

{
L(_) , C

(
#∗(_)

)}
, (2)

where C : R3 → R is a prede�ned validation criterion to reduce over�tting, such as cross-validation, 125

hold-out MSE, or SURE [3], and L is the loss function. Since the outer optimization problem Eq. (2) 126

1
The original formulation uses _ > 0 instead of 4_ . The latter is preferred to de�ne the ambient space in log-scale,

which avoids positivity constraints and �xes scaling issues in a gradient-based algorithm, such as line search [3], or

improves grid search [17, 40].
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for Lasso depends on the single tuning parameter _ (i.e., a single value of _ for all features), it 127

is common practice to solve it using grid search. In the present study, we only focus on the 128

cross-validation criterion. 129

3.2 Weighted Lasso Regression 130

Even though the setup with a single hyperparameter _ ∈ R in Eq. (1) is practical and provides good 131

predictions, the associated #∗(_) solution is biased [13], and often has too large support (i.e., too 132

many features have non-zero coe�cients) [6]. Therefore, Weighted Lasso regression (wLasso) [19] 133

that instead includes 3 number of hyperparameters , ∈ R3
de�nes the penalty term in Eq. (1) 134

with 6_ (V 9 ) = 4_ 9 |V 9 |, where each regression coe�cient |V 9 | is matched with the corresponding 135

hyperparameter _ 9 . Due to the fact that the number of features 3 at times can be counted in 136

hundreds or thousands, using grid search to �nd ,∗ ∈ R3
is impractical. 137

3.3 State-of-the-Art Methods 138

Currently, the non-weighted Lasso de�ned in Eq. (1) represents the state-of-art method, where 139

the outer optimization depends only on the single hyperparameter _ ∈ R, which is commonly 140

solved using grid search and cross-validation (CV) as model selection criterion [17, 41]. As baselines 141

solvers in Eq. (1), LassoBench considers LassoCV and AdaptiveLassoCV derived from Celer [36] 142

and the recently proposed Sparse-HO [3]. 143

3.3.1 LassoCV: Lasso Model with Cross-Validation. LassoCV refers to Eq. (1) where the only hyperpa- 144

rameter _ ∈ R is selected by grid search and CV. It is the default approach in popular packages like 145

Glmnet [17], which covers multiple regularization methods. 146

3.3.2 AdaptiveLassoCV: Adaptive Lasso Model with Cross-Validation. The objective of AdaptiveLas- 147

soCV [55, 6, 19] is to reweight # by solving Lasso problems iteratively, to a solve a non-convex 148

sparse regression problem. This iterative algorithm seeks a local minimum of a concave penalty 149

function in Eq. (1) that more closely resembles the ℓ0 norm, such as the log penalty [19] de�ned 150

as 6_ (V 9 ) = exp(_) log( |V 9 | + n), where the correcting term 0 < n � 1 shifts coe�cients to 151

avoid in�nite values when the parameter vanishes. In practice, the choice of n is �xed to 10
−3

. 152

AdaptiveLassoCV also employs a single scalar _ in Eq. (1), which is found by grid search and CV. 153

3.3.3 Sparse-HO: Sparse Hyperparameter Optimization. Both LassoCV and AdaptiveLassoCV are de- 154

terministic, which implies that they �nd the same local minimum over multiple independent runs. 155

Since they are based on grid search to �nd _, the performance is limited by the granularity and the 156

span of the _ grid; the latter is commonly di�cult to de�ne a priori. Therefore, an alternative is to 157

use a gradient-based method such as gradient descent. However, obtaining the gradient of the loss 158

function L w.r.t. , requires estimating the weak Jacobian of the inner optimization problem w.r.t. 159

, as well as the gradient of the validation criterion w.r.t. # , which is a challenging task in practice. 160

However, Sparse-HO [3], a recently introduced Lasso method, gives an e�cient way to obtain 161

these gradients by exploiting the sparsity of the solution. Unlike LassoCV and AdaptiveLassoCV, 162

Sparse-HO can be equally used for Lasso and wLasso. Compared to grid search this gradient-based 163

method trades the dependency on the grid de�nition against the _ (0) initialization. The impact of the 164

initialization on Sparse-HO is left out of the scope in [3] mostly due to the fact that the experiments 165

in this work are related to a standard Lasso optimization problem with a single hyperparameter 166

where a heuristic such as _ = _max − log(10) can easily provide good estimates. However, for a 167

non-convex setting such as wLasso with thousands of hyperparameters, a heuristic would trap 168

Sparse-HO in a local minimum. For a visualization of this e�ect, we refer to Appendix E. The 169

implementation of wLasso in LassoBench is derived from Sparse-HO [3]. 170
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Synthetic Benchmark Name = 3 34

synt_simple 30 60 3

synt_medium 50 100 5

synt_high 150 300 15

synt_hard 500 1000 50

(a)

Real-world Benchmark Name = 3 ˆ34

Breast_cancer 683 10 3

Diabetes 768 8 5

Leukemia 72 7,129 22

DNA 2,000 180 43

RCV1 20,242 19,959 75

(b)

Table 1: Prede�ned synthetic (a) and real-world benchmarks (b). = is the number of dataset samples, 3

is the ambient dimensions, 34 is the e�ective dimensions and
ˆ34 is the approximated e�ective

dimensions derived with Sparse-HO as
ˆ34 = ‖#̂ ‖0.

4 Benchmark Description 171

We introduce a benchmark suite called LassoBench
2

that aims to enrich the current list of HD- 172

HPO benchmarks found in the literature [53, 31, 10] while providing an opportunity for AutoML 173

researchers to help advance Lasso research. New insights from the AutoML community will 174

re�ect directly on Lasso applications, whose seminal paper has so far been cited more than 40,000 175

times [49]. LassoBench revolves around the non-convex optimization problem de�ned in Sec. 3.2, 176

where the objective is to optimize , ∈ R3
for the penalty term in Eq. (1). The challenge is that 3 177

de�nes a high-dimensional regime. The potential of LassoBench is to improve the sparse regression 178

performance by unlocking the wLasso model. 179

LassoBench introduces both: synthetic (Sec. 4.1) and real-world (Sec. 4.2) benchmarks. The latter 180

revolves around common applications for Lasso, such as the Leukemia, Breast_cancer, and RCV1 181

datasets, fetched from the LIBSVM package [7]. Each benchmark in LassoBench can be used 182

in a plug-and-play manner with common HD-HPO framework interfaces, as shown in Sec. 5. 183

Even though Lasso applications are typically expensive-to-evaluate, the computational load for 184

evaluating the benchmarks in LassoBench requires at most a few seconds, which makes running 185

the optimization experiments fast. Furthermore, the baselines explained in Sec. 3 are provided. 186

The exploration of HPO algorithms with varying conditions, such as changing the noise level, 187

is available, as described in Sec. 4.1. LassoBench provides the e�ective dimensionality for each 188

benchmark, as explained in Section 4.1.1 and 4.2. The objective function Eq. (2) for , is mainly 189

de�ned in an axis-aligned subspace where most of the _ 9 correspond to V 9 = 0. Further, LassoBench 190

exposes an interface for experimenting with MISO, see Sec. 4.3. Lastly, we introduce how to 191

automatically infer the search space bounds in Sec. 4.4 and discuss limitations in Sec. 7. 192

4.1 Synthetic Benchmarks 193

The initial purpose of the synthetic benchmark by [19, 36] was to test and compare a newly 194

proposed Lasso-like algorithm in a well-de�ned environment. The adoption of this benchmark is 195

well-suited for HD-HPO algorithms as well, and LassoBench builds on it. Our suite of synthetic 196

benchmarks is built on a prede�ned set of ground-truth regression coe�cients #
true

, which are 197

commonly unknown in real-world applications. The target signal ~ ∈ R=
is then simply calculated 198

as ~ = X#
true
+ / , where X ∈ R=×3

is the design matrix and / is a noise vector with signal-to-noise 199

ratio (SNR) de�ned as in [36] as SNR =


X#

true



 /‖/ ‖. The design matrix X is drawn from a 200

d-dimensional multivariate normal distribution with zero mean, unit variance and correlation 201

structure d = 0.6 that quanti�es the correlation intensity between features E[G8 , G 9 ] = d |8−9 | . A 202

decreased SNR determines the robustness of HPO algorithms regarding noisy black-box functions. 203

LassoBench users can select one of the prede�ned synthetic benchmarks described in Table 1(a). The 204

number of hyperparameters 3 corresponds to the size of the search space in column 3, and ranges 205

from 60 to 1000 with the e�ective dimensionality 34 in column 4 that corresponds to 5% of non-zero 206

2
A simple tutorial on how to run LassoBench can be found in github.com/ksehic/LassoBench.
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elements of #
true

. The true regression coe�cients #
true

≠ 0 de�ne an axis-aligned subspace and 207

are selected proportionately between 1 and −1. Each benchmark can be selected to be noiseless 208

SNR = 10 (default) or noisy SNR = 3. Since, the synthetic benchmarks in Table 1(a) use the same 209

random seed, they are deterministic and reproducible. This is an important feature for a benchmark, 210

so that the results of multiple HD-HPO experiments can be meaningfully compared. Besides being 211

able to use the benchmarks in Table 1, an advanced user of LassoBench can seamlessly create their 212

own benchmark by changing the parameters mentioned above; this is useful for researchers and 213

practitioners willing to work on extreme noise cases or on higher ambient dimensionality settings. 214

4.1.1 E�ective Dimensionality. The loss function in Eq. (2) is de�ned in an axis-aligned subspace as the 215

hyperparameters _ 9 in wLasso that correspond to V 9 = 0 can be seen as dummy variables. As a 216

consequence the e�ective dimensionality is the number of V 9 ≠ 0. Thus, in synthetic benchmarks, 217

the e�ective dimensionality is controlled by choosing the number of non-zero elements in the true 218

regression coe�cients #
true

. As seen in Table 1(a), the e�ective dimensionality ranges from 3 up to 219

50 dimensions allowing for a wide benchmark diversity. It is worth noting that increasing the noise 220

level not only a�ects the output of a benchmark but a�ects also the e�ective dimensionality of the 221

ambient subspace. However, large values of _ 9 increase the sparsity and reduce the noise e�ect. 222

4.2 Real-world Benchmarks 223

LassoBench comes with easy-to-use real-world benchmarks. The datasets for these benchmarks 224

are fetched from the LIBSVM website [7] via the package libsvmdata [36]. These are some of 225

the most commonly used datasets in the Lasso community, we summarize them in Table 1(b). 226

LassoBench does not require the user to have prior knowledge on Lasso. The �rst three benchmarks 227

come from medical applications and are characterized by a moderate number of data points. The 228

breast cancer dataset [1] is based on 683 cell nucleus with 10 baseline features. The objective is 229

to predict if a cell nucleus is malignant or benign. The Diabetes dataset [37] includes 8 features 230

from 768 patients, to predict disease progression. The Leukemia dataset [3] includes 7,129 gene 231

expression values from 72 samples for predicting the type of Leukemia. The DNA dataset [38] 232

is a microbiology classi�cation problem in which the 60 base-pair sequence are binarized to 180 233

attributes. Lastly, the Reuters Corpus Volume I (RCV1) [32] is a text categorization benchmark 234

(3 = 19, 959) consisting of categorized stories. For these real-world benchmarks, we cannot explicitly 235

de�ne the e�ective dimensionality. In Table 1(b), we provide the number of dimensions of the 236

approximated axis-aligned subspace
ˆ34 , which is here de�ned using the baseline Sparse-HO as 237

ˆ34 = | |#̂ | |0. As previously discussed, the number of non-zero elements for # de�nes an axis-aligned 238

subspace. As an example, in Diabetes, 5 features are relevant for prediction, while 7 features of 10 239

in Breast_cancer are irrelevant. 240

4.3 Multi-information Source Optimization 241

The main computational burden in Eq. (2) is the inner coordinate descent optimization loop that 242

approximates the regression coe�cients. Being an iterative solver, the coordinate descent budget 243

can be used for MISO, i.e., changing the tolerance level parameter leads to faster solutions. While 244

these estimations are less accurate, they still correlate with the target function, as shown in 245

Fig. 2 in Appendix D, so they can be used to reduce the overall optimization cost. These varying 246

qualities of estimations are usually referred to as �delities, with the highest one associated to the 247

highest accuracy level. In LassoBench, we cover both types of multi-�delity scenarios found in 248

the literature: discrete [43] and continuous [24, 27] �delities. The �delities are derived from the 249

tolerance parameter (i.e., a continuous parameter) in the inner optimization problem Eq. (2). The 250

highest �delity is given by the lowest tolerance level, more detailed in Appendix D. To the best of 251

our knowledge, the MISO literature does not cover HD-HPO [9, 50]. We see LassoBench setting 252

the stage for future research on this topic. 253
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4.4 Ambient Space Bounds 254

Upper and lower bounds for the hyperparameters are de�ned so that , ∈ [_min, _max]3 . These 255

search space bounds are dataset-dependent and adapted using Lasso domain-speci�c knowledge. 256

The upper bound is associated to the largest possible value yielding a non-zero solution [17], hence 257

_max = log

(
1

=
‖X>~‖∞

)
. For _min, no consensus has emerged in the Lasso community, and setting 258

a reasonable value remains an open question. In [3], a heuristic choice is _min = _max − log(104). 259

In LassoBench, _min and _max are precomputed for each benchmark and a re-scaling is performed 260

so that the search space is [−1, 1]3 . For the synthetic benchmarks, the lower bound is de�ned as 261

_max−log(102) based on our domain knowledge. LassoBench similarly de�nes _min as _max−log(105) 262

for the real-world benchmarks with the exception of RCV1 where we de�ne it as _max − log(103). 263

5 Empirical Analysis 264

We compare the performance of popular HD-HPO algorithms, such as ALEBO [31], HeSBO [39], 265

TuRBO [11], CMA-ES [22] and Hyperband [33], w.r.t. the baselines introduced in Sec. 3.3 and 266

random search. While CMA-ES and Hyperband were not explicitly designed for HD-HPO problems, 267

they are well-suited for this setting because these methods are based on random sampling. As a 268

consequence, we select Hyperband over its extensions [12, 29] because it scales well over many 269

dimensions. For CMA-ES, the population factor is selected as 20 samples with the initial standard 270

deviation f = 0.1 based on our experience running CMA-ES with LassoBench. The design of 271

experiments (DoE) phase for the HD-BO methods is �xed across all experiments at 3low + 1 samples; 272

the total number of evaluations is 1000 and 5000 for di�erent benchmarks. While in LassoBench 273

the e�ective dimensionality of the benchmarks is available, we opt for testing di�erent guesses 3low 274

of the e�ective embedding dimensionality for ALEBO and HeSBO (see [31, 39]) and report results 275

for the best empirical guesses. For TuRBO, DoE is de�ned as 0.13 for the synthetic benchmarks 276

and for the real-world benchmarks it is �xed to 100 samples due to the extreme high-dimensional 277

settings. For Sparse-HO, we use the default initialization, but after 20 iterations (which typically 278

corresponds to convergence), we restart the procedure with a new initial con�guration until the 279

budget is exhausted. We coin this new approach Multi-start Sparse-HO and show in Appendix E 280

its superiority to Sparse-HO. We report average performance over 30 repetitions. We used the 281

Swedish National Infrastructure for Computing (SNIC) resources with a 64GB of memory and a 32 282

core CPU. 283

5.1 Synthetic Benchmarks 284

The comparison between the selected methods on synt_hard (with 3 = 1000) is shown in Fig. 1 for 285

both the noiseless (upper left) and noisy (upper right) cases. The MSE is scaled with the reference 286

MSE estimation from using #
true

giving the reference objective value equals to 1. Exceeding this 287

reference value potentially results in over�tting. Other synthetic benchmarks 3 = 60, 100, 300 288

can be found in Appendix H and Table 2. Runtime performance analysis for synt_hard and other 289

synthetic benchmarks can be found in Appendix G. 290

Baseline Methods Although LassoCV (black) generates better estimates than AdaptiveLassoCV 291

(blue), the performance of both methods drops for the noisy case. The lines are reversed in the noise- 292

less and noisy cases for lower dimensions as shown in Appendix H implying that AdaptiveLassoCV 293

is more robust to noise. Both methods perform better in higher dimensions. Multi-start Sparse-HO 294

(green) quickly converges to a local minimum surpassing the baselines in both conditions. In the 295

noiseless case of synt_hard, it generates the best-�nal estimate 0.96. 296

HD-HPO Methods The HD-HPO methods ALEBO (3low = 50), HeSBO (3low = 2), and Hyperband 297

yield lower accuracy than the baselines. Due to the computational requirements, ALEBO and 298

HeSBO are limited to 100 and 1000 evaluations, respectively. Interestingly, increasing the embedding 299
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Figure 1: Baselines and HPO algorithms comparisons on synt_hard (noiseless and noise), upper row,

and the real-world benchmarks (Leukemia and RCV1), bottom row.

Method Noise synt_simple synt_medium synt_high synt_hard Leukemia RCV1

(d=60) (d=100) (d=300) (d=1000) (d=7,129) (d=19,959)

(N=1000) (N=1000) (N=5000) (N=5000) (N=2000) (N=1000)

LassoCV False 4.73 1.67 2.48 2.37

0.44 0.18
True 4.58 1.65 2.48 2.38

Adaptive False 2.06 1.52 1.18 1.27

0.51 0.21

LassoCV True 7.98 2.48 1.32 1.46

Multi-start False 0.697 ± 0.34 1.23 1.11 ± 0.92 0.96 ± 0.27

0.06 ± 0.1 0.25 ± 0.17

Sparse-HO True 0.59 ± 0.31 0.73 ± 0.49 0.76 ± 0.37 0.71 ± 0.58

Random False 67.22 ± 58.9 60.68 ± 35.5 69.41 ± 21.3 78.45 ± 13.6

0.85 ± 0.21 0.27 ± 8e-3

Search True 8.31 ± 6.9 7.93 ± 3.6 8.83 ± 2.0 8.96 ± 1.1

CMA-ES False 0.695 ± 0.08 1.07 ± 0.06 0.96 ± 0.03 1.01 ± 0.02 0.015 ± 7e-3 0.23 ± 3e-3

True 0.34 ± 0.1 0.48 ± 0.08 0.64 ± 0.06 0.62 ± 0.03

ALEBO False 14.59 ± 26.1 18.16 ± 14.1 21.68 ± 18.4 21.84 ± 7.1

Out of memory Out of memory

True 4.95 ± 3.5 4.48 ± 2.6 4.75 ± 1.7 3.89 ± 0.5

HeSBO False 3.20 ± 0.2 1.74 ± 0.2 2.66 ± 0.2 7.57 ± 10.0

0.45 ± 2e-2 0.24 ± 7e-3

True 3.56 ± 0.6 1.74 ± 0.1 2.82 ± 0.4 2.56 ± 0.3

Hyperband False 1.52 ± 0.3 4.53 ± 3.2 5.38 7.87

0.43 0.26 ± 2e-3

True 1.44 ± 0.3 1.94 2.49 2.51

TuRBO False 0.78 ± 0.7 0.95 ± 0.1 0.90 ± 0.03 1.00 ± 0.02

0.39 ± 9e-2 Out of memory

True 0.30 ± 0.07 0.55 ± 0.1 0.59 ± 0.1 0.84 ± 0.09

Table 2: Best-found MSE obtained for all optimizers and di�erent benchmarks. We report means and

standard deviation across 30 runs of each optimizer with # as the number of evaluations. For

each benchmark, bold face indicates the best MSE.

dimensionality in HeSBO yields no improvement for the �nal solution. We conjecture this to be 300

caused by the imperfect structure of the axis-aligned subspace in the synthetic benchmarks as 301

mentioned in Sec. 4.1.1. Although Hyperband leverages the ability to discard a large number of 302

con�gurations on low �delities, the �nal performance does not exceed the default con�guration as 303

further explained in Appendix F. TuRBO (red) exceeds the Lasso-based baselines for all synthetic 304

benchmarks. However, it yields lower accuracy than Sparse-HO for synt_hard and the noiseless 305

case of synt_simple, as shown in Table 2 and Appendix H. Still, the performance is less sensitive 306

to the noise level than Sparse-HO. Furthermore, TuRBO keeps improving with more evaluations, 307

showing potential for higher performance at convergence. The performance of CMA-ES (yellow) 308

and TuRBO are comparable; TuRBO generates slightly better results for the noiseless case and 309

CMA-ES slightly better results for the noisy case as seen in Table 2. For synt_hard, CMA-ES gives 310

better and faster results (1.00 and 0.62) than TuRBO (1.00 and 0.84), but slightly less accurate than 311

Sparse-HO in the noiseless case (0.96). CMA-ES is initialized with the default con�guration used in 312

Sparse-HO. While being slower at the start, it later easily exceeds Sparse-HO and keeps improving 313

as seen in Fig. 1 and Appendix H for other synthetic benchmarks. Even though the HD-BO methods 314

show competitive performance, it is worth noting that the run-time performance is signi�cantly 315
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higher than the baselines as shown in Appendix G and Fig. 7. The di�erence is mostly related to 316

the training of the surrogate model that is not included in CMA-ES. Therefore, CMA-ES shows a 317

competitive run-time performance compared with the baselines. However, on high-dimensional 318

optimization problems with 3 > 10
4
, it becomes demanding to e�ciently store the covariance 319

matrix in memory [34]. The computational load of Sparse-HO is directly related to the complexity 320

of a benchmark and estimating a weak Jacobian matrix [3]. 321

5.2 Real-world Benchmark 322

We compare the baselines and HD-HPO methods on the very high-dimensional Leukemia (d=7,129) 323

and RCV1 (d=19,959) benchmarks in Fig. 1 (bottom row). The results for the rest of the real-world 324

benchmarks (i.e., , Breast_cancer, Diabetes and DNA) can be found in Appendix I. Appendix G 325

describes the comparison as a function of the runtime performance, see Fig. 5. While ALEBO is 326

omitted in both cases because it is computationally infeasible in such high-dimensional problems, 327

TuRBO is omitted only for RCV1. 328

In the Leukemia benchmark, CMA-ES surprisingly quickly exceeds all baselines and converges to 329

the best estimation of 0.015 MSE, which is 75% better than the second-best which is Multi-start 330

Sparse-HO (0.06 MSE). The performance of TuRBO initialized with 100 samples �attens out rapidly 331

at 0.39 and does not improve with more evaluations. However, the �nal estimation is better than 332

the Lasso-based baselines (LassoCV with 0.45 and AdaptiveLassoCV with 0.51) and HeSBO (0.45). 333

For RCV1, as shown in Fig. 1 and Table 2, both LassoCV and AdaptiveLassoCV provide the best 334

MSEs, 0.187 and 0.215, respectively. The default initialization traps Sparse-HO in a suboptimal 335

local minimum after 20 iterations (0.351). With multiple random starts, Sparse-HO �nds a better 336

MSE (0.25). Further, HeSBO with 3low = 2 (0.247) and Hyperband (0.265) �nd better estimates than 337

Sparse-HO and random search (0.277), but are slightly less accurate than the Lasso-based baselines. 338

CMA-ES �attens out slowly with the �nal estimate (0.234) slightly less accurate than Sparse-HO. 339

6 Conclusion and Future Work 340

In the absence of practical high-dimensional benchmarks, the open-source package LassoBench 341

based on wLasso provides a platform for newly proposed HD-HPO methods to be easily tested 342

on di�erent synthetic and real-world problems. LassoBench exposes a number of features, such 343

as both noisy and noise-free benchmarks, well-de�ned e�ective dimensionality subspaces, and 344

multiple �delities, which enables the use of many �avors of Bayesian optimization algorithms to be 345

improved and extended to the high-dimensional setting. Most importantly, LassoBench introduces 346

the Weighted Lasso (wLasso) HPO problem to the AutoML community which, with their research 347

contributions, will have a real-world impact on a fundamental class of models, i.e., sparse regression 348

models. Our results show that HD-BO methods and evolutionary strategy can indeed provide better 349

estimations than the standard Lasso baselines for di�erent synthetic and real-world benchmarks. 350

This opens up a new way of thinking about HPO for high-dimensional Lasso problems, getting 351

the Lasso community one step closer to democratizing wLasso models. Still, scaling to higher 352

dimensions typically encountered in the Lasso community for real-world applications represents 353

an open research question. We plan to combine the Lasso baselines with the HD-HPO methods 354

to leverage the advantages of both methods. Potentially, as an initializing HPO method, CMA-ES 355

can be initialized with the best-found solutions from the Lasso-based baselines. Furthermore, 356

Sparse-HO can be combined with Hyperband where the number of steps in the coordinate descent 357

can serve as the budget. Additional validation criteria [3] will be included in a future release of 358

LassoBench. 359
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7 Limitations and Broader Impact Statement 360

LassoBench is likely to boost progress in high-dimensional black-box optimization methods and 361

sparse regression models. Unlocking the full potential of Weighted Lasso will potentially improve 362

illness detection and treatment in medicine and genomics, and forecasting models in �nance. 363

There are also important considerations related to the benchmarks found in LassoBench. A wrongly 364

used benchmark may lead research in the wrong direction. All benchmarks in LassoBench are 365

speci�cally created for HD-HPO. Hence, any strong conclusions regarding sparse regression should 366

not be made without doing additional experiments found in LassoBench, such as support recovery 367

and the performance on test datasets. In addition, the lower bound for the hyperparameters is an 368

open research question. In LassoBench, we mostly rely on heuristics based on our expert insight. 369

Further, all benchmarks are based on the CV criterion that can over�t. The computational load of 370

the benchmarks is a�ordable for research that does not rely on large data centers. 371
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8 Reproducibility Checklist 508

1. For all authors. . . 509

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s 510

contributions and scope? [Yes] [We provide the benchmark suite for high-dimensional 511

HPO methods based on Weighted Lasso regression and show the results where Bayesian 512

optimization and evolutionary strategy can exceed the baselines w.r.t. MSE.] 513

(b) Did you describe the limitations of your work? [Yes] [In Section 7 mostly, but we also 514

discuss them in the main part in 4.1.1.] 515

(c) Did you discuss any potential negative societal impacts of your work? [No] [As a bench- 516

mark suite, LassoBench will not bring potentially any direct negative societal or ethical 517

consequences. In Section 7, we include the broader impact statement related to LassoBench.] 518
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(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? 519

[Yes] 520

2. If you are including theoretical results. . . 521

(a) Did you state the full set of assumptions of all theoretical results? [N/A] [We do not include 522

theoretical results.] 523

(b) Did you include complete proofs of all theoretical results? [N/A] [We do not include 524

theoretical results.] 525

3. If you ran experiments. . . 526

(a) Did you include the code, data, and instructions needed to reproduce the main experimen- 527

tal results, including all requirements (e.g., requirements.txt with explicit version), an 528

instructive README with installation, and execution commands (either in the supplemental 529

material or as a url)? [Yes] [LassoBench is an open-source repository that can be accessed 530

via the link provided in the main text as well in Appendix B. The repository link includes 531

README with installation and execution commands. In example folder, the user can �nd the 532

examples and the instructions on how to use LassoBench with well-known HPO methods, 533

such as ALEBO, TuRBO, CMA-ES, and HeSBO. Furthermore, the tuning parameters of each 534

HPO method are reported in the main text, see Section 5.] 535

(b) Did you include the raw results of running the given instructions on the given code and 536

data? [No] [The plots in our study describe the simple regret. Extensive computations are 537

required to generate the results. However, each benchmark in LassoBench is reproducible. 538

In example folder we describe how the user can use LassoBench and how to set up well- 539

known HPO methods. Following the descriptions of each method in the main text, we argue 540

that the user can easily reproduce any result from this study.] 541

(c) Did you include scripts and commands that can be used to generate the �gures and tables 542

in your paper based on the raw results of the code, data, and instructions given? [No] 543

[The plots in our study describe the simple regret. Extensive computations are required to 544

generate the results. However, each benchmark in LassoBench is reproducible. In example 545

folder we describe how the user can use LassoBench and how to set up well-known HPO 546

methods. Following the descriptions of each method in the main text, we argue that the 547

user can easily reproduce any result from this study.] 548

(d) Did you ensure su�cient code quality such that your code can be safely executed and the 549

code is properly documented? [Yes] [Each function in LassoBench is clearly documented.] 550

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, 551

�xed hyperparameter settings, and how they were chosen)? [Yes] [Each benchmark in 552

LassoBench is completely reproducible as described in Section 4.] 553

(f) Did you ensure that you compared di�erent methods (including your own) exactly on the 554

same benchmarks, including the same datasets, search space, code for training and hyper- 555

parameters for that code? [Yes] [Each benchmark in LassoBench is completely reproducible 556

as described in Section 4.] 557
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(g) Did you run ablation studies to assess the impact of di�erent components of your approach? 558

[Yes] [We tried di�erent components of each HPO method used in this study and reported 559

the best performances.] 560

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] [Each 561

benchmark in LassoBench provide the same evaluation protocol.] 562

(i) Did you compare performance over time? [Yes] [In Appendix G we provide the runtime 563

performance.] 564

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] [We 565

have performed multiple runs that is 30 repetitions for each method without reporting 566

which random seeds.] 567

(k) Did you report error bars (e.g., with respect to the random seed after running experiments 568

multiple times)? [Yes] [In appendix G and H, each HPO method has the con�dence interval 569

calculated with the standard deviation.] 570

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] [LassoBench 571

is a benchmark suite.] 572

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 573

gpus, internal cluster, or cloud provider)? [No] [It is not relevant for our study.] 574

(n) Did you report how you tuned hyperparameters, and what time and resources this required 575

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 576

also hyperparameters of your own method)? [N/A] [Our study compares di�erent HPO 577

methods w.r.t. the benchmarks found in LassoBench.] 578

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 579

(a) If your work uses existing assets, did you cite the creators? [Yes] LassoBench is based on 580

the open-source library Sparse-HO cited in the text. Further, we include the Lasso-based 581

baselines derived from the open-source library Celer. The real-world benchmarks are 582

derived from the publicly available LIBSVM website. 583

(b) Did you mention the license of the assets? [Yes] The license of our LassoBench is included 584

in the appendix and in our GitHub repository. The licenses for the libraries and datasets 585

used in LassoBench can be found in their own publicly available repositories and websites 586

following the citations noted in the text. 587

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We 588

include in the main text how one can access LassoBench and provide a simple tutorial in our 589

repository in READ ME. Additionally, we discuss in Appendix B how to access LassoBench. 590

In Appendix C, we discuss how we plan to maintain the repository. 591

(d) Did you discuss whether and how consent was obtained from people whose data you’re 592

using/curating? [N/A] Our experiments were conducted on publicly available datasets and 593

we did not introduce new datasets. 594
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(e) Did you discuss whether the data you are using/curating contains personally identi�able 595

information or o�ensive content? [N/A] Our experiments were conducted on publicly 596

available datasets and we did not introduce new datasets. 597

5. If you used crowdsourcing or conducted research with human subjects. . . 598

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 599

cable? [N/A] [We did not use crowdsourcing or conducted research with human subject] 600

(b) Did you describe any potential participant risks, with links to Institutional Review Board 601

(irb) approvals, if applicable? [N/A] [We did not use crowdsourcing or conducted research 602

with human subject] 603

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 604

on participant compensation? [N/A] [We did not use crowdsourcing or conducted research 605

with human subject] 606
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A Licence 607

The open-source package LassoBench is licensed under the MIT License. The synthetic benchmarks 608

(synt_simple, synt_medium, synt_high, synt_hard) are licensed under the MIT License. The real- 609

world benchmarks (Breast_cancer, Diabetes, Leukemia, DNA, RCV1) and their corresponding 610

real-world datasets are licensed according to the LIBSVM website. 611

B Availability 612

LassoBench and a user guide are found on GitHub at github.com/ksehic/LassoBench. 613

C Maintenance 614

We are planning to include additional Lasso validation criteria and benchmarks. AdaptiveLassoCV 615

is yet to be included o�cially in Celer. Hence, we plan to include it in LassoBench accordingly. Until 616

then, one can follow the branch adaptivelassocv in the GitHub repository github.com/mathurinm/ 617

celer. We are committed to �xing any issues that may arise. For any suggestions or technical 618

inquiry, we recommend using the issue tracker of our repository. 619

D Rank Correlation of Information Sources in LassoBench 620

The assumption when using multi-�delity frameworks is that �delities are highly correlated. 621

Figure 2 provides the rank correlation matrix between 5 disjoint �delities that correspond to 622

tolerance levels {0.2, 10−1, 10−2, 10−3, 10−4} for the synt_simple benchmark. We use the Pearson 623

correlation to measure the correlation intensity and we observe that the �delities are strongly 624

correlated. The two highest �delities with two lowest tolerance levels (10
−3

and 10
−4

) have a strong 625

linear relationship, which means that each �delity can be well-explained by a linear function of the 626

other. The largest tolerance level ; = 0, which is the cheapest �delity, is su�ciently correlated with 627

the neighboring �delity, but the correlation intensity drops for farther tolerance levels. 628

Each benchmark is transformed in one of the two multi-�delity scenarios by selecting 629

discrete_fidelity or continuous_fidelity in LassoBench. For the discrete setting, the solver 630

tolerances are split into 5 disjoint levels ; = {0, 1, 2, 3, 4} corresponding to a tolerance level 631

of {0.2, 10−1, 10−2, 10−3, 10−4} as in Fig. 2, where ; = 0 is the largest tolerance level 0.2. In 632

continuous_fidelity, the parameter ; is a continuous variable in [0, 1] corresponding to the 633

set of tolerance levels in [0.2, 10−4]. These tolerance level boundaries are chosen based on Lasso 634

domain-speci�c knowledge [6]. 635

The cost of one cycle of coordinate descent is O(= · 3), where n is the number of samples and d is 636

the number of features. The inner solver runs until the duality gap is smaller than tol · ‖~‖2 /= [36] 637

or the maximum number of iteration is reached, where tol is the tolerance level. Hence, the cost 638

of each �delity is O(= · 3 · Cmax), where Cmax is the number of iterations when the duality gap is 639

smaller than tol · ‖~‖2 /=. 640

We demonstrate the time saved when using the low-�delity by comparing random search and 641

Hyperband [33] for synt_hard on Fig. 3. By using the low �delity Hyperband discards a large number 642

of sub-optimal con�gurations early on, which eventually results in a faster convergence than naive 643

random search. Due to the strong correlation between the �delities in LassoBench as seen in Fig. 2, 644

the �rst bracket of Hyperband (i.e., where the largest number of con�gurations is discarded) �nds 645

good hyperparameters in a few seconds (55.7 MSE and 7.0 MSE) w.r.t. random search (87.8 MSE 646

and 10.3 MSE). It is worth noting that the synthetic benchmarks are computationally light and 647

a few hundreds of evaluations are processed within a few seconds. In this experiment, we have 648

neglected the default con�guration as described in the main text and initialized both methods with 649

random samples. 650
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Figure 2: Rank correlation of the inner optimization w.r.t. the tolerance level on synt_simple. Correla-

tions between neighboring information sources are high and positive.
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Figure 3: Comparison between random search and Hyperband for synt_hard. The �nal performance

is based on 30 repetitions.

E Baseline Initialization Variability 651

The initialization of Sparse-HO is critical to achieve high performance. We show this phenomenon 652

empirically in Fig. 4, reporting the mean squared error (MSE) performance of Sparse-HO with four 653

di�erent initializations on the RCV1 benchmark. In addition to the default con�guration, we split 654

the range for _ 9 into 100 steps and select every 30th step as the �rst guess for _ 9 , where 9 = 1, . . . , 3 . 655

A poor initialization can trap Sparse-HO in a local minimum, hence it is crucial to choose a good 656

initial con�guration which is not known a priori. Once Sparse-HO converges to a local minimum 657

(typically the 10th iteration), we restart the exploration with a new initial value _ 9 drawn uniformly 658

at random within [_min, _max] until the budget is exhausted as noted in Fig. 4. We keep the same 659

value for all 9 dimensions to encourage sparsity as typically done in Lasso models. We observe 660

that this makes Sparse-HO more robust w.r.t. the �rst guess, where a bad initialization can be less 661

detrimental as seen in Fig. 4 for the default initialization, _2 and _3. We name this new method 662

Multi-start Sparse-HO and use it in the experiment section. 663

F Hyperband Experimental Setting 664

As the �delities in LassoBench are derived from the tolerance level, presenting the Hyperband 665

results as a function of the number of function highest-�delity evaluations requires multiple steps. 666

Speci�cally, in the plot, we don’t consider a low-�delity evaluation as one evaluation, but multiple 667

low-�delity evaluations will add up to one evaluation. We start by computing the average runtime 668

of one evaluation for a given Lasso benchmark by running 1000 random samples and computing 669
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Figure 4: The performance of Multi-start Sparse-HO for di�erent heuristically selected �rst guesses

as a function of the number of the solver iterations. At every 10th iteration, Multi-start

Sparse-HO randomly samples equally for all features a new �rst guess within [_min, _max].
The �nal performance is based on 30 di�erent repetitions.

the average runtime estimate. This average is then used to produce an approximate amount of 670

evaluations by dividing the runtime under a given �delity by the unit average runtime. 671

We initialize Hyperband with the default Lasso �rst guess because it is fair to use this available 672

prior knowledge. This is easily integrated in Hyperband. 673

G Runtime Performance 674

In this section, we compare the selected HD-HPO methods with the baselines for two synthetic 675

benchmarks (synt_simple and synt_hard) and two real-world benchmarks based on the Leukemia 676

and the RCV1 datasets as a function of the runtime performance. 677

The baseline Sparse-HO can evaluate thousands of evaluations in a few seconds because these 678

benchmarks are simple to run and do not require a large computational load. The main computa- 679

tional load of Sparse-HO is related to the Jacobian matrix that needs to be evaluated prior to the 680

coordinate descent [3]. 681

The computational cost of HD-BO methods is typically related to training a surrogate model and 682

optimizing the acquisition function. For the synthetic benchmarks, the performance of ALEBO is 683

drastically slower than the rest of the HD-BO methods, as seen in Fig. 6 and Fig. 8 where TuRBO 684

and HeSBO can evaluate 1000 evaluations in 500 seconds and ALEBO only 100 evaluations. It is 685

mostly due to the impractical computational requirements. Even though TuRBO can �nd better 686

estimations than the baselines in most cases, the runtime performance is impractical due to multiple 687

reasons, such as training a surrogate model in an ambient search space dimensionality, using the 688

Latin Hypercube for the DoE, and using the Sobol Sequence for Thompson sampling which do not 689

scale well in high dimensions. This is the main reason why TuRBO is omitted in RCV1 benchmark 690

where 3 = 19959, see Fig. 5 (right). While the performance of CMA-ES and TuRBO are eventually 691

very close, CMA-ES is less computationally intensive than TuRBO, because CMA-ES converges 692

faster and only improves slightly with more evaluations as shown in Fig. 6 and Fig. 7. Furthermore, 693

CMA-ES does not require to train a surrogate model nor optimizing the acquisition function. For 694

the noisy case of synt_simple, TuRBO generates the best estimation for 1000 evaluations as seen in 695

Table 2. However, by increasing the budget for CMA-ES, it eventually exceeds TuRBO and �nds 696

the best-�nal estimation as 0.27 MSE as demonstrated in Fig. 6. In the noiseless case of synt_hard, 697

Multi-start Sparse-HO keeps improving over time and eventually generates the best-�nal estimation 698
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Figure 5: Comparison between the Lasso baselines and the HD-HPO methods as a function of the

wall-clock time [s]. The bottom subplot includes the best found MSE from each method

and con�dence intervals for random methods de�ned by one standard deviation out of 30

repetitions.
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Figure 6: Baselines and HD-HPO algorithms comparison on synt_simple as a function of the wall-clock

time [s], left and right are noiseless and noisy, respectively. The bottom subplots show the

best found estimation from each method, with con�dence interval (for random methods)

de�ned by one standard deviation out of 30 repetitions.

with 0.82 MSE. While CMA-ES typically surpassed the Multi-start Sparse-HO within few seconds 699

for the synthetic benchmarks, it required 200s for the Leukemia benchmark as shown in Fig. 5 (left). 700

H Additional Synthetic Benchmarks 701

Following the discussion in Sec. 5, in addition to synt_hard (d=1000), this section provides the 702

results for the rest of the synthetic benchmarks synt_simple (i.e., d=60), synt_medium (i.e., d=100) 703

and synt_high (i.e., d=300). The performances of the Lasso-based baselines keeps improving 704

for higher dimensions. For synt_simple, the selected HD-HPO methods, such as HeSBO and 705

Hyperband, generate better estimations as seen in Fig. 8, which is not the case for synt_medium 706

(d=100), synt_high (d=300) and synt_hard (d=1000). Additionally, the Lasso-based baselines are 707

evidently more sensitive to the noise level than the selected HD-HPO methods. Sparse-HO with 708

the heuristically de�ned �rst guess converges to a local minimum within a few iterations. By 709

doing multiple random starts, where we randomly sample _ 9 , Sparse-HO can converge to better 710

estimations and escape local minima. In general, the �rst guess (i.e., _max − log(10)) used to 711

initialize Sparse-HO is applicable to synthetic settings, but inadequate for the real-world benchmarks 712

Leukemia and RCV1, as seen in Fig. 1 (bottom row). Immediately after the DoE (i.e., 3 + 1) TuRBO 713

�nds good trust regions and it keeps improving with every new evaluation. While TuRBO requires 714

a large number of evaluations to reach its peak of performance, CMA-ES initialized with the default 715
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Figure 7: Baselines and HD-HPO algorithms comparison on synt_hard as a function of the wall-clock

time [s], left and right are noiseless and noisy, respectively. The bottom subplots show the

best found estimation from each method, with con�dence interval (for random methods)

de�ned by one standard deviation out of 30 repetitions.

con�guration starts rapidly converging at lower estimations and exceeds the Sparse-HO and the 716

Lasso-based baselines with fewer evaluations than TuRBO. Even though TuRBO provides a better 717

estimation for the noiseless case, CMA-ES demonstrates the best performance for the noisy case. 718

Quantitatively, in synt_simple, TuRBO achieves 0.78 for the noiseless case and for the noise case 719

0.30 MSE, while Multi-start Sparse-HO 0.697 and 0.59. In CMA-ES, with the default �rst guess, 720

we have at 1000 evaluations 0.66 and 0.36 MSE, respectively. For synt_medium, TuRBO achieves 721

0.95 and 0.55 and Multi-start Sparse-HO 1.23 and 0.73. On the contrary, CMA-ES achieves 1.07 722

and 0.48 MSE for the default �rst guess. Lastly, for synt_high (3 = 300), we have 0.90 and 0.59 for 723

TuRBO and 1.11 and 0.76 for Multi-start Sparse-HO. In CMA-ES with the default �rst guess, the 724

best-found estimations are 0.96 and 0.64 MSE. While Multi-start Sparse-HO indeed demonstrates 725

strong performance in the noiseless benchmarks, the performance drops evidently in the noisy 726

settings.
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Figure 8: Baselines and HPO algorithms comparisons on synt_simple, left and right are noiseless and

noisy, respectively. The bottom subplots show the best found estimation from each method,

with con�dence interval (for random methods) de�ned by one standard deviation out of 30

repetitions.
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Figure 9: Baselines and HPO algorithms comparison on synt_medium, left and right are noiseless and

noisy, respectively. The bottom subplots show the best found estimation from each method,

with con�dence interval (for random methods) de�ned by one standard deviation out of 30

repetitions.
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Figure 10: Baselines and HPO algorithms comparison on synt_high, left and right are noiseless and

noisy, respectively. The bottom subplots show the best found estimation from each method,

with con�dence interval (for random methods) de�ned by one standard deviation out of 30

repetitions.
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Figure 11: Baselines and HPO algorithms comparison on synt_hard, left and right are noiseless and

noisy, respectively. The bottom subplots show the best found estimation from each method,

with con�dence interval (for random methods) de�ned by one standard deviation out of 30

repetitions.
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Figure 12: Baselines and HPO algorithms comparison on Breast_cancer (left) and Diabetes (right).

The bottom subplots show the best found estimation from each method, with con�dence

interval (for random methods) de�ned by one standard deviation out of 30 repetitions.

I Additional Real-world Benchmarks 728

Following the discussion in Sec. 5, in addition to Leukemia and RCV1, this section provides the 729

results for the rest of the real-world benchmarks Breast_cancer (i.e., d=10), Diabetes (i.e., d=8) 730

and DNA (i.e., d=180). The variability of the validation loss for two real-world benchmarks 731

Breast_cancer and Diabetes is low. The di�erence between all methods for these two benchmarks 732

is signi�cantly small as shown in Table 3. While CMA-ES is showing the best performance on 733

average for Breast_cancer (MSE 0.2609) and Diabetes (MSE 0.648), TuRBO is the best method for 734

DNA benchmark (MSE 0.292). The results are visualized as a function of the number of evaluations 735

on Figs. 12, and 13. Here, the e�ective embedding dimensionality 3low for ALEBO is de�ned as 736

3low = 3 for Breast_cancer, 3low = 5 for Diabetes and 3low = 43 for DNA benchmark. For HeSBO, it 737

is 3low = 2 for all three benchmarks. 738

Method Breast_cancer Diabetes DNA Leukemia RCV1

(d=10) (d=8) (d=180) (d=7,129) (d=19,959)

(N=400) (N=400) (N=1000) (N=2000) (N=1000)

LassoCV 0.2618 0.659 0.306 0.44 0.18
AdaptiveLassoCV 0.2622 0.666 0.31 0.51 0.21

Multi-start Sparse-HO 0.27 ± 1e-2 0.65 ± 2.2e-16 0.313 ± 1e-2 0.06 ± 0.1 0.25 ± 0.17

Random Search 0.3 ± 1e-2 0.66 ± 0.01 0.387 ± 1e-2 0.85 ± 0.21 0.27 ± 8e-3

CMA-ES 0.2609 ± 4e-5 0.648 ± 1e-6 0.335 ± 1-e2 0.015 ± 7e-3 0.23 ± 3e-3

ALEBO 0.3 ± 0.1 0.66 ± 1e-2 0.34 ± 1e-2 Out of memory Out of memory

HeSBO 0.2618 ± 2e-5 0.65 ± 1e-3 0.3 ± 1e-3 0.45 ± 2e-2 0.24 ± 7e-3

Hyperband 0.2626 ± 1e-3 0.649 ± 1e-3 0.352 ± 1e-2 0.43 0.26 ± 2e-3

TuRBO 0.2614 ± 1e-4 0.649 ± 1e-3 0.292 ± 1e-3 0.39 ± 9e-2 Out of memory

Table 3: Best-found MSE obtained for all optimizers and di�erent real-world benchmarks. We report

means and standard deviation across 30 runs of each optimizer with # as the number of

evaluations. For each benchmark, bold face indicates the best MSE.
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Figure 13: Baselines and HPO algorithms comparison on DNA benchmark. The bottom subplots show

the best found estimation from each method, with con�dence interval (for random methods)

de�ned by one standard deviation out of 30 repetitions.
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