
Deep Non-Parametric Time Series Forecaster

Anonymous Author(s)
Affiliation
Address
email

Abstract

This paper presents non-parametric baseline models for time series forecasting.1

Unlike classical forecasting models, the proposed approach does not assume any2

parametric form for the predictive distribution and instead generates predictions3

by sampling from the empirical distribution according to a tunable strategy. By4

virtue of this, the model is always able to produce reasonable forecasts (i.e., pre-5

dictions within the observed data range) without fail unlike classical models that6

suffer from numerical stability on some data distributions. Moreover, we develop7

a global version of the proposed method that automatically learns the sampling8

strategy by exploiting the information across multiple related time series. The9

empirical evaluation shows that the proposed methods have reasonable and con-10

sistent performance across all datasets, proving them to be strong baselines to be11

considered in one’s forecasting toolbox.12

1 Introduction13

Non-parametric models (or algorithms) are quite popular in machine learning for both supervised14

and unsupervised learning tasks especially in applied scenarios.1 Examples of non-parametric mod-15

els widely used in supervised learning [34] include classical k-nearest neighbours algorithm as well16

as more sophisticated tree-based methods like LightGBM and XGBoost [20, 7]. In contrast to para-17

metric models which have a finite set of tunable parameters that do not grow with the sample size,18

non-parametric algorithms produce models that can become more and more complex with an in-19

creasing amount of data; e.g., decision surface learned by k-nearest neighbours and decision trees.20

One of the main advantages of non-parametric models is that they work on any dataset, produce21

reasonable baseline results and aid in developing more advanced models.22

Despite the popularity of non-parametric methods in a general supervised setting, perhaps surpris-23

ingly, not much work is done in developing non-parametric methods in time series forecasting.24

Perretti et al. [31] show in a specific application setting that non-parametric methods can outper-25

form parametric models in the presence of noise and advocate for more flexible non-parametric26

approaches. However, much of the work in time series forecasting has focussed on developing para-27

metric models that typically assume Gaussianity of the data, e.g., ETS and ARIMA [15]. Some28

extensions of classical models have been proposed to handle intermittent data [8], count data [41],29

non-negative data [1] as well as more general non-Gaussian settings [39, 9]. However, most of these30

models cannot reliably work for all data distributions without running into numerical issues, which31

severely inhibits their usefulness in large-scale production settings. At the least, a robust, fail-safe32

model must be available to provide fall-back [6].33

This paper attempts to bridge this gap in the literature by presenting non-parametric models for34

the forecasting problem that can reliably be used for any data distributions and generate reasonable35

probabilistic forecasts. For this, we first introduce a simple, local version of the proposed method36

1See for example https://www.kaggle.com/kaggle-survey-2020.

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

https://www.kaggle.com/kaggle-survey-2020

called Non-Parametric Time Series Forecaster (NPTS, for short). The main idea here is to sample37

one of the time indices from the recent context window and use the value observed at that time38

index as the prediction for the next time step.2 The sampling procedure is repeated to generate39

Monte Carlo samples of the predictive distribution, which is the standard way to represent forecast40

distribution [15]. We present different sampling strategies based on seasonality of the data. This way,41

the model can capture seasonality and its predictions are always within the observed data range and42

do not require any overrides in a production setting to filter out bad or outlier forecasts. Since, the43

strategy of sampling only from the past observations cannot capture trend, one can use the standard44

preprocessing techniques such as differencing (see e.g., [16]) to de-trend the data before applying45

NPTS. Since our standard benchmark data sets do not exhibit such a behaviour, we do not use this46

technique in our experiments.47

We then develop a global extension of the method called Deep NPTS, where the sampling strategy48

is automatically learned from multiple related time series. For this we rely on a simple feed-forward49

neural network that takes in past data of all time series along with (optional) time series co-variates50

and outputs the sampling probabilities for the time indices. To train the model, we use a loss function51

based on the ranked probability score [11], which is a discrete version of the continuous ranked52

probability score (CRPS) [26]. Note that both RPS and CRPS are proper scoring rules for evaluating53

how likely the value observed is in fact generated from the given distribution [11, 14]. Once the54

model is trained, the sampling probabilities and then the predictions can be obtained by doing a55

forward pass on the feed-forward neural network, which does not result in any numerical problems.56

In spite of being a deep-learning based model, Deep NPTS produces output that is explainable57

(Figure 1). Moreover, it generates calibrated forecasts (Figure 2) and for non-Gaussian settings like58

integer data or rate/interval data, NPTS in general and DeepNPTS in particular give much better59

results than the standard baselines, suggesting that our methods are good baselines to consider.60

The article is structured as follows. We introduce the local model, NPTS, in Section 2 and then61

extend it to a global version in Section 3. After discussing related work in Section 4, we provide62

both qualitative and extensive quantitative experiments in Section 5. We conclude in Section 6.63

2 Non-Parametric Time Series Forecaster64

Here we introduce the non-parametric forecasting method for a single univariate time series. This65

method is local in the sense that it will be applied to each time series independently, similar to the66

classical models like ETS and ARIMA. In Section 3 we discuss a global version, which is more67

relevant to modern time series panels.68

Let z0:T−1 = (z0, z1, . . . , zT−1) be a given univariate time series. The time series z is univariate69

if each zi is a one-dimensional value. Note that we do not need to further specify the domain70

of the time series (e.g., whether z ∈ RT or z ∈ ZT) as this is not important unlike for other71

methods. To generate prediction for the next time step T , NPTS randomly samples a time index72

t ∈ {0, . . . , T − 1} from the past observed time range and use the value observed at that time index73

as the prediction. That is,74

ẑT = zt, t ∼ pT (·), t ∈ {0, . . . , T − 1},

where pT (·) is a categorical distribution with T states. To generate distribution forecast, we sample75

time indices from pT (·) K times and store the corresponding observations as Monte Carlo samples76

of the predictive distribution.77

Note that this is quite different from naive forecasting methods that choose a fixed time index to78

generate prediction, e.g., T − 1 or T − τ , where τ represents seasonal period. The sampling of time79

indices instead of choosing a fixed index from the past immediately brings up two advantages:80

• it makes the forecaster probabilistic and consequently allows one to generate prediction81

intervals,82

• it gives the flexibility by leaving open the choice of sampling distribution pT ; one can83

define pT based on prior knowledge (e.g., seasonality) or in more generally learn it from84

the data.85

2This is similar in spirit to k-nearest neighbours algorithm but unlike that method, our approach naturally
generates a probabilistic output.

2

We now discuss some choices of sampling distribution pT (·) that give rise to various specializations86

of NPTS. In Section 3 we discuss how to learn the sampling distribution.87

One natural idea for the sampling distribution is to weigh each time index of the past according88

to its “distance” from the time step where the forecast is needed. An obvious choice is to use the89

exponentially decaying weights as the recent past is more indicative of what is going to happen in90

the next step. This results in what we call NPTS (without any further qualifications):91

pT (t) ∝ exp(−α |T − t|),

where α is a hyper-parameter that will be tuned based on the data. We also refer to this variant as92

NPTS with exponential kernel.93

Seasonal NPTS: One can generalize the notion of distance from simple time indices to time-based94

features f(t) ∈ RD, e.g., hour-of-day, day-of-week. This results in what we call seasonal NPTS95

pT (t) ∝ exp(−α |f(T)− f(t)|).

The feature map f can in principle be learned as well from the data. In this case, one keeps the96

exponential kernel intact but only learns the feature map. The method presented in the next section97

directly learns pT .98

NPTS with uniform kernel (Climatological Forecaster): The special case, where one uses uni-99

form weights for all the time steps in the context window, i.e., pT (t) = 1/T , leads to Climatological100

forecaster [14]. One can similarly define a seasonal variant by placing uniform weights only on past101

seasons indicated by the feature map. Again, this is different from the seasonal naive method [16],102

which uses the observation from the latest season alone as the prediction whereas the former uni-103

formly samples from several seasons to generate prediction.104

Extension to Multi-Horizon Forecast: Note that so far we only talked about generating one step105

ahead forecast. To generate forecasts for multiple time steps one simply absorbs the predictions for106

last time steps into the observed targets and then generates consequent predictions using the last T107

targets. More precisely, let {ẑT,k}Kk=1 be the prediction samples obtained for the time step T . Then108

prediction samples for time steps T + t, t > 0 are generated auto-regressively using the values109

(zt, . . . , zT−1, ẑT,k, . . . , ẑT+t−1,k), k = 1, 2, . . . ,K.110

3 Deep Non-Parametric Time Series Forecaster111

The main idea of Deep NPTS model is to learn the sampling distribution from the data itself and con-112

tinue to sample only from the observed values. LetN be a set of univariate time series {z(i)0:Ti−1}
N
i=1,113

where z(i)1:Ti−1 = (z
(i)
1 , z

(i)
2 , . . . , z

(i)
Ti−1) and z(i)t is a scalar quantity denoting the value of the i-th114

time series at time t (or the time series of item i).3 Further, let {x(i)
0:Ti
}Ni=1 be a set of associated,115

time-varying covariate vectors with x
(i)
t ∈ RD. We can assume time-varying covariate vectors to116

be the only type of co-variates without loss of generality, as time-independent and item-specific fea-117

tures can be incorporated into x(i) by repeating the feature value over all time points. Our goal is to118

learn the sampling distribution p(i)Ti
(t), t = 0, . . . , Ti − 1 w.r.t. to the forecast start time Ti for each119

time series. The prediction for time step Ti for the ith time series is then obtained by sampling p(i)Ti
.120

3.1 Model121

Here we propose to use a feed-forward neural network to learn the sampling probabilities. As122

inputs to this global model, we define a fixed length context window of size T spanning the last123

T observations z(i)Ti−1:Ti−T . In the following, without loss of generality, we refer to this context124

window as the interval [0, T − 1] and the prediction time step as T ; however, note that the actual125

time indices corresponding to this context window would be different for different time series.126

3We consider time series where the the time points are equally spaced, but the units or frequencies are
arbitrary (e.g. hours, days, months). Further, the time series do not have to be aligned, i.e., the starting point
t = 1 can refer to a different absolute time point for different time series i.

3

For each time series i, given the observations from the context window, the network outputs the127

sampling probabilities to be used for prediction for time step T . More precisely,128

p
(i)
T (t) = Ψ(x

(i)
0:T , z

(i)
0:T−1;φ), t = 0, 1, . . . , T − 1. (1)

Here Ψ the neural network and φ is the set of neural network weights that are shared among all129

the time series. Note that for each time series i, the network outputs potentially different sampling130

probabilities if time series features differ among the time series. However, these different sampling131

probabilities are parametrized by a single set of common parameters φ, facilitating information132

sharing and global learning from multiple time series.133

We assume from here onwards that the outputs of the network are normalized so that p(i)T (t) represent134

probabilities. This can be achieved by using the softmax activation function for the final layer or135

using the standard normalization (i.e., dividing each output by the sum of the outputs). It turned136

out that either of the two normalizations do not consistently give the best possible results for all the137

datasets. Hence we treat this as a hyper-parameter in our experiments.138

3.2 Training139

We now describe the training procedure for our model defined in Eq. 1, in particular by defining an140

appropriate loss function. For ease of exposition and without loss of generality, we drop the index i141

in this section. Our prediction ẑT for a given univariate time series (z0, z1, . . . , zT−1) at time step142

T is generated by sampling from pT . So our forecast distribution for time step T can be seen as143

sampling from the discrete random variable ẐT with the probability mass function given by144

fẐT
(zt) =

∑
t′:zt′=zt

pT (t′), t = 0, . . . , T − 1. (2)

That is, the prediction is always one of zt, t = 0, . . . , T −1 and the probability of predicting zt is the145

sum of the sampling probabilities of those time indices where the value zt is observed. Similarly,146

the cumulative distribution function for any value z is given by147

FẐT
(z) =

∑
t:zt≤z

pT (t). (3)

Loss: Ranked Probability Score. Given that our forecasts are generated by sampling from the dis-148

crete random variable ẐT , we propose to use the ranked probability score between our probabilistic149

prediction (specified by FẐT
) and the actual observation zT ,150

RPS(FẐT
, zT) =

∑
zt∈{z0,...,zT−1}

Λαt(zt, zT), (4)

where αt = FẐT
(zt) is the quantile level of zt and Λα(q, z) is the quantile loss given by151

Λα(q, z) = (α− I[z<q])(z − q).

Note that the summation in the loss Eq. 4 runs only on the distinct values of the past observations152

given by the set {z0, . . . , zT−1}. The total loss of the network with parameters φ over all the training153

examples {z(i)0:T } can then be defined as154

L(φ) =

N∑
i=1

RPS(F
Ẑ

(i)
T

, z
(i)
T) (5)

Data Augmentation: Note that the loss defined in Eq. 5 uses only a single time step T to evaluate155

the prediction, for each training example. Since the same model would be used for multi-step156

ahead prediction, we generate multiple training instances from each time series by selecting context157

windows with different starting time points, similar to [38]. For example, assume that the training158

data is available from February 01 to February 21 of a daily time series and we are required to159

predict for 7 days. We can define the context window to be of size, say, 14 and generate 7 training160

examples with the following sliding context windows: February 1 + k : 14 + k, k = 0, 1, . . . , 6. For161

each of these seven context windows (which are passed to the network as inputs), the training loss is162

computed using the observations at February 15 + k, k = 0, 1, . . . , 6 respectively. We do the same163

for all the time series in the dataset.164

4

3.3 Prediction165

Once the model is trained, it can generate forecast distribution for a single time step. The multi-step166

ahead forecast can then be generated as described in the previous section using the same trained167

model. Note that to generate multi-horizon forecasts one needs to have access to time series feature168

values for the future time steps, a typical assumption of global models in time series forecasting [38,169

33].170

4 Related Work171

A number of new time series forecasting methods have been proposed over the last years, in partic-172

ular global deep learning methods (e.g., [29, 38, 23, 30, 36]). Benidis et al. [4] provides a recent173

overview. The usage of global models [19] in forecasting has well-known predecessors (e.g., [13]174

and [44] for a modern incarnation), however local models have traditionally dominated forecast-175

ing which have advantages given their parsimonious parametrization, interpretability and stemming176

from the fact that many time series forecasting problems consists of few time series. The surge of177

global models in the literature can be explained both by their theoretical superiority [28] as well178

as empirical success in independent competitions [25, 5]. We believe that both, local and global179

methods will continue to have their place in forecasting and its practical application. For example,180

the need for fail-safe fall-back models in real-world production use-cases has been recognized [6].181

Therefore, the methods presented here have both local and global versions.182

While many methods of the afore-mentioned recent global deep learning methods only consider183

providing point forecasts, some do provide probabilistic forecasts [45, 38, 33] motivated by down-184

stream decision making problems often requiring the minimization of expected cost (e.g., [40]).185

The approaches to produce probabilistic forecast range from making standard parametric assump-186

tions on the pdf (e.g., [38, 32]), to more flexible parametrizations via copulas [37] or normaliz-187

ing flows [35, 9], sometimes using extensions to energy-based models [36], from quantile regres-188

sion [45] to parametrization of the quantile function [12]. All these approaches share an inherent risk189

induced by potential numerical instability. For example, even estimating a standard likelihood of a190

linear dynamical system via a Kalman Filter (see [33] for a recent forecasting example) easily results191

in numerical complications unless care is taken. In contrast, the proposed methods here are almost192

completely fail-safe in the sense that numerical issues will not result in catastrophically wrong fore-193

casts. While the added robustness comes at the price of some accuracy loss, the overall accuracy is194

nevertheless competitive and an additional benefit is the reduced amount of hyperparameter tuning195

necessary, even for Deep NPTS.196

The general idea of constructing predictive distributions from the empirical distributions of (subsets197

of) observations has been explored in the context of probabilistic regression, e.g. in the form of198

Quantile Regression Forests [27] or more generally in the form of conformal prediction [43].199

5 Experiments200

We present empirical evaluation of the proposed method on the following datasets, which are pub-201

licly available in GluonTS time series library [2].202

• Electricity: hourly time series of the electricity consumption of 370 customers [10]203

• Exchange rate: daily exchange rate between 8 currencies as used in [21]204

• Solar: hourly photo-voltaic production of 137 stations in Alabama State used in [21]205

• Taxi: spatio-temporal traffic time series of New York taxi rides [42] taken at 1214 locations206

every 30 minutes in the months of January 2015 (training set) and January 2016 (test set)207

• Traffic: hourly occupancy rate of 963 San Francisco car lanes [10]208

• Wikipedia: daily page views of 9535 Wikipedia pages used in [12]209

• M4: datasets, of varying frequencies from hourly to yearly, used in the M4 competition [25]210

Table 1 summarizes the key features of these datasets. For M4 datasets there is a singe multi-211

horizon prediction window where the forecasts are evaluated. For other datasets, the predictions are212

evaluated in a rolling-window fashion. The length of the prediction window as well as the number213

5

dataset No. Test Points
Pred. Len. × No. Windows

Domain Freq. Size (Median) TS Len.

Exchange Rate 150 (30 × 5) R+ daily 8 6071
Solar Energy 168 (24 × 7) R+ hourly 137 7009
Electricity 168 (24 × 7) R+ hourly 370 5790

Traffic 168 (24 × 7) [0, 1] hourly 963 10413
Taxi 1344 (24 × 56) N 30-min 1214 1488
Wiki 150 (30 × 5) N daily 2000 792

M4 hourly 48 × 1 R+ hourly 414 960
M4 daily 14 × 1 R+ daily 4227 2940
M4 weekly 13 × 1 R+ weekly 359 934
M4 monthly 18 × 1 R+ monthly 48000 202

M4 quarterly 8 × 1 R+ quarterly 24000 88
M4 yearly 6 × 1 R+ yearly 23000 29

Table 1: Summary of the datasets used in the evaluations: Number of time ssteps evaluated, data
domain, frequency of observations, number of time series in the dataset, and median length of time
series.

of such windows are given in Table 1. Note that for each time series in a dataset, forecasts are214

evaluated at a total of τ time points, where τ is length of the prediction window times the number of215

windows. For τ , the total evaluation length, let T + τ be the length of the time series available for a216

dataset. Then each method initially receives time series for the first T time steps which are used to217

tune hyperparameters in a back-test fashion, e.g., training on the first T − τ steps and validating on218

the last τ time steps. Once the best hyperparameters are found, each model is once again trained on219

T time steps and is evaluated on the time steps from T + 1 to T + τ .220

Evaluation Criteria: For evaluating the forecast distribution, we use the mean of quantile losses221

evaluated at different quantiles implemented in GluonTS, with the quantile levels ranging from 0.5 to222

0.95 in steps of 0.05. Note that this is an approximate version of the continuously ranked probability223

score (CRPS), a proper metric for evaluating predictive distributions. Additionally, to evaluate mean224

forecasts, we use the (normalized) root-mean squared error (RMSE), which is an evaluation metric225

for point forecasts.226

Parameter Range

droput {0, 0.1}
static feat True | Flase
normalization softmax, normal
input scaling None, standardization
loss scaling None, min/max scaling
epochs {200, 300}
Table 2: Hyperparameter grid for DeepNPTS.

Parameter Range

dropout {0, 0.1}
static feat True | Flase
num of RNN cells {40, 80}
context length {1, 2}× pred. length
epochs {200, 300}

Table 3: Hyperparameter grid for DeepAR.

227

Methods Compared: We compare against the standard baselines in forecasting literature includ-228

ing Seasonal-Naive, ETS, ARIMA [16] as well as DeepAR [38], a deep-learning based forecasting229

model that has shown to be one of the best performing models empirically [2]4. We also include for230

comparison all the variants of the proposed NPTS method. In particular, we have the following four231

combinations: (i) NPTS with or without seasonality (ii) NPTS using uniform weights or exponen-232

tially decaying weights. For the variants of NPTS that use exponential kernel (NPTS, Seas.NPTS)233

we tune the (inverse of) width parameter α on the validation set. In particular, we use the grid:234

α ∈ {1.0, 0.75, 0.5, 0.25, 0.1}. For the other two variants using the uniform kernel (NPTS(uni.),235

Seas.NPTS(uni.)), there are no hyperparameters to be tuned. For the DeepNPTS model the hyper-236

parameter grid is given in Table 2. The number of layers of the MLP is fixed at 2 and the number of237

hidden nodes (equal to the size of the context window, see Section 3.1) is chosen as a constant mul-238

tiple of the prediction length. This multiple varies for each dataset (depending on the length of the239

4Results for more baselines are given in the supplementary material.

6

(a) Electricity (b) Solar Energy

(c) Traffic (d) Wiki

Figure 1: Example of forecasts obtained with DeepNPTS on some of the datasets used for exper-
iments, together with the probabilities that the model outputs. The dark green line is the median
forecast, surrounded by the 50% (green) and 90% (light green) prediction intervals. The red line is
the actual target in the forecast time window. The orange line indicates the probability assigned by
the model to the corresponding time point (as measured on the dual axis on the right of each plot),
in making the first time step prediction: this highlights the seasonal patterns that the model finds in
the data.

time series available) and is fixed at a large value, without tuning, so that multiple training instances240

(equal to the prediction length) can be generated for each time series in the dataset as discussed in241

Section 3.1. We give the exact lengths of the context windows used for each dataset in the supple-242

mentary material. Similarly Table 3 shows the hyperparameter grid for the DeepAR method. The243

other hyper-parameters of DeepAR are fixed at the default values [2]. Both DeepAR and DeepNPTS244

receive time features that are automatically determined based on the frequency of the given dataset245

as implemented in GluonTS [2]. For ETS and ARIMA, we use the auto-tuning option provided by the246

R forecast package [18]. We use the mean quantile loss as the criteria for tuning the models, since247

all models compared here produce distribution forecasts.248

Qualitative Analysis: Before presenting quantitative results, we first analyse the performance249

DeepNPTS model qualitatively by visualizing its forecasts as well as the probabilities it learned, by250

considering specific time series in detail (instead of overall aggregate accuracy metrics). Figure 1251

shows forecasts of DeepNPTS for one example time series taken from each of the four of the datasets252

used in the experiments. Each plot shows the true target as well as the 50% and 90% prediction253

intervals of the forecast distribution for the prediction window. Additionally, we show the output254

of the model (i.e., sampling probabilities) with an orange line (note the dual axes on the right side255

of each plot). Note that this is the output of the model in making the prediction for the first time256

step of the prediction window. In the case of Traffic, one can notice that the last observation and257

the same hour on the previous week received the highest probabilities, indicating that the model258

correctly captures the hour-of-week seasonality pattern. For Electricity, the same hour over259

multiple consecutive days was assigned high probability, indicating a hour-of-day seasonality. For260

non-seasonal time series like Wiki the most recent time points are assigned higher probabilities.261

One of the main benefits of DeepNPTS is then the explainability of its output: although it is a deep-262

learning based model, one can easily explain how the model generated forecasts by looking at which263

time points got higher probabilities, for any given time step, and also verify if the model assigned264

probabilities as intended.265

7

Figure 2: Calibration plot for the Traffic dataset: this shows what fraction of the actual data lies
below the predicted quantiles, and is a crucial quality metric for probabilistic forecasts (the ideal
profile lies on the diagonal). On this example, the predictions from DeepNPTS appear to be better
calibrated than the ones from Seas.NPTS and Seas.NPTS(uni.), which are in turn better calibrated
than the ones from DeepAR.

dataset Electricity Exchange Rate Solar Energy Taxi Traffic Wiki
estimator

Seas.Naive 0.070+/-0.000 0.011+/-0.000 0.605+/-0.000 0.507+/-0.000 0.251+/-0.000 0.404+/-0.000
AutoETS 0.118+/-0.001 0.007+/-0.000 1.717+/-0.005 0.572+/-0.000 0.359+/-0.000 0.664+/-0.001
AutoARIMA - 0.008+/-0.000 1.161+/-0.001 0.473+/-0.000 - 0.477+/-0.000
DeepAR 0.056+/-0.001 0.009+/-0.001 0.426+/-0.004 0.289+/-0.001 0.117+/-0.001 0.226+/-0.002

NPTS(uni.) 0.230+/-0.001 0.026+/-0.000 0.805+/-0.001 0.473+/-0.000 0.403+/-0.000 0.291+/-0.000
Seas.NPTS(uni.) 0.061+/-0.000 0.026+/-0.000 0.791+/-0.000 0.474+/-0.000 0.174+/-0.000 0.285+/-0.000
NPTS 0.230+/-0.001 0.021+/-0.000 0.802+/-0.001 0.473+/-0.000 0.403+/-0.000 0.277+/-0.000
Seas.NPTS 0.060+/-0.000 0.020+/-0.000 0.790+/-0.000 0.474+/-0.000 0.173+/-0.000 0.269+/-0.000
DeepNPTS 0.059+/-0.004 0.009+/-0.000 0.447+/-0.011 0.413+/-0.015 0.163+/-0.036 0.232+/-0.000

Table 4: Mean quantile losses averaged over 5 runs (lower is better). Best two methods are high-
lighted. The bottom half shows different variants of the NPTS method. AutoARIMA exceeded the
time limit of 24 hours for Electricity and Traffic data sets, so we do not report their numbers.

Next, we analyse how calibrated are the forecasts of the DeepNPTS model. Figure 2 shows cali-266

bration plot for the Traffic dataset. Calibration plot shows what fraction of the actual data lies267

below the predicted quantiles, with the ideal profile being the diagonal line. It is a crucial quality268

metric for probabilistic forecasts. As expected, forecasts from both the NPTS and DeepNPTS models269

are highly calibrated in absolute terms and in relative terms, more so than DeepAR with a student-t270

output distribution.271

dataset M4 daily M4 hourly M4 monthly M4 quarterly M4 weekly M4 yearly

Seas.Naive 0.028+/-0.000 0.048+/-0.000 0.146+/-0.000 0.119+/-0.000 0.063+/-0.000 0.162+/-0.000
AutoETS 0.022+/-0.000 0.042+/-0.001 0.096+/-0.000 0.076+/-0.000 0.049+/-0.000 0.122+/-0.000
AutoARIMA 0.024+/-0.000 0.038+/-0.001 0.094+/-0.000 0.077+/-0.000 0.048+/-0.000 0.120+/-0.000
DeepAR 0.022+/-0.000 0.050+/-0.003 0.112+/-0.002 0.086+/-0.004 0.051+/-0.004 0.130+/-0.007

NPTS(uni.) 0.161+/-0.000 0.115+/-0.001 0.257+/-0.000 0.289+/-0.000 0.319+/-0.001 0.389+/-0.000
Seas.NPTS(uni.) 0.161+/-0.000 0.053+/-0.000 0.258+/-0.000 0.288+/-0.000 0.329+/-0.001 0.389+/-0.000
NPTS 0.139+/-0.000 0.112+/-0.001 0.224+/-0.000 0.246+/-0.000 0.272+/-0.000 0.343+/-0.000
Seas.NPTS 0.139+/-0.000 0.046+/-0.000 0.225+/-0.000 0.245+/-0.000 0.285+/-0.000 0.343+/-0.000
DeepNPTS 0.027+/-0.000 0.065+/-0.019 0.149+/-0.012 0.097+/-0.002 0.057+/-0.001 0.168+/-0.008

Table 5: Mean quantile losses averaged over 5 runs (lower is better). Best two methods are high-
lighted. The bottom half shows different variants of the NPTS method.

8

Quantitative Results: Tables 4 and 5 summarize the quantitative results for the two groups of272

datasets considered via mean quantile losses, averaged over 5 runs. Top two best performing meth-273

ods are highlighted with boldface. In both tables, the top half shows the baselines considered and274

the bottom half shows different variants of the proposed NPTS method; more baseline results are275

in the supplement. First note that DeepNPTS model always (except for one case) achieves much276

better results than any other variant of NPTS showing that learning the sampling strategy clearly277

helps. Moreover, DeepNPTS comes as one of the top two methods in 5 out of 12 datasets consid-278

ered and in the remaining its results are close to the best performing method. Importantly for the279

difficult datasets like Solar Energy (non-negative data with several zeros), Traffic (data lies in280

(0, 1)) and Wiki (integer data), the gap between the performance of DeepNPTS and the standard281

baselines AutoETS and AutoARIMA is very high. Even some of the other variants of NPTS (with282

fixed sampling strategy) performed better than AutoETS and AutoARIMA in these datasets without283

any training (other than the tuning of α). All the variants of NPTS run much faster than the standard284

baselines AutoETS, AutoARIMA, which fit a different model to each time series in the dataset. These285

observations, in addition to explainability and being able to generate calibrated forecasts, further286

support our claim that the prosed methods in general and DeepNPTS in particular are good baselines287

to consider for any data distributions. In the supplement, we include additional results evaluating288

the mean (point) forecasts using the RMSE metric; the results trend is exactly the same.289

6 Conclusion290

In this paper we presented a novel probabilistic forecasting method, in both an extremely simple291

yet effective local version, and an adaptive, deep-learning-based global version. In both variants,292

the proposed methods can serve as robust, fail-safe forecasting methods that are able to provide293

accurate probabilistic forecasts. We achieve robustness by constructing the predictive distributions294

by reweighting the empirical distribution of the past observations, and achieve accuracy by taking295

advantage of learning the context-dependent weighting globally, across time series. We show in296

empirical evaluations that the methods, NPTS and Deep NPTS, perform roughly on-par with recent,297

state-of-the-art methods both quantitatively and qualitatively.298

Limitations: One key limitation of the proposed approach is that it—like all methods that rely299

directly on the empirical distributions of the observations to construct predictive distributions—300

without additional processing cannot model non-stationary time series (e.g. containing trend). While301

techniques for achieving stationarity (like differencing and de-trending) are readily available, care302

must be taken when they are combined with our proposed approach to retain robustness. Addressing303

this limitation in a principled way is an interesting avenue for future work. Further, the predictive304

distributions do not have a compact parametric form (or even a density), precluding certain applica-305

tions (though both could be obtained post-hoc e.g. through a parametric fit or smoothing via kernel306

density estimation). Finally, a limitation of this work stems from its intention as a robust baseline307

method: we do not expect our method to enable a truly state-of-the-art accuracy without introducing308

additional elements that would violate one of the design principles such as robustness.309

7 Broader Impact310

The present article stems from the authors’ work on time series forecasting in industrial settings.311

The proposed methods are applicable to forecasting and allow to re-use multiple time series panels.312

Business applications include supply chain optimization, sales prediction and energy forecasting.313

More accurate forecasts allow for better decision making which we hope will lead to benefits such314

as waste reduction, reduction of emission through improve transportation costs and optimisation of315

energy consumption.316

9

References317

[1] M. Akram, J. Hyndman, and K. Ord. Exponential smoothing and non-negative data. 51(4):318

415–432, 2009.319

[2] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T. Januschowski,320

D. C. Maddix, S. Rangapuram, D. Salinas, and J. Schulz. GluonTS: Probabilistic Time Series321

Models in Python. Journal of Machine Learning Research, 21(116):1–6, 2020.322

[3] V. Assimakopoulos and K. Nikolopoulos. The theta model: a decomposition approach to323

forecasting. International Journal of Forecasting, 16(4):521–530, 2000.324

[4] K. Benidis, S. S. Rangapuram, V. Flunkert, B. Wang, D. Maddix, C. Turkmen, J. Gasthaus,325

M. Bohlke-Schneider, D. Salinas, L. Stella, L. Callot, and T. Januschowski. Neural forecasting:326

Introduction and literature overview, 2020.327

[5] C. S. Bojer and J. P. Meldgaard. Kaggle forecasting competitions: An overlooked learning328

opportunity. International Journal of Forecasting, 37(2):587–603, 2021. ISSN 0169-2070.329

[6] J.-H. Böse, V. Flunkert, J. Gasthaus, T. Januschowski, D. Lange, D. Salinas, S. Schelter,330

M. Seeger, and Y. Wang. Probabilistic demand forecasting at scale. Proceedings of the VLDB331

Endowment, 10(12):1694–1705, 2017.332

[7] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the333

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,334

KDD ’16, pages 785–794. ACM, 2016.335

[8] J. Croston. Forecasting and stock control for intermittent demands. Journal of Operational336

Research Quarterly, 23(3):289–303, 1972.337

[9] E. de Bézenac, S. S. Rangapuram, K. Benidis, M. Bohlke-Schneider, R. Kurle, L. Stella,338

H. Hasson, P. Gallinari, and T. Januschowski. Normalizing kalman filters for multivariate339

time series analysis. In Advances in Neural Information Processing Systems, volume 33, pages340

2995–3007, 2020.341

[10] D. Dheeru and E. Karra Taniskidou. UCI machine learning repository. http://archive.342

ics.uci.edu/ml, 2017.343

[11] E. S. Epstein. A scoring system for probability forecasts of ranked categories. J. Appl. Meteor.,344

8:985–987, 1969.345

[12] J. Gasthaus, K. Benidis, Y. Wang, S. S. Rangapuram, D. Salinas, V. Flunkert, and346

T. Januschowski. Probabilistic forecasting with spline quantile function RNNs. AISTATS,347

2019.348

[13] J. Geweke. The dynamic factor analysis of economic time series. Latent variables in socio-349

economic models, 1977.350

[14] T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal351

of the American Statistical Association, 102(477):359–378, 2007.352

[15] R. Hyndman, A. Koehler, K. Ord, and R. Snyder. Forecasting with exponential smoothing. The353

state space approach. 2008. doi: 10.1007/978-3-540-71918-2.354

[16] R. J. Hyndman and G. Athanasopoulos. Forecasting: Principles and practice. www. otexts.355

org/ fpp , 987507109, 2017.356

[17] R. J. Hyndman and B. Billah. Unmasking the Theta method. International Journal of Fore-357

casting, 19(2):287–290, 2003.358

[18] R. J. Hyndman and Y. Khandakar. Automatic time series forecasting: the forecast package for359

R. Journal of Statistical Software, 26(3):1–22, 2008. URL https://www.jstatsoft.org/360

article/view/v027i03.361

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
www.otexts.org/fpp
www.otexts.org/fpp
www.otexts.org/fpp
https://www.jstatsoft.org/article/view/v027i03
https://www.jstatsoft.org/article/view/v027i03
https://www.jstatsoft.org/article/view/v027i03

[19] T. Januschowski, J. Gasthaus, Y. Wang, D. Salinas, V. Flunkert, M. Bohlke-Schneider, and362

L. Callot. Criteria for classifying forecasting methods. International Journal of Forecasting,363

2019.364

[20] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. LightGBM:365

A highly efficient gradient boosting decision tree. In I. Guyon, U. V. Luxburg, S. Bengio,366

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Informa-367

tion Processing Systems, volume 30. Curran Associates, Inc., 2017.368

[21] G. Lai, W. Chang, Y. Yang, and H. Liu. Modeling long- and short-term temporal patterns with369

deep neural networks. CoRR, abs/1703.07015, 2017.370

[22] E. Liberty, Z. Karnin, B. Xiang, L. Rouesnel, B. Coskun, R. Nallapati, J. Delgado,371

A. Sadoughi, Y. Astashonok, P. Das, C. Balioglu, S. Chakravarty, M. Jha, P. Gautier, D. Arpin,372

T. Januschowski, V. Flunkert, Y. Wang, J. Gasthaus, L. Stella, S. Rangapuram, D. Salinas,373

S. Schelter, and A. Smola. Elastic machine learning algorithms in amazon sagemaker. In374

Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data,375

SIGMOD ’20, page 731–737, New York, NY, USA, 2020. Association for Computing Ma-376

chinery. ISBN 9781450367356.377

[23] B. Lim, S. O. Arik, N. Loeff, and T. Pfister. Temporal fusion transformers for interpretable378

multi-horizon time series forecasting, 2019.379

[24] A. M. D. Livera, R. J. Hyndman, and R. D. Snyder. Forecasting time series with complex sea-380

sonal patterns using exponential smoothing. Journal of the American Statistical Association,381

106(496):1513–1527, 2011.382

[25] S. Makridakis, E. Spiliotis, and V. Assimakopoulos. The M4 competition: Results, findings,383

conclusion and way forward. International Journal of Forecasting, 34(4):802–808, 2018.384

[26] J. E. Matheson and R. L. Winkler. Scoring rules for continuous probability distributions. Man-385

agement science, 22(10):1087–1096, 1976.386

[27] N. Meinshausen. Quantile regression forests. Journal of Machine Learning Research, 7(Jun):387

983–999, 2006.388

[28] P. Montero-Manso and R. J. Hyndman. Principles and algorithms for forecasting groups of389

time series: Locality and globality. International Journal of Forecasting, 2021.390

[29] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio. N-beats: Neural basis expansion391

analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437, 2019.392

[30] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio. Meta-learning framework with393

applications to zero-shot time-series forecasting. arXiv preprint arXiv:2002.02887, 2020.394

[31] C. Perretti, G. Sugihara, and S. Munch. Forecasting and stock control for intermittent demands.395

Ecology, 94(4):794–800, 2013.396

[32] S. Rabanser, T. Januschowski, V. Flunkert, D. Salinas, and J. Gasthaus. The effectiveness of397

discretization in forecasting: An empirical study on neural time series models. arXiv preprint398

arXiv:2005.10111, 2020.399

[33] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski. Deep400

state space models for time series forecasting. In Advances in Neural Information Processing401

Systems, pages 7785–7794, 2018.402

[34] S. Raschka. Machine learning FAQ. What is the difference between a parametric learning403

algorithm and a nonparametric learning algorithm? https://sebastianraschka.com/404

faq/docs/parametric_vs_nonparametric.html.405

[35] K. Rasul, A.-S. Sheikh, I. Schuster, U. Bergmann, and R. Vollgraf. Multi-variate probabilistic406

time series forecasting via conditioned normalizing flows. arXiv preprint arXiv:2002.06103,407

2020.408

11

https://sebastianraschka.com/faq/docs/parametric_vs_nonparametric.html
https://sebastianraschka.com/faq/docs/parametric_vs_nonparametric.html
https://sebastianraschka.com/faq/docs/parametric_vs_nonparametric.html

[36] K. Rasul, C. Seward, I. Schuster, and R. Vollgraf. Autoregressive denoising diffusion models409

for multivariate probabilistic time series forecasting. arXiv preprint arXiv:2101.12072, 2021.410

[37] D. Salinas, M. Bohlke-Schneider, L. Callot, R. Medico, and J. Gasthaus. High-dimensional411

multivariate forecasting with low-rank gaussian copula processes. In Advances in Neural In-412

formation Processing Systems 32, 2019.413

[38] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. DeepAR: Probabilistic forecasting414

with autoregressive recurrent networks. International Journal of Forecasting, 2019.415

[39] M. W. Seeger, D. Salinas, and V. Flunkert. Bayesian intermittent demand forecasting416

for large inventories. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-417

nett, editors, Advances in Neural Information Processing Systems, volume 29. Curran418

Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/419

03255088ed63354a54e0e5ed957e9008-Paper.pdf.420

[40] D. Simchi-Levi and E. Simchi-Levi. We need a stress test for critical supply chains. Harvard421

Business Review, 2020.422

[41] R. D. Snyder, J. K. Ord, and A. Beaumont. Forecasting the intermittent demand for slow-423

moving inventories: A modelling approach. International Journal of Forecasting, 28(2):485–424

496, 2012.425

[42] N. Taxi and L. Commission. TLC trip record data. https://www1.nyc.gov/site/tlc/426

about/tlc-trip-record-data.page, 2015.427

[43] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic Learning in a Random World. Springer-428

Verlag, Berlin, Heidelberg, 2005. ISBN 0387001522.429

[44] Y. Wang, A. Smola, D. Maddix, J. Gasthaus, D. Foster, and T. Januschowski. Deep factors for430

forecasting. In International Conference on Machine Learning, pages 6607–6617, 2019.431

[45] R. Wen, K. Torkkola, and B. Narayanaswamy. A multi-horizon quantile recurrent forecaster.432

arXiv preprint arXiv:1711.11053, 2017.433

Checklist434

1. For all authors...435

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s436

contributions and scope? [Yes]437

(b) Did you describe the limitations of your work? [Yes] See Section 6.438

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In Sec-439

tion 7.440

(d) Have you read the ethics review guidelines and ensured that your paper conforms to441

them? [Yes]442

2. If you are including theoretical results...443

(a) Did you state the full set of assumptions of all theoretical results? [N/A]444

(b) Did you include complete proofs of all theoretical results? [N/A]445

3. If you ran experiments...446

(a) Did you include the code, data, and instructions needed to reproduce the main experi-447

mental results (either in the supplemental material or as a URL)? [No] We will open448

source the code after acceptance, we included instruction to reproduce the results and449

we used datasets available online.450

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they451

were chosen)? [Yes]452

(c) Did you report error bars (e.g., with respect to the random seed after running experi-453

ments multiple times)? [Yes]454

12

https://proceedings.neurips.cc/paper/2016/file/03255088ed63354a54e0e5ed957e9008-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/03255088ed63354a54e0e5ed957e9008-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/03255088ed63354a54e0e5ed957e9008-Paper.pdf
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

(d) Did you include the total amount of compute and the type of resources used (e.g., type455

of GPUs, internal cluster, or cloud provider)? See supplementary material. [Yes]456

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...457

(a) If your work uses existing assets, did you cite the creators? [Yes]458

(b) Did you mention the license of the assets? [Yes] See the supplementary material.459

(c) Did you include any new assets either in the supplemental material or as a URL? [No]460

We will only open-source the code later (not before, in order not to break anonymity461

of the submission).462

(d) Did you discuss whether and how consent was obtained from people whose data463

you’re using/curating? [N/A]464

(e) Did you discuss whether the data you are using/curating contains personally identifi-465

able information or offensive content? [N/A] These are numerical time series in an466

aggregated fashion so this does not apply.467

5. If you used crowdsourcing or conducted research with human subjects...468

(a) Did you include the full text of instructions given to participants and screenshots, if469

applicable? [N/A]470

(b) Did you describe any potential participant risks, with links to Institutional Review471

Board (IRB) approvals, if applicable? [N/A]472

(c) Did you include the estimated hourly wage paid to participants and the total amount473

spent on participant compensation? [N/A]474

13

A Additional Experiment Details & Results475

Here we provide further details of our experimental set up, report additional results evaluating our476

method against two more baselines and using one more evaluation metric that measures error for477

point forecasts.478

All the deep learning based methods are run using Amazon SageMaker [22] on a machine with479

3.4GHz processor and 32GB RAM. The remaining methods (R-based) are run on Amazon cloud480

instance of same configuration, 3.4GHz processor and 32GB RAM.481

Detailed information about datasets and how to download them is already provided in the main text;482

see Section 5. Moreover, details of hyper-parameters and their tuning is also provided in the exper-483

iments section. We used the code available in GluonTS forecasting library to run all the baseline484

methods compared. Note that our method DeepNPTS generates multiple training instances for each485

time series as explained in Section 3 (see “Data Augmentation” paragraph). We use GluonTS for486

this purpose and fix the length of the context window large enough such that the required number487

of training instances can be generated. So we fix the context length depending on the history of the488

time series available, more importantly, without tuning. Table 6 shows the context lengths (as factor489

of prediction lengths) used for different datasets.490

dataset context Length

M4 daily 14× pred. length
M4 hourly 10× pred. length
M4 monthly 2× pred. length
M4 quarterly 2× pred. length
M4 yearly 1× pred. length
Wiki 10× pred. length
Other datasets 28× pred. length

Table 6: Context lengths used for DeepNPTS.

A.1 Quantitative Results491

In addition to the standard baselines used in the main version of the paper, here we include compar-492

isons against TBATS [24] and Theta [3] methods. TBATS incorporates Box-Cox transformation and493

Fourier representations in the state space framework to handle complex seasonal time series thereby494

addressing the limitations of ETS and ARIMA. Theta forecasting method is an additional baseline495

with good empirical performance [3] and its forecasts are equivalent to simple exponential smooth-496

ing model with drift [17]. The mean quantile losses for all the methods is shown in Tables 7 and497

8.498

dataset Electricity Exchange Rate Solar Energy Taxi Traffic Wiki
estimator

Seas.Naive 0.070+/-0.000 0.011+/-0.000 0.605+/-0.000 0.507+/-0.000 0.251+/-0.000 0.404+/-0.000
AutoETS 0.118+/-0.001 0.007+/-0.000 1.717+/-0.005 0.572+/-0.000 0.359+/-0.000 0.664+/-0.001
AutoARIMA - 0.008+/-0.000 1.161+/-0.001 0.473+/-0.000 - 0.477+/-0.000
Theta 0.105+/-0.000 0.007+/-0.000 1.083+/-0.000 0.558+/-0.000 0.331+/-0.000 0.622+/-0.000
TBATS - 0.008+/-0.000 0.876+/-0.000 - - 0.495+/-0.000
DeepAR 0.056+/-0.001 0.009+/-0.001 0.426+/-0.004 0.289+/-0.001 0.117+/-0.001 0.226+/-0.002

NPTS(uni.) 0.230+/-0.001 0.026+/-0.000 0.805+/-0.001 0.473+/-0.000 0.403+/-0.000 0.291+/-0.000
Seas.NPTS(uni.) 0.061+/-0.000 0.026+/-0.000 0.791+/-0.000 0.474+/-0.000 0.174+/-0.000 0.285+/-0.000
NPTS 0.230+/-0.001 0.021+/-0.000 0.802+/-0.001 0.473+/-0.000 0.403+/-0.000 0.277+/-0.000
Seas.NPTS 0.060+/-0.000 0.020+/-0.000 0.790+/-0.000 0.474+/-0.000 0.173+/-0.000 0.269+/-0.000
DeepNPTS 0.059+/-0.004 0.009+/-0.000 0.447+/-0.011 0.413+/-0.015 0.163+/-0.036 0.232+/-0.000

Table 7: Mean quantile losses averaged over 5 runs (lower is better). Best two methods are high-
lighted. The bottom half shows different variants of the NPTS method. AutoARIMA and TBATS
exceeded the time limit of 24 hours for Electricity and Traffic datasets, so we do not report
their numbers.

Additionally, to evaluate mean forecasts, we report the (normalized) root-mean squared errors499

(RMSE) for all the methods. Note that unlike mean quantile loss which evaluates the spread of500

14

dataset M4 daily M4 hourly M4 monthly M4 quarterly M4 weekly M4 yearly

Seas.Naive 0.028+/-0.000 0.048+/-0.000 0.146+/-0.000 0.119+/-0.000 0.063+/-0.000 0.162+/-0.000
AutoETS 0.022+/-0.000 0.042+/-0.001 0.096+/-0.000 0.076+/-0.000 0.049+/-0.000 0.122+/-0.000
AutoARIMA 0.024+/-0.000 0.038+/-0.001 0.094+/-0.000 0.077+/-0.000 0.048+/-0.000 0.120+/-0.000
Theta 0.023+/-0.000 0.041+/-0.000 0.094+/-0.000 0.077+/-0.000 0.050+/-0.000 0.116+/-0.000
TBATS 0.021+/-0.000 0.031+/-0.000 - 0.074+/-0.000 0.046+/-0.000 0.123+/-0.000
DeepAR 0.022+/-0.000 0.050+/-0.003 0.112+/-0.002 0.086+/-0.004 0.051+/-0.004 0.130+/-0.007

NPTS(uni.) 0.161+/-0.000 0.115+/-0.001 0.257+/-0.000 0.289+/-0.000 0.319+/-0.001 0.389+/-0.000
Seas.NPTS(uni.) 0.161+/-0.000 0.053+/-0.000 0.258+/-0.000 0.288+/-0.000 0.329+/-0.001 0.389+/-0.000
NPTS 0.139+/-0.000 0.112+/-0.001 0.224+/-0.000 0.246+/-0.000 0.272+/-0.000 0.343+/-0.000
Seas.NPTS 0.139+/-0.000 0.046+/-0.000 0.225+/-0.000 0.245+/-0.000 0.285+/-0.000 0.343+/-0.000
DeepNPTS 0.027+/-0.000 0.065+/-0.019 0.149+/-0.012 0.097+/-0.002 0.057+/-0.001 0.168+/-0.008

Table 8: Mean quantile losses averaged over 5 runs (lower is better) for M4 datasets. Best two
methods are highlighted. The bottom half shows different variants of the NPTS method. TBATS
exceeded the time limit of 24 hours for M4 monthly dataset, so we do not report that number.

the forecast distribution, RMSE is a metric for point forecast and measures the error between the501

mean forecast ẑ and the actual observation z. RMSE for a given dataset of N time series and T502

evaluation points is given by503

RMSE =

√√√√ 1

NT

N∑
i=1

T∑
t=1

(zi,t − ẑi,t)2.

Since RMSE is a scale-dependent error, we normalize it by the total actual values for better read-504

ability. The normalized RMSE is given by505

NRMSE =
1∑N

i=1

∑T
t=1 |zit|

RMSE.

The NRMSE scores are shown in Tables 9 and 10. Again, similar to the mean quantile loss,506

DeepNPTS consistently achieves good normalized RMSE values across the datasets and stands as507

one of top two methods for 4 out of 12 datasets.508

dataset Electricity Exchange Rate Solar Energy Taxi Traffic Wiki
estimator

Seas.Naive 0.478+/-0.000 0.016+/-0.000 1.368+/-0.000 0.807+/-0.000 0.613+/-0.000 3.052+/-0.000
AutoETS 1.393+/-0.023 0.014+/-0.000 2.153+/-0.016 1.198+/-0.001 0.646+/-0.002 6.025+/-0.053
AutoARIMA - 0.014+/-0.000 1.974+/-0.002 0.969+/-0.001 - 3.059+/-0.004
Theta 0.812+/-0.000 0.014+/-0.000 2.030+/-0.000 1.161+/-0.000 0.636+/-0.000 2.797+/-0.000
TBATS - 0.014+/-0.000 1.642+/-0.000 - - 5.761+/-0.000
DeepAR 0.711+/-0.034 0.020+/-0.002 1.119+/-0.005 0.603+/-0.002 0.406+/-0.003 2.123+/-0.006

NPTS(uni.) 2.742+/-0.023 0.050+/-0.000 1.744+/-0.001 0.944+/-0.000 0.834+/-0.000 2.243+/-0.002
Seas.NPTS(uni.) 0.739+/-0.003 0.050+/-0.000 1.739+/-0.001 0.944+/-0.000 0.521+/-0.001 2.276+/-0.004
NPTS 2.752+/-0.013 0.041+/-0.000 1.740+/-0.002 0.944+/-0.000 0.834+/-0.000 2.229+/-0.003
Seas.NPTS 0.727+/-0.004 0.041+/-0.000 1.737+/-0.001 0.944+/-0.000 0.520+/-0.000 2.265+/-0.008
DeepNPTS 0.713+/-0.087 0.014+/-0.000 1.217+/-0.025 0.821+/-0.020 0.490+/-0.066 2.180+/-0.000

Table 9: Normalized RMSE values averaged over 5 runs (lower is better). Best two methods are
highlighted. The bottom half shows different variants of the NPTS method. AutoARIMA and TBATS
exceeded the time limit of 24 hours for Electricity and Traffic datasets, so we do not report
their numbers.

A.2 Data Visualization509

To illustrate the diversity of the datasets used, we plot the distribution of observed values in the510

training part of the time series marginalized over time and item dimensions (each dataset contains511

time series corresponding to different items). The plot is shown in Figure 3 for all the datasets.512

15

dataset M4 daily M4 hourly M4 monthly M4 quarterly M4 weekly M4 yearly

Seas.Naive 0.109+/-0.000 0.260+/-0.000 0.339+/-0.000 0.264+/-0.000 0.123+/-0.000 0.324+/-0.000
AutoETS 0.093+/-0.001 0.293+/-0.006 0.294+/-0.000 0.230+/-0.000 0.119+/-0.000 0.332+/-0.000
AutoARIMA 0.099+/-0.000 0.307+/-0.010 0.288+/-0.000 0.240+/-0.001 0.117+/-0.001 0.331+/-0.000
Theta 0.097+/-0.000 0.259+/-0.000 0.287+/-0.000 0.225+/-0.000 0.121+/-0.000 0.301+/-0.000
TBATS 0.095+/-0.000 0.210+/-0.000 - 0.239+/-0.000 0.118+/-0.000 0.417+/-0.000
DeepAR 0.102+/-0.002 0.487+/-0.034 0.292+/-0.004 0.239+/-0.003 0.121+/-0.004 0.302+/-0.005

NPTS(uni.) 0.374+/-0.000 0.982+/-0.009 0.593+/-0.000 0.605+/-0.000 0.721+/-0.001 0.730+/-0.000
Seas.NPTS(uni.) 0.374+/-0.000 0.448+/-0.003 0.592+/-0.000 0.603+/-0.000 0.728+/-0.001 0.730+/-0.000
NPTS 0.340+/-0.000 0.957+/-0.004 0.544+/-0.000 0.546+/-0.000 0.647+/-0.001 0.675+/-0.000
Seas.NPTS 0.341+/-0.000 0.387+/-0.002 0.543+/-0.000 0.544+/-0.000 0.658+/-0.001 0.676+/-0.000
DeepNPTS 0.102+/-0.001 0.541+/-0.161 0.353+/-0.019 0.245+/-0.005 0.127+/-0.002 0.362+/-0.014

Table 10: Normalized RMSE values averaged over 5 runs (lower is better) for M4 datasets. Best
two methods are highlighted. The bottom half shows different variants of the NPTS method. TBATS
exceeded the time limit of 24 hours for M4 monthly dataset, so we do not report that number.

Figure 3: Histogram of observed values of the (training part of) time series for all datasets used in
the evaluations.

16

	Introduction
	Non-Parametric Time Series Forecaster
	Deep Non-Parametric Time Series Forecaster
	Model
	Training
	Prediction

	Related Work
	Experiments
	Conclusion
	Broader Impact
	Additional Experiment Details & Results
	Quantitative Results
	Data Visualization

