
The Neural Testbed:
Evaluating Joint Predictions

Anonymous Author(s)
Affiliation
Address
email

Abstract

Predictive distributions quantify uncertainties ignored by point estimates.1

This paper introduces The Neural Testbed: an open-source benchmark for2

controlled and principled evaluation of agents that generate such predictions.3

Crucially, the testbed assesses agents not only on the quality of their4

marginal predictions per input, but also on their joint predictions across5

many inputs. We evaluate a range of agents using a simple neural network6

data generating process. Our results indicate that some popular Bayesian7

deep learning agents do not fare well with joint predictions, even when they8

can produce accurate marginal predictions. We also show that the quality of9

joint predictions drives performance in downstream decision tasks. We find10

these results are robust across choice a wide range of generative models, and11

highlight the practical importance of joint predictions to the community.12

1 Introduction13

Most work on supervised learning has focused on marginal predictions. Marginal predictions14

predict one label given one input, but do not model the dependence between multiple15

predictions. For decision making, it is not enough to have good marginal predictions; the16

quality of joint predictions drives decision performance (Wen et al., 2022). Joint predictions17

predict multiple labels given multiple inputs, and may capture some correlation between18

outcomes. This distinction can be particularly important in learning settings where joint19

predictions allow an agent to distinguish what it knows from what it does not know (Li20

et al., 2011; Lu et al., 2021).21

Figure 1: Two coins with identical marginal predictions, but distinguished by joint predictions.

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not
distribute.

Figure 1 presents a stylized example designed to highlight the importance of joint predictions22

in decision making. Consider two coins ‘£’ and ‘$’ with different bias=‘probability of heads’.23

Coin £ has a known bias of 1
2 , whereas coin $ has an unknown bias of either 0 or 1, and24

which are both equally likely. Examining the marginal prediction over a single flip: the25

two coins present identical outcomes 50:50. However, if we consider the outcome over two26

successive flips, which can be modeled as a two-by-two grid, then the difference between these27

coins is evident in their joint predictions. If you want to maximize the cumulative heads28

through time, then it’s important to know the difference between these two settings. In this29

case, a learning agent should first choose $ and then, depending on the outcome of that flip30

heads/tails, employ a fixed policy of $/£ forward. Marginal predictions alone cannot drive31

this sort of policy, since they do not distinguish the two coins (Wen et al., 2022).32

Our research is motivated by the grand challenges in artificial intelligence, and the great33

progress that has been made in deep learning systems (Krizhevsky et al., 2012; Brown34

et al., 2020). However, as these systems move beyond prediction and towards actually35

making decisions we have very little understanding of how and where popular deep learning36

approaches are suitable for joint predictions and hence decision making (Mnih et al., 2015;37

Silver et al., 2016). To this end, we introduce The Neural Testbed as a simple and clear38

benchmark for evaluating the quality of joint predictions in deep learning systems. This39

work is meant to be a ‘sanity check’ for popular deep learning approaches in a simple setting,40

and one that can help guide future research.41

The Neural Testbed works by generating random classification problems using a neural-42

network-based generative process. The testbed splits data into a training set and testing43

set, allows a deep learning agent to train on the training set, and then evaluates the quality44

of the predictions on the testing set. It is worth noting that the problem framed by the45

Testbed is a computational one. Optimal performance would be attained by carrying out46

exact Bayesian inference: given infinite compute time, an agent could calculate the posterior47

distribution, which maximizes performance. However, due to the complexity of the data48

generating process, this is infeasible. The agents we study serve as approximate inference49

algorithms, and we can compare their performance purely through the quality of their50

predictions, without worrying ‘is XYZ Bayesian?’ (Izmailov et al., 2021).51

Figure 2 offers a preview of our results in Section 4, where we compare benchmark approaches52

to Bayesian deep learning. This plot shows the KL loss when making τ simultaneous53

predictions. We compare the quality of marginal (τ = 1) and joint (τ = 10) predictions,54

normalized so that and MLP has loss=1. We see that, after tuning, most Bayesian deep55

learning approaches do not significantly outperform a single MLP in marginal predictions.56

However, once we examine joint predictive distributions of order τ = 10, there is a clear57

difference in performance among benchmark agents. In particular, some of the most popular58

benchmark approaches to Bayesian deep learning (ensemble (Lakshminarayanan et al.,59

2017), dropout (Gal and Ghahramani, 2016), bbb (Blundell et al., 2015)) do not outperform60

the baseline MLP when evaluated in joint predictions. At the same time, there are other61

approaches that perform much better in terms of joint predictions in this simple synthetic62

challenge. We will go on to show that these same agents perform better in decision making,63

and that these observations are robust to choice of generative model.64

mlp ensemble dropout bbb hypermodel ensemble+ sgmcmc
agent

0.6

0.8

1

no
rm

al
ize

d
KL

 lo
ss

tau
1
10

Figure 2: Quality of marginal and joint predictions on Neural Testbed (Section 4.2).

2

1.1 Key contributions65

We introduce The Neural Testbed, a simple benchmark for the field that involves66

making predictions in a neural-network-based generative model. This work helps67

to bridge theory and practice, and provide an objective metric to assess the quality of68

approximate posterior inference in neural networks. We are the first paper to propose69

a concrete evaluation procedure for the quality of joint predictions in neural network70

classification.71

Together with this conceptual contribution, we open-source code in Appendix A.72

This consists of highly optimized evaluation code, reference agent implementations and73

automated reproducible analysis. The testbed uses JAX internally (Bradbury et al., 2018),74

but can be used to evaluate any python agent. We believe that this library will be a major75

contribution to researchers and, due to its low computational cost, a boon to accessibility.76

We use this new benchmark to obtain some important new experimental results. We77

discover that several of the most popular approaches to Bayesian deep learning78

do not perform well at joint prediction, and highlight this issue to the community.79

Further, we show that there are alternative approaches that do perform well in terms of joint80

prediction. Prior work has suggested that, in theory, the quality of joint predictions can81

drive decision performance (Wen et al., 2022). In this paper we provide empirical evidence82

that this effect occurs in practical deep learning systems. We observe that performance83

in a neural bandit is highly correlated with performance in joint prediction, and84

that it is not significantly correlated with the quality of marginal predictions.85

Finally, we show that the results in this paper are robust to the variations in the86

data generating model. Although we focus on a 2-layer ReLU MLP with 50 hidden units87

for most of our experiments, the results we obtain are highly correlated across a wide range88

of alternative activation functions or network widths. This robustness supports the view89

that the field should be aware of these issues in joint prediction, and may help to stimulate90

future research in this area. Follow-up work has gone on to show that these results also carry91

over to challenge datasets popular in the community (Osband et al., 2022).92

1.2 Related work93

There is a rich literature around uncertainty estimation in deep learning. Much of this work94

has focused on agent development, with a wide variety of approaches including variational95

inference (Blundell et al., 2015), dropout (Gal and Ghahramani, 2016), ensembles (Osband96

and Van Roy, 2015; Lakshminarayanan et al., 2017), and MCMC (Welling and Teh, 2011;97

Hoffman et al., 2014). However, even when approaches become popular within particular98

research communities, there are still significant disagreements over the quality of the resultant99

uncertainty estimates (Osband, 2016; Hron et al., 2017).100

Bayesian deep learning has largely relied on benchmark problems to guide agent development101

and measure agent progress. These typically include classic deep learning datasets but102

supplement the usual goal of classification accuracy to include an evaluation of the probablistic103

predictions via negative log likelihood (NLL) and expected calibration error (ECE) (Nado104

et al., 2021). More recently, several efforts have been made to supplement these datasets105

with challenges tailored towards Bayesian deep learning, and explicit Bayesian inference106

(Wilson et al., 2021). This literature has largely focused on evaluating marginal predictions,107

paired with evaluation on downstream tasks (Riquelme et al., 2018). Our work is motivated108

by the importance of joint predictions in driving good performance in sequential decisions109

(Wen et al., 2022). We share motivation with the work of Wang et al. (2021), but show that110

directly measuring joint likelihoods can provide new information beyond marginals. Follow111

up work has built upon the research in our paper, to extend the analysis of joint distributions112

to higher-order joint distributions, and empirical datasets (Osband et al., 2022).113

2 Evaluating predictive distributions114

In this section, we introduce notation for the standard supervised learning we consider as115

well as our evaluation metric: KL-loss. We review the distinction between marginal and joint116

predictions, and numerical schemes to estimate KL divergence via Monte Carlo sampling.117

3

Algorithm 1 KL-Loss Estimation
for j = 1, 2, . . . , J do

sample environment and training data
train agent on training data
for n = 1, 2, . . . , N do

sample τ test data pairs
compute environmentlikelihood pj,n

compute agent likelihood p̂j,n

end for
end for
return 1

JN

∑J
j=1

∑N
n=1 log (pj,n/p̂j,n) Figure 3: The Neural Testbed

118

2.1 Environment and predictions119

Consider a sequence of pairs ((Xt, Yt+1) : t = 0, 1, 2, . . .), where each Xt is a feature vector120

and each Yt+1 is its target label. Each target label Yt+1 is produced by an environment E ,121

which we formally take to be a conditional distribution E(·|Xt). The environment E is a122

random variable; this reflects the agent’s uncertainty about how labels are generated. Note123

that P(Yt+1 ∈ ·|E , Xt) = E(·|Xt) and P(Yt+1 ∈ ·|Xt) = E[E(·|Xt)|Xt].124

We consider an agent that learns about the environment from training data125

DT ≡ ((Xt, Yt+1) : t = 0, 1, . . . , T − 1). After training, the agent predicts test-126

ing class labels YT +1:T +τ ≡ (YT +1, . . . , YT +τ) from unlabeled feature vectors127

XT :T +τ−1 ≡ (XT , . . . , XT +τ−1).128

We describe the agent’s predictions in terms of a generative model, parameterized by a
vector θT that the agent learns from the training data DT . For any inputs XT :T +τ−1, θT

determines a predictive distribution, which could be used to sample imagined outcomes
ŶT +1:T +τ . Hence, the agents τ th-order predictive distribution is given by

P̂T +1:T +τ = P(ŶT +1:T +τ ∈ ·|θT , XT :T +τ−1),

which represents an approximation to what would be obtained by conditioning on the
environment:

P ∗
T +1:T +τ = P (YT +1:T +τ ∈ ·|E , XT :T +τ−1) .

If τ = 1, this represents a marginal prediction; that is a prediction of a label for a single129

input. For τ > 1, this is a joint prediction over labels for τ different inputs.130

2.2 Kullback–Leibler loss131

We use expected KL-loss to quantify the error between an agent’s predictive distribution132

P̂T +1:T +τ and the prescient prediction P ∗
T +1:T +τ that would be made given full knowledge133

of the environment:134

dτ
KL =E

[
dKL

(
P ∗

T +1:T +τ

∥∥P̂T +1:T +τ

)]
. (1)

The expectation is taken over all random variables, including the environment E , the135

parameters θT , XT :T +τ−1, and YT +1:T +τ . Note that dτ
KL is equivalent to the widely used136

notion of cross-entropy loss, though offset by a quantity that is independent of θT .137

In contexts we will consider, it is not possible to compute dτ
KL exactly. As such, we will138

approximate dτ
KL via Monte Carlo simulation, as described by Algorithm 1. First, a set of139

environments is sampled. Then, for each sampled environment, a training dataset is sampled.140

For sampled environment and corresponding training data set, the agent is re-initialized,141

trained, and then tested on N independent test data τ -samples. Note that each test data142

τ -sample includes τ data pairs. For each test data τ -sample, the likelihood of the environment143

pj,n is computed exactly, but that of the agent’s predictive distribution is approximated144

via another Monte Carlo simulation, and we use p̂j,n to denote this approximation. The145

estimate of dτ
KL is taken to be the sample mean of these log-likelihood ratios.146

4

3 The Neural Testbed147

In this section we introduce the Neural Testbed. We believe that a simple, clear and accessible148

testbed can provide significant value to community. We provide a high-level overview of149

the open-source code which we release in Appendix A. We then provide more details on the150

underlying generative model, together with an extensive selection of benchmark agents that151

we have tuned to perform well in this setting.152

3.1 Synthetic data generating processes153

By data generating process, we do not mean only the conditional distribution of data154

pairs (Xt, Yt+1)|E but also the distribution of the environment E . The Testbed considers155

2-dimensional inputs and binary classification problems. The logits are sampled from a156

2-hidden-layer ReLU MLP with (50,50) hidden units and Xavier initialization (Glorot and157

Bengio, 2010). We choose this process to be maximally simple and canonical in the deep158

learning world. However, we will go on to show that the key findings of this paper are not159

particularly sensitive to the exact choice of generative model.160

The Neural Testbed estimates KL-loss, with τ ∈ {1, 10}, for three temperature settings and161

several training dataset sizes. The temperature ρ controls the signal to noise ratio as the162

class probabilities are given by softmax(logits/ρ). For each value of τ , the KL-losses are163

averaged to produce an aggregate performance measure. Further details concerning data164

generation and agent evaluation are offered in Appendix B.165

3.2 Why do we need a synthetic testbed?166

The Neural Testbed is designed to be a maximally simple problem that investigates the167

key properties of uncertainty modeling in deep learning. Progress in deep learning has168

been driven both by challenge datasets that stretch agent capabilities (Deng et al., 2009;169

Krizhevsky et al., 2012), together with foundational work that builds understanding (Bartlett170

et al., 2021). In this work, we provide a benchmark designed to improve our understanding171

of probabilistic predictions beyond marginals. Doing well in the testbed is not necessarily an172

impressive grand success in AI, although doing poorly in such a simple setting may reveal173

fundamental flaws in algorithm design.174

A key property of the testbed is that it is specified by a probabilistic model, rather than a175

finite collection of datasets. Benchmarks that rank performance on datasets are vulnerable176

to overfitting through iterative hill-climbing on the data included in the benchmark (Russo177

and Zou, 2016), which may not generalize to data outside of the benchmark (Recht et al.,178

2018). In contrast, access to a generative model means that we can produce an unlimited179

amount of testing data from our problem of interest. We can avoid the dangers of overfitting180

to any specific choices of benchmark dataset simply by generating more samples.181

3.3 Benchmark agents182

Table 1 lists agents that we study and compare as well as hyperparameters that we tune. In183

our experiments, we optimize these hyperparameters via grid search. Our implementations,184

which aim to match ‘canonical’ versions, are available in Appendix A.185

In addition to these agent implementations, our open-source offerings include all the evaluation186

code to reproduce the results of this paper. Our experiments make extensive use of parallel187

computation to facilitate hyperparameter sweeps. Nevertheless, the overall computational188

cost is relatively low by modern deep learning standards and relies only on standard CPUs.189

For reference, evaluating the mlp agent across all the problems in our testbed requires less190

than 3 CPU-hours. We view our open-source effort as a substantial contribution of this work.191

4 Results192

We evaluate the benchmark agents of Section 3.3 across the Neural Testbed. We begin with193

an analysis of marginal predictions where, after agent tuning, all approaches are able to194

make reasonably good predictions. However, when we examine joint predictions we find195

that agent performance can vary drastically, even for well-tuned agents. If an agent cannot196

5

Table 1: Summary of benchmark agents, full details in Appendix C.
agent description hyperparameters
mlp Vanilla MLP L2 decay
ensemble ‘Deep Ensemble’ (Lakshminarayanan et al., 2017) L2 decay, ensemble size
dropout Dropout (Gal and Ghahramani, 2016) L2 decay, network, dropout rate
bbb Bayes by Backprop (Blundell et al., 2015) prior mixture, network, early stopping
hypermodel Hypermodel (Dwaracherla et al., 2020) L2 decay, prior, bootstrap, index dimension
ensemble+ Ensemble + prior functions (Osband et al., 2018) L2 decay, ensemble size, prior scale, bootstrap
sgmcmc Stochastic Langevin MCMC (Welling and Teh, 2011) learning rate, prior, momentum

output accurate joint predictions in the testbed, we should question if we expect that same197

agent to perform better other settings. These results provide significant new insights to the198

the design of effective learning agents, and are a major contribution of this paper.199

4.1 Performance in marginal predictions200

We begin our evaluation of benchmark approaches to Bayesian deep learning in marginal201

predictions (τ = 1). One of the first questions one might consider is whether the generative202

model as outlined in Section 3.1 represents a meaningful challenge for deep learning systems.203

Figure 4 compares the performance of naive uniform class probabilities, logistic regression,204

and a tuned 2-layer MLP. This simple comparison demonstrates that the Neural Testbed is205

not trivially solved by agents without deep learning architectures.206

1 10 100 1000
number of training points

0

0.1

0.2

0.3

0.4

0.5

av
er

ag
e

KL
 lo

ss

agent
uniform
logistic
mlp

Figure 4: Performance with growing data.

Agent Accuracy ECE d1
KL d10

KL

mlp 0.793 0.078 0.129 1.367
ensemble 0.792 0.079 0.128 1.356
dropout 0.793 0.080 0.128 1.347
bbb 0.792 0.079 0.129 1.375
hypermodel 0.793 0.081 0.130 1.107
ensemble+ 0.790 0.085 0.129 1.015
sgmcmc 0.796 0.082 0.122 0.947

Table 2: Agent performance, deviation
from MLP greater than 2 stderr in bold.

207

Marginal predictions have been the focus of the Bayesian deep learning literature. Despite208

this focus, Figure 2 shows that none of the benchmark methods significantly outperform a209

well-tuned MLP baseline in terms of d1
KL. This observation is mirrored when we examine210

the average classification accuracy and expected calibration error (ECE) across the testbed211

(Table 2). These results are different from the empirical observations in other challenge212

datasets, where much agent development has focused on improving ECE, and present an213

interesting new observation in the Bayesian deep learning literature (Nado et al., 2021).214

We have two main hypothesis for this discrepancy. First, our agents are tuned for dagg
KL =215

d1
KL+ 1

10 d10
KL, not ECE (see Appendix C). Second, the generative model of Section 3.1 matches216

the agent architecture, with inputs sampled i.i.d. N(0, I). Investigating the conditions in217

which these results hold more generally is an exciting area for future research.218

4.2 Performance beyond marginals219

One of the key contributions of this paper is to evaluate predictive distributions beyond220

marginals. Figure 2 shows that sgmcmc is the top-performing agent overall. This should221

be reassuring to the Bayesian deep learning community and beyond. In the limit of large222

compute this agent should recover the ‘gold-standard’ of Bayesian inference, and it does indeed223

perform best (Welling and Teh, 2011). However, some of the most popular approaches in this224

field (ensemble, dropout) do not actually provide good approximations to the predictive225

distributions of order τ = 10. In fact, we even see that ensemble+ and hypermodels can226

provide much better approximations to the Bayesian posterior than ‘fully Bayesian’ VI227

approaches like bbb (Wilson and Izmailov, 2020). We note too that while sgmcmc performs228

best, it also requires orders of magnitude more computation than competitive methods even229

in this toy setting (see Appendix D.3). As we scale to more complex environments, it may230

therefore be worthwhile to consider alternative approaches.231

6

To see where some agents are able to outperform, we compare ensemble and ensemble+232

under the medium SNR regime. These agents are identical, except for the addition of233

a randomized prior function (Osband et al., 2018). Figure 5 shows that, although these234

methods perform similarly in the quality of their marginal predictions (τ = 1), the addition235

of a prior function greatly improves the quality of joint predictive distributions (τ = 10) in236

the low data regime. Note that, since the testbed considers 2D inputs, 100 training points237

may already be considered as in the high data regime. Figure 6 provides some insight for238

how this benefit scales with the order τ of the predictive distribution. We can see a clear239

trend that as τ increases so does the separation between agents ensemble and ensemble+.240

For more intuition on how prior functions are able to drive this benefit, see Appendix D.1.241

1 10 100 1000
0

0.1

0.2

0.3

0.4

av
er

ag
e

KL
 lo

ss

tau: 1

agent
ensemble
ensemble+

1 10 100 1000
number of training points

tau: 10

Figure 5: Prior functions help with joint predictions.

1 2 3 4 5 6 7 8 9 10
order of joint predictive distribution ()

0.6

0.8

1

1.2

no
rm

al
ize

d
KL

 lo
ss

agent
ensemble
ensemble+

Figure 6: Benefit grows with τ .

5 Sequential decisions242

In this section, we will form a sequential decision problem based on the Neural Testbed, and243

show that it is the quality in joint predictions that is essential to driving good performance244

in sequential decision making. Further, we show that the insights gained from the simple 2D245

Neural Testbed can extend to high-dimensional decision problems.246

5.1 Neural bandit247

We use the generative model of the Neural Testbed to define a class of bandit problems248

(Gittins, 1979). First, we sample a set of N actions X = {x1, . . . , xN } i.i.d. from a d-249

dimensional standard normal distribution. We then sample an environment E , which specifies250

the conditional probability E(Yt+1 ∈ ·|Xt), according to the class of generative models251

described in Section 3.1. We pick the temperature, which controls the SNR, to be 0.1. At252

each timestep t, an agent selects an action Xt ∈ X and receives a reward Rt+1 = Yt+1.253

Let Rx = E [Rt+1|E , Xt = x] denote the expected reward of action x conditioned on the254

environment, and let X∗ = arg maxx∈X Rx denote the optimal action. We assess agent255

performance through regret(T) :=
∑T −1

t=0 E
[
RX∗ − RXt

]
, which measures the shortfall in256

expected cumulative rewards relative to an optimal decision maker.257

We evaluate the testbed agents on these bandit problems through actions selected by258

Thompson sampling, varying only the posterior predictive distributions that TS samples259

from. A TS agent requires an approximate posterior distribution over the environment,260

which is supplied by the testbed agents. At each timestep, TS samples an environment from261

the approximate posterior and selects an action that optimizes for the sampled environment262

(Thompson, 1933; Russo et al., 2018). A complete algorithm is presented in Appendix E.263

5.2 Agent performance264

We present empirical results of testbed agents on these random bandit problems with265

N = 1000 actions drawn from a d = 50 dimensional space. Figure 7 shows the average regret266

through time for each of the agents as selected by the Neural Testbed, averaged over 20267

random seeds.1 We can see that for each learning agent, the quality of decisions improves268

through time. However, the quality of decisions is greatly affected by the choice of agent.269

1We omit sgmcmc as the computational demands are several orders of magnitude too large to
consider in online learning.

7

0 10000 20000 30000 40000 50000
timestep (t)

0.003

0.01

0.03

0.1

av
er

ag
e

re
gr

et

agent
mlp
ensemble
bbb
dropout
ensemble+
hypermodel

Figure 7: Learning agent impacts TS regret in neural bandits.

To investigate the relationship between predictions and decisions we repeat the experiment of270

Figure 7 with 10 independent random initializations over all the testbed and bandit problems.271

We then empirically investigate the correlation between dτ
KL and total regret at T = 50, 000272

for both τ = 1 and τ = 10. We use bootstrap sampling to estimate confidence intervals on273

the correlation coefficient on a logarithmic scale at the 5th and 95th percentiles. Figures 8274

and 9 support our claim that performance in d10
KL is highly correlated with performance in275

sequential decision problems, whereas correlation to marginals is not significant. We would276

not expect a perfect correlation as the particular TS action selection strategy may introduce277

confounding factors, together with natural variability in seeds.278

0.11 0.12 0.13 0.14
marginal KL loss (= 1)

100

300

1000

3000

to
ta

l r
eg

re
t

correlation=-0.12 (-0.34, 0.09)

agent
mlp
ensemble
bbb
dropout
ensemble+
hypermodel

Figure 8: Testbed marginal performance is
not significantly correlated with regret.

0.9 1 1.1 1.2 1.3 1.4 1.5
joint KL loss (= 10)

100

300

1000

3000

to
ta

l r
eg

re
t

correlation=0.69 (0.62, 0.75)

agent
mlp
ensemble
bbb
dropout
ensemble+
hypermodel

Figure 9: Testbed joint performance is highly
correlated with regret.

6 Robustness of generative model279

The experiments of Sections 4 and 5 are all performed with the generative model as described280

in Section 3.1. One natural concern is that these results might be sensitive to this choice281

of model, and so be less transferable to general deep learning research. In this section we282

repeat these analyses under different generative models. We find that the quality of joint283

predictions and bandit performance is extremely robust across choice of generative models.284

For these experiments we take the tuned agents of Section 4 and then evaluate these agents285

under different generative models. Whereas these agent hyperparameters were tuned for286

the 2-layer ReLU MLP with 50-50 hidden units, we will also these agents over alternative287

environments varying:288

• activation=[tanh, swish, sigmoid, selu, relu, leaky relu, gelu] (Figure 10).289

• hidden units=[5, 10, 20, 50, 100] (Figure 11).290

Evaluation for each of these environments Ei proceeds as before: the agent is trained on data291

generated by Ei and then evaluated on the quality of predictions on testing data from Ei.292

If the qualitative results under different environments are similar, then we know that our293

results are somewhat robust to the exact generative model we choose.294

8

Figure 10: Correlation of agent performance across different activation functions.

Figure 11: Correlation of agent performance across different hidden units.

Figure 10 and 11 examine the empirical correlation coefficient between the vector of agent295

evaluations, under the metrics d1
KL, d10

KL and bandit regret. We see that, the marginal296

evaluations are highly correlated for ‘similar’ generative models (e.g. ReLU and leaky ReLU)297

but can even be anti-correlated when the models stray too far. However, the correlations are298

very high across a wide range of generative models when we look at either the quality of299

joint predictions or the regret in the bandit problems. These results help to build confidence300

in the key observations we make in this paper. Notably, they suggest that the separation301

of agents in terms of performance on joint prediction (Figure 2) is not too sensitive to the302

choice of generative model, and so may hold some wider insight relevant to the community.303

Follow up work has confirmed that these results are also highly correlated with performance304

on benchmark datasets (Osband et al., 2022).305

7 Conclusion306

The Neural Testbed investigates the quality of predictive uncertainty in joint predictions, as307

well as marginals. With this simple and clear 2D challenge we aim to build understanding308

that can inform the field’s wider efforts in deep learning. We have shown that results on the309

testbed can offer new insights to agent development. Further, we establish that the insights310

gained in the testbed can scale up to complex and high-dimensional decision problems.311

Beyond the results in this paper, we believe this work can provide a base for future research:312

• Can we design better learning algorithms for joint predictions, as well as marginals?313

• Are there analogous results to Figure 2 on large-scale challenge datasets?314

• How can effective joint predictions drive better decisions?315

We believe that studying these simple testbed problems can help foster interplay between316

theory and practice, improve accessibility in the field, and complement existing research. We317

hope that this will accelerate the growth of understanding in the field and, ultimately, drive318

forward the design of better learning agents.319

9

References320

Bartlett, P. L., Montanari, A., and Rakhlin, A. (2021). Deep learning: a statistical viewpoint. Acta321
numerica, 30:87–201.322

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in neural323
network. In International Conference on Machine Learning, pages 1613–1622. PMLR.324

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,325
Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable326
transformations of Python+NumPy programs.327

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,328
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. arXiv preprint329
arXiv:2005.14165.330

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on331
information theory, 13(1):21–27.332

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale333
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,334
pages 248–255. Ieee.335

Dwaracherla, V., Lu, X., Ibrahimi, M., Osband, I., Wen, Z., and Van Roy, B. (2020). Hypermodels336
for exploration. In International Conference on Learning Representations.337

Friedman, J. H. (2017). The elements of statistical learning: Data mining, inference, and prediction.338
springer open.339

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model340
uncertainty in deep learning. In International Conference on Machine Learning.341

Gittins, J. C. (1979). Bandit processes and dynamic allocation indices. Journal of the Royal342
Statistical Society: Series B (Methodological), 41(2):148–164.343

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural344
networks. In Proceedings of the 13th international conference on artificial intelligence and statistics,345
pages 249–256.346

He, B., Lakshminarayanan, B., and Teh, Y. W. (2020). Bayesian deep ensembles via the neural347
tangent kernel. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Ad-348
vances in Neural Information Processing Systems, volume 33, pages 1010–1022. Curran Associates,349
Inc.350

Hoffman, M. D., Gelman, A., et al. (2014). The no-u-turn sampler: adaptively setting path lengths351
in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–1623.352

Hron, J., Matthews, A. G. d. G., and Ghahramani, Z. (2017). Variational Gaussian dropout is not353
Bayesian. arXiv preprint arXiv:1711.02989.354

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A. G. (2021). What are Bayesian neural355
network posteriors really like? arXiv preprint arXiv:2104.14421.356

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep con-357
volutional neural networks. In Advances in Neural Information Processing Systems 25, pages358
1097–1105.359

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predictive360
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing361
Systems, pages 6405–6416.362

Li, L., Littman, M. L., Walsh, T. J., and Strehl, A. L. (2011). Knows what it knows: a framework363
for self-aware learning. Machine learning, 82(3):399–443.364

Lu, X., Van Roy, B., Dwaracherla, V., Ibrahimi, M., Osband, I., and Wen, Z. (2021). Reinforcement365
learning, bit by bit. arXiv preprint arXiv:2103.04047.366

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,367
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level Control through Deep368
Reinforcement Learning. Nature, 518(7540):529–533.369

10

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.370

Nado, Z., Band, N., Collier, M., Djolonga, J., Dusenberry, M., Farquhar, S., Filos, A., Havasi, M.,371
Jenatton, R., Jerfel, G., Liu, J., Mariet, Z., Nixon, J., Padhy, S., Ren, J., Rudner, T., Wen, Y.,372
Wenzel, F., Murphy, K., Sculley, D., Lakshminarayanan, B., Snoek, J., Gal, Y., and Tran, D.373
(2021). Uncertainty Baselines: Benchmarks for uncertainty & robustness in deep learning. arXiv374
preprint arXiv:2106.04015.375

Osband, I. (2016). Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of376
dropout. In NIPS Workshop on Bayesian Deep Learning, volume 192.377

Osband, I., Aslanides, J., and Cassirer, A. (2018). Randomized prior functions for deep reinforcement378
learning. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett,379
R., editors, Advances in Neural Information Processing Systems 31, pages 8617–8629. Curran380
Associates, Inc.381

Osband, I. and Van Roy, B. (2015). Bootstrapped Thompson sampling and deep exploration. arXiv382
preprint arXiv:1507.00300.383

Osband, I., Wen, Z., Asghari, M., Ibrahimi, M., Lu, X., and Van Roy, B. (2021). Epistemic neural384
networks. arXiv preprint arXiv:2107.08924.385

Osband, I., Wen, Z., Asghari, S. M., Dwaracherla, V., Lu, X., and Van Roy, B. (2022). Evaluating386
high-order predictive distributions in deep learning.387

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,388
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,389
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of390
Machine Learning Research, 12:2825–2830.391

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer school on machine392
learning, pages 63–71. Springer.393

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. (2018). Do cifar-10 classifiers generalize to394
cifar-10? arXiv preprint arXiv:1806.00451.395

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In International396
conference on machine learning, pages 1530–1538. PMLR.397

Riquelme, C., Tucker, G., and Snoek, J. (2018). Deep bayesian bandits showdown: An empirical398
comparison of bayesian deep networks for thompson sampling. arXiv preprint arXiv:1802.09127.399

Russo, D. and Zou, J. (2016). Controlling bias in adaptive data analysis using information theory.400
In Artificial Intelligence and Statistics, pages 1232–1240. PMLR.401

Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., and Wen, Z. (2018). A tutorial on Thompson402
sampling. Found. Trends Mach. Learn., 11(1):1–96.403

Schölkopf, B. and Smola, A. J. (2018). Learning with kernels: Support vector machines, regularization,404
optimization, and beyond. MIT press.405

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,406
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with407
deep neural networks and tree search. Nature, 529(7587):484–489.408

Sun, S., Zhang, G., Shi, J., and Grosse, R. (2019). Functional variational Bayesian neural networks.409
arXiv preprint arXiv:1903.05779.410

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view411
of the evidence of two samples. Biometrika, 25(3/4):285–294.412

Wang, C., Sun, S., and Grosse, R. (2021). Beyond marginal uncertainty: How accurately can Bayesian413
regression models estimate posterior predictive correlations? In International Conference on414
Artificial Intelligence and Statistics, pages 2476–2484. PMLR.415

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In416
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688.417
Citeseer.418

11

Wen, Z., Osband, I., Qin, C., Lu, X., Ibrahimi, M., Dwaracherla, V., Asghari, M., and Van Roy, B.419
(2022). From predictions to decisions: The importance of joint predictive distributions.420

Wilson, A. G. and Izmailov, P. (2020). Bayesian deep learning and a probabilistic perspective of421
generalization. arXiv preprint arXiv:2002.08791.422

Wilson, A. G., Izmailov, P., Hoffman, M. D., Gal, Y., Li, Y., Pradier, M. F., Vikram, S., Foong, A.,423
Lotfi, S., and Farquhar, S. (2021). Evaluating approximate inference in Bayesian deep learning.424

Woodbury, M. A. (1950). Inverting modified matrices. Statistical Research Group.425

Checklist426

1. For all authors...427

(a) Do the main claims made in the abstract and introduction accurately reflect428

the paper’s contributions and scope? [Yes] We release the Neural Testbed code429

in Appendix A. We present clear results of evaluation on joint prediction in430

Figure 2. We show that these results are correlated with decision performance431

in Figure 9.432

(b) Did you describe the limitations of your work? [Yes] We emphasize that the433

Neural Testbed focuses on a simple generative model, designed to help build434

understanding in the field. This is not meant to be a ‘grand challenge’ in AI435

research, however the fact that even this simple problem poses such a problem436

for many state of the art approaches to Bayesian deep learning shows that it437

can be a useful tool for research.438

(c) Did you discuss any potential negative societal impacts of your work? [N/A]439

We do not see significant negative societal impacts. In addition, we believe that440

small-scale, open-source benchmarks can be helpful in promoting accessibility441

and inclusivity in the machine learning community.442

(d) Have you read the ethics review guidelines and ensured that your paper conforms443

to them? [Yes]444

2. If you are including theoretical results...445

(a) Did you state the full set of assumptions of all theoretical results? [N/A]446

(b) Did you include complete proofs of all theoretical results? [N/A]447

3. If you ran experiments...448

(a) Did you include the code, data, and instructions needed to reproduce the main449

experimental results (either in the supplemental material or as a URL)? [Yes]450

Our open-source code is a major contribution of this work, and we include these451

details in Appendix A.452

(b) Did you specify all the training details (e.g., data splits, hyperparameters,453

how they were chosen)? [Yes] We include all code and training details in the454

open-source code. We list the main hyperparameters and training procedure in455

Table 1 and provide full details in Appendix C.456

(c) Did you report error bars (e.g., with respect to the random seed after running457

experiments multiple times)? [Yes] We estimate standard error bars in our main458

Figure 2, together with all other figures. In our correlation analyses we provide459

details of our bootstrapping procedure and confidence levels for the correlation460

statistics.461

(d) Did you include the total amount of compute and the type of resources used462

(e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] Together with our463

opensource code we provide full details of our experiments and parameter sweeps.464

Compared to modern deep learning challenges our computational demands are465

very low, and each agent evaluation is possible at under 1USD on Google cloud466

compute.467

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new468

assets...469

12

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite JAX470

framework that helped to build our models, and use appropriate licensing in471

open-source code.472

(b) Did you mention the license of the assets? [N/A]473

(c) Did you include any new assets either in the supplemental material or as a474

URL? [Yes] See Appendix A for open-source code.475

(d) Did you discuss whether and how consent was obtained from people whose data476

you’re using/curating? [N/A]477

(e) Did you discuss whether the data you are using/curating contains personally478

identifiable information or offensive content? [N/A]479

5. If you used crowdsourcing or conducted research with human subjects...480

(a) Did you include the full text of instructions given to participants and screenshots,481

if applicable? [N/A]482

(b) Did you describe any potential participant risks, with links to Institutional483

Review Board (IRB) approvals, if applicable? [N/A]484

(c) Did you include the estimated hourly wage paid to participants and the total485

amount spent on participant compensation? [N/A]486

13

A Open source code487

This section is meant to give an overview of our opensource code. Together with our paper488

submission we include links to three anonymous github repositories.489

• neural_testbed: https://anonymous.4open.science/r/neural_testbed-neurips22490

Together with each git repo, we include a ‘tutorial colab’ – a Jupyter notebooks that can491

be run in the browser without requiring any local installation. https://anonymous.4open.492

science/r/neural_testbed-neurips22/neural_testbed/tutorial.ipynb. Our library493

is written in Python, and relies heavily on JAX for scientific computing (Bradbury et al.,494

2018). We view this open-source effort as a major contribution of our paper.495

B Testbed Pseudocode496

We present the testbed pseudocode in this section. Specifically, Algorithm 2 is the pseudocode497

for our neural testbed, and Algorithm 3 is an approach to estimate the likelihood of a test data498

τ -sample conditioned on an agent’s belief, based on the standard Monte-Carlo estimation.499

The presented testbed pseudocode works for any prior P(E ∈ ·) over the environment and500

any input distribution PX , including the ones described in Section 3.1. We also release full501

code and implementations in Appendix A.502

In addition to presenting the testbed pseudocode, we also explain our choices of experiment503

parameters in Appendix C. To apply Algorithm 2, we need to specify an input distribution504

PX and a prior distribution on the environment P(E ∈ ·). Recall from Section 3.1 that we505

consider binary classification problems with input dimension 2. We choose PX = N(0, I), and506

we consider three environment priors distinguished by a temperature parameter that controls507

the signal-to-noise ratio (SNR) regime. We sweep over temperatures in {0.01, 0.1, 0.5}. The508

prior distribution P(E ∈ ·) is induced by a distribution over MLPs with 2 hidden layers and509

ReLU activation. The MLP is distributed according to standard Xavier initialization, except510

that biases in the first layer are drawn from N(0, 1
2). The MLP outputs two units, which are511

divided by the temperature parameter and passed through the softmax function to produce512

class probabilities. The implementation of this generative model is in our open source code513

under the path /generative/factories.py.514

We now describe the other parameters we use in the Testbed. In Algorithm 2, we pick the order515

of predictive distributions τ ∈ {1, 10}, training dataset size T ∈ {1, 3, 10, 30, 100, 300, 1000},516

number of sampled problems J = 10, and number of testing data τ -samples N = 1000. To517

apply Algorithm 3, we sample M = 1000 models from the agent.518

C Agents519

In this section, we describe the benchmark agents in Section 3.3 and the choice of various520

hyperparameters used in the implementation of these agents. The list of agents include521

MLP, ensemble, dropout, Bayes by backprop, stochastic Langevin MCMC, ensemble+ and522

hypermodel. We will also include other agents such as KNN, random forest, and deep kernel,523

but the performance of these agents was worse than the other benchmark agents, so we524

chose not to include them in the comparison in Section 4. In each case, we attempt to match525

the “canonical” implementation. The complete implementation of these agents including526

the hyperparameter sweeps used for the Testbed are available in Appendix A. We make use527

of the Epistemic Neural Networks notation from (Osband et al., 2021) in our code. We set528

the default hyperparameters of each agent to be the ones that minimize the aggregated KL529

score dagg
KL = d1

KL + 1
10 d10

KL.530

C.1 MLP531

The mlp agent learns a 2-layer MLP with 50 hidden units in each layer by minimizing the cross-532

entropy loss with L2 weight regularization. The L2 weight decay scale is chosen either to be λ 1
T533

or λ
d
√

β

T , where d is the input dimension, β is the temperature of the generative process and534

14

https://anonymous.4open.science/r/neural_testbed-neurips22
https://anonymous.4open.science/r/neural_testbed-neurips22/neural_testbed/tutorial.ipynb
https://anonymous.4open.science/r/neural_testbed-neurips22/neural_testbed/tutorial.ipynb
https://anonymous.4open.science/r/neural_testbed-neurips22/neural_testbed/tutorial.ipynb
/generative/factories.py

Algorithm 2 Neural Testbed
Require: the testbed requires the following inputs

1. prior distribution over the environment P(E ∈ ·), input distribution PX

2. agent fθ

3. number of training data T , test distribution order τ
4. number of sampled problems J , number of test data samples N
5. parameters for agent likelihood estimation, as is specified in Algorithm 3

for j = 1, 2, . . . , J do
Step 1: sample environment and training data

1. sample environment E ∼ P(E ∈ ·)
2. sample T inputs X0, X1, . . . , XT −1 i.i.d. from PX

3. sample the training labels Y1, . . . , YT conditionally i.i.d. as

Yt+1 ∼ P (Y ∈ ·|E , X = Xt) ∀t = 0, 1, . . . , T − 1

4. choose the training dataset as DT = {(Xt, Yt+1) , t = 0, . . . , T − 1}
Step 2: train agent

train agent fθT
based on training dataset DT

Step 3: compute likelihoods
for n = 1, 2, . . . , N do

1. sample X
(n)
T , . . . , X

(n)
T +τ−1 i.i.d. from PX

2. generate Y
(n)

T +1, . . . , Y
(n)

T +τ conditionally independently as

Y
(n)

t+1 ∼ P
(

Y ∈ ·
∣∣∣E , X = X

(n)
t

)
∀t = T, T + 1, . . . , T + τ − 1

3. compute the likelihood under the environment E as

pj,n = P
(

Y
(n)

T +1:T +τ

∣∣∣E , X
(n)
T :T +τ−1

)
=
∏T +τ−1

t=T Pr
(

Y
(n)

t+1

∣∣∣E , X
(n)
t

)
4. estimate the likelihood conditioned on the agent’s belief

p̂j,n ≈ P
(

ŶT +1:T +τ = Y
(n)

T +1:T +τ

∣∣∣θT , X
(n)
T :T +τ−1, Y

(n)
T +1:T +τ

)
,

based on Algorithm 3 with test data τ -sample
(

X
(n)
T :T +τ−1, Y

(n)
T +1:T +τ

)
.

end for
return 1

JN

∑J
j=1

∑N
n=1 log (pj,n/p̂j,n)

Algorithm 3 Monte Carlo Estimation of Likelihood of Agent’s Belief
Require: the Monte-Carlo estimation requires the following inputs

1. trained agent fθT
and number of Monte Carlo samples M

2. test data τ -sample (XT :T +τ−1, YT +1:T +τ)
Step 1: sample M models Ê1, . . . , ÊM conditionally i.i.d. from P

(
Ê ∈ ·

∣∣∣θT

)
Step 2: estimate p̂ as

p̂ = 1
M

M∑
m=1

P
(

ŶT +1:T +τ = YT +1:T +τ

∣∣∣Êm, XT :T +τ−1, YT +1:T +τ

)
return p̂

15

T is the size of the training dataset. We sweep over λ ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 100}.535

We implement the MLP agent as a special case of a deep ensemble (C.2). The implementation536

and hyperparameter sweeps for the mlp agent can be found in our open source code, as a537

special case of the ensemble agent, under the path /agents/factories/ensemble.py.538

C.2 Ensemble539

We implement the basic “deep ensembles” approach for posterior approximation (Lakshmi-540

narayanan et al., 2017). The ensemble agent learns an ensemble of MLPs by minimizing the541

cross-entropy loss with L2 weight regularization. The only difference between the ensemble542

members is their independently initialized network weights. We chose the L2 weight scale543

to be either λ 1
MT or λ

d
√

β

MT , where M is the ensemble size, d is the input dimension, β is544

the temperature of the generative process, and T is the size of the training dataset. We545

sweep over ensemble size M ∈ {1, 3, 10, 30, 100} and λ ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 100}.546

We find that larger ensembles work better, but this effect is within margin of error after 10547

elements. The implementation and hyperparameter sweeps for the ensemble agent can be548

found in our open source code under the path /agents/factories/ensemble.py.549

C.3 Dropout550

We follow Gal and Ghahramani (2016) to build a droput agent for posterior approximation.551

The agent applies dropout on each layer of a fully connected MLP with ReLU activation552

and optimizes the network using the cross-entropy loss combined with L2 weight decay.553

The L2 weight decay scale is chosen to be either l2

2T (1 − pdrop) or d
√

βl

T where pdrop is554

the dropping probability, d is the input dimension, β is the temperature of the data gen-555

erating process, and T is the size of the training dataset. We sweep over dropout rate556

pdrop ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, length scale (used for L2 weight decay)557

l ∈ {1, 3, 10}, number of neural network layers ∈ {2, 3}, and hidden layer size ∈ {50, 100}.558

The implementation and hyperparameter sweeps for the dropout agent can be found in our559

open source code under the path /agents/factories/dropout.py.560

C.4 Bayes-by-backprop561

We follow Blundell et al. (2015) to build a bbb agent for posterior approximation. We consider562

a scale mixture of two zero-mean Gaussian densities as the prior. The Gaussian densities563

have standard deviations σ1 and σ2, and they are mixed with probabilities p and 1 − p,564

respectively. We sweep over σ1 ∈ {0.3, 0.5, 0.7, 1, 2, 4}, σ2 ∈ {0.3, 0.5, 0.7}, p ∈ {0, 0.5, 1},565

learning rate ∈ {10−3, 3 × 10−3}, number of training steps ∈ {1000, 2000}, number of neural566

network layers ∈ {2, 3}, hidden layer size ∈ {50, 100}, and the ratio of the complexity cost567

to the likelihood cost ∈ {1, d
√

β}, where d is the input dimension and β is the temperature568

of the data generating process. The implementation and hyperparameter sweeps for the bbb569

agent can be found in our open source code under the path /agents/factories/bbb.py.570

C.5 Stochastic gradient Langevin dynamics571

We follow Welling and Teh (2011) to implement a sgmcmc agent using stochastic gradient572

Langevin dynamics (SGLD). We consider two versions of SGLD, one with momentum and573

other without the momentum. We consider independent Gaussian prior on the neural network574

parameters where the prior variance is set to be575

σ2 = λ
T

d
√

β
,

where λ is a hyperparameter that is swept over {0.0025, 0.01, 0.04}, d is the input dimension,576

β is the temperature of the data generating process, and T is the size of the training dataset.577

We consider a constant learning rate that is swept over {10−4, 5 × 10−4, 10−3, 5 × 10−3}. For578

SGLD with momentum, the momentum decay term is always set to be 0.9. The number of579

training batches is 5 × 105 with burn-in time of 105 training batches. We save a model every580

1000 steps after the burn-in time and use these models as an ensemble during the evaluation.581

16

/agents/factories/ensemble.py
/agents/factories/ensemble.py
/agents/factories/dropout.py
/agents/factories/bbb.py

The implementation and hyperparameter sweeps for the sgmcmc agent can be found in our582

open source code under the path /agents/factories/sgmcmc.py.583

C.6 Ensemble+584

We implement the ensemble+ agent using deep ensembles with randomized prior functions585

(Osband et al., 2018) and bootstrap sampling (Osband and Van Roy, 2015). Similar to the586

vanilla ensemble agent in Section C.2, we consider L2 weight scale to be either λ 1
MT or587

λ
d
√

β

MT . We sweep over ensemble size M ∈ {1, 3, 10, 30, 100} and λ ∈ {0.1, 0.3, 1, 3, 10}. The588

randomized prior functions are sampled exactly from the data generating process, and we589

use a prior scale of 3/
√

β. In addition, we sweep over bootstrap type (none, exponential,590

bernoulli).591

Note that an ensemble+ agent is obtained by an addition of a prior network to the ensemble592

agent. We find that the addition of randomized prior functions is crucial for improvement in593

performance over vanilla deep ensembles in terms of the quality of joint predictions. The594

implementation and hyperparameter sweeps for the ensemble+ agent can be found in our595

open source code under the path /agents/factories/ensemble_plus.py.596

C.7 Hypermodel597

We follow Dwaracherla et al. (2020) to build a hypermodel agent for posterior approximation.598

We consider a linear hypermodel over a 2-layer MLP base model. We sweep over index599

dimension ∈ {1, 3, 5, 7}. The L2 weight decay is chosen to be either λ 1
T or λ

d
√

β

T with600

λ ∈ {0.1, 0.3, 1, 3, 10}, where d is the input dimension, β is the temperature of the data601

generating process, and T is the size of the training dataset. We sweep over bootstrap602

type (none, exponential, bernoulli). We use an additive prior which is a linear hypermodel603

prior over an MLP base model, which is similar to the generating process, with number of604

hidden layers in {1, 2}, 10 hidden units in each layer, and prior scale from {1/
√

β, 1/β}. The605

implementation and hyperparameter sweeps for the hypermodel agent can be found in our606

open source code under the path /agents/factories/hypermodel.py.607

C.8 Non-parametric classifiers608

K-nearest neighbors (k-NN) (Cover and Hart, 1967) and random forest classifiers (Friedman,609

2017) are simple and cheap off-the-shelf non-parametric baselines (Murphy, 2012; Pedregosa610

et al., 2011). The ‘uncertainty’ in these classifiers arises merely from the fact that they produce611

distributions over the labels and as such we do not expect them to perform well relative to612

more principled approaches. Moreover, these methods have no capacity to model dτ
KL for613

τ > 1. For the knn agent we swept over the number of neighbors k ∈ {1, 5, 10, 30, 50, 100}614

and the weighting of the contribution of each neighbor as either uniform or based on distance.615

For the random_forest agent we swept over the number of trees in the forest {10, 100, 1000},616

and the splitting criterion which was either the Gini impurity coefficient or the information617

gain. To prevent infinite values in the KL we truncate the probabilities produced by these618

classifiers to be in the interval [0.01, 0.99]. The implementation and hyperparameter sweeps619

for the knn and random_forest agents can be found in our open source code under the620

paths /agents/factories/knn.py and /agents/factories/random_forest.py.621

C.9 Gaussian process with learned kernel622

A neural network takes input Xt ∈ X and produces output Zt+1 = Wϕθ(Xt) + b ∈ RK ,623

where W ∈ RK×m is a matrix, b ∈ RK is a bias vector, and ϕθ : X → Rm is the output624

of the penultimate layer of the neural network. In the case of classification the output625

Zt+1 corresponds to the logits over the class labels, i.e., Ŷt+1 ∝ exp(Zt+1). The neural626

network should learn a function that maps the input into a space where the classes are627

linearly distinguishable. In other words, the mapping that the neural network is learning628

can be considered a form of kernel (Schölkopf and Smola, 2018), where the kernel function629

k : X ×X → R is simply k(X, X ′) = ϕθ(X)⊤ϕθ(X ′). With this in mind, we can take a trained630

17

/agents/factories/sgmcmc.py
/agents/factories/ensemble_plus.py
/agents/factories/hypermodel.py
/agents/factories/knn.py
/agents/factories/random_forest.py

neural network and consider the learned mapping to be the kernel in a Gaussian process631

(GP) (Rasmussen, 2003), from which we can obtain approximate uncertainty estimates.632

Concretely, let Φ0:T −1 ∈ RT ×m be the matrix corresponding to the ϕθ(Xt), t = 0, . . . , T − 1,633

vectors stacked row-wise and let ΦT :T +τ−1 ∈ Rτ×m denote the same quantity for the test634

set. We can write the kernel function evaluated on the training and test datasets using these635

matrices. Fix index i ∈ {0, . . . , K − 1} to be a particular class index. A GP models the joint636

distribution over the dataset to be a multi-variate Gaussian, i.e.,637 [
Z

(i)
1:T

Z
(i)
T +1:T +τ

]
∼ N

([
µ

(i)
1:T

µ
(i)
T +1:T +τ

]
,

[
σ2I + Φ0:T −1Φ⊤

0:T −1 ΦT :T +τ−1Φ⊤
0:T −1

Φ0:T −1Φ⊤
T :T +τ−1 ΦT :T +τ−1Φ⊤

T :T +τ−1

])
where σ > 0 models the noise in the training data measurement and µ

(i)
1:T , µ

(i)
T +1:T +τ are the638

means under the GP. The conditional distribution is given by639

P (Z(i)
T +1:T +τ | Z

(i)
1:T , X0:T +τ−1) = N

(
µ

(i)
T +1:T +τ |1:T , ΣT +1:T +τ |1:T

)
where640

ΣT +1:T +τ |1:T = ΦT :T +τ−1Φ⊤
T :T +τ−1 − ΦT :T +τ−1Φ⊤

0:T −1(σ2I + Φ0:T −1Φ⊤
0:T −1)−1Φ0:T −1Φ⊤

T :T +τ−1.

and rather than use the GP to compute µ
(i)
T +1:T +τ |0:T (which would not be possible since we641

do not observe the true logits) we just take it to be the output of the neural network when642

evaluated on the test dataset. The matrix being inverted in the expression for ΣT +1:T +τ |0:T643

has dimension T × T , which may be quite large. We use the Sherman-Morrison-Woodbury644

identity to rewrite it as follows (Woodbury, 1950)645

ΣT +1:T +τ |0:T = ΦT :T +τ−1(I − Φ⊤
0:T −1(σ2I + Φ0:T −1Φ⊤

0:T −1)−1Φ0:T −1)Φ⊤
T :T +τ−1

= σ2ΦT :T +τ−1(σ2I + Φ⊤
0:T −1Φ0:T −1)−1Φ⊤

T :T +τ−1,

which instead involves the inverse of an m × m matrix, which may be much smaller. If we646

perform a Cholesky factorization of positive definite matrix (σ2I + Φ⊤
0:T −1Φ0:T −1) = LL⊤647

then the samples for all logits simultaneously can be drawn by first sampling ζ ∈ Rm×K ,648

with each entry drawn IID from N (0, 1), then forming649

ŶT +1:T +τ ∝ exp(µT +1:T +τ |1:T + σΦT :T +τ−1L−⊤ζ).
The implementation and hyperparameter sweeps for the deep_kernel agent can be found in650

our open source code under the path /agents/factories/deep_kernel.py.651

C.10 Other agents652

In our paper we have made a concerted effort to include representative and canonical agents653

across different families of Bayesian deep learning and adjacent research. In addition to654

these implementations, we performed extensive tuning to make sure that each agent was655

given a fair shot. However, with the proliferation of research in this area, it was not possible656

for us to evaluate all competiting approaches. We hope that, by opensourcing the Neural657

Testbed, we can allow researchers in the field to easily assess and compare their agents to658

these baselines.659

For example, we highlight a few recent pieces of research that might be interesting to evaluate660

in our setting. Of course, there are many more methods to compare and benchmark. We661

leave this open as an exciting area for future research.662

• Neural Tangent Kernel Prior Functions (He et al., 2020). Proposes a specific type663

of prior function in ensemble+ inspired by connections to the neural tangent kernel.664

• Functional Variational Bayesian Neural Networks (Sun et al., 2019). Applies665

variational inference directly to the function outputs, rather than weights like bbb.666

• Variational normalizing flows (Rezende and Mohamed, 2015). Applies variational667

inference over a more expressive family than bbb.668

• No U-Turn Sampler (Hoffman et al., 2014). Another approach to sgmcmc that attempts669

to compute the posterior directly, computational costs can grow large.670

18

/agents/factories/deep_kernel.py

D Testbed results671

In this section, we provide the complete results of the performance of benchmark agents672

on the Testbed, broken down by the temperature setting, which controls the SNR, and the673

size of the training dataset. We select the best performing agent, based on aggregated score674

d1
KL + d10

KL/10, within each agent family and plot d1
KL and d10

KL with the performance of an675

MLP agent as a reference. We also provide a plot comparing the training time of different676

agents.677

D.1 Visualizing ensemble vs ensemble+678

Figure 12 provides additional intuition into how the randomized prior functions are able679

to drive improved performance. Figure 12a shows a sampled generative model from our680

Testbed, with the training data shown in red and blue circles. Figure 12b shows the mean681

predictions and 4 randomly sampled ensemble members from each agent (top=ensemble,682

bottom=ensemble+). We see that, although the agents mostly agree in their mean predictions,683

ensemble+ produces more diverse sampled outcomes enabled by the addition of randomized684

prior functions. In contrast, ensemble produces similar samples, which may explain why its685

performance is close to baseline mlp in this setting.686

(a) True model. (b) Agent samples: only ensemble+ produces diverse decision boundaries.

Figure 12: Visualization of the predictions of ensemble and ensemble+ agents.

D.2 Performance breakdown687

Figures 13 and 14 show the KL estimates evaluated on τ = 1 and τ = 10, respectively. For688

each agent, for each SNR regime, for each number of training points we plot the average689

KL estimate from the Testbed. In each plot, we include the “baseline” mlp agent as a black690

dashed line to allow for easy comparison across agents. A detailed description of these691

benchmark agents can be found in Appendix C.692

D.3 Training time693

Figure 15 shows a plot comparing the d10
KL and training time of different agents normalized694

with that of an MLP. The parameters of each agent are selected to maximize the d10
KL. We695

can see that sgmcmc agent has the best performance, but at the cost of more training time696

(computation). Both ensemble+ and hypermodel agents have similar performance as sgmcmc697

with lower training time. We trained our agents on CPU only systems.698

19

E Sequential Decision Problems699

This section provides supplementary information for the sequential decision problems in700

Section 5. All of the code necessary to reproduce the experiments is opensourced in the701

/bandit/ directory.702

E.1 Problem formulation703

We consider bandit problems derived from the testbed and evaluate the agents using Algorithm704

4 for which we need to specify prior on the environment P(E ∈ ·), input distribution PX , and705

the number of actions N . We choose input distribution PX = N (0, Id), where d is the input706

dimension. We sweep over d ∈ {2, 10, 50} and choose the number of actions to be N = 20 d,707

i.e., for input dimensions {2, 10, 50} we have {40, 200, 1000} actions respectively. We use708

the same prior distribution of environments as in Appendix B with a fixed temperature of709

0.1. For each setting, we run for 50, 000 time steps (T = 50, 000) and with 20 random seeds710

(J = 20).711

E.2 Agent definition712

In Appendix C, we described benchmark agents in our testbed. Among these agents, we use713

mlp, ensemble, dropout, bbb, ensemble+, and hypermodel agents for sequential decision714

problems. For all the agents we use the hyper parameters specified by default, in the715

source code, at the path /agents/factories/. The default hyperparameters of each agent716

correspond to be the ones that minimize the aggregated KL score dagg
KL = d1

KL + d10
KL/10. As717

the agent interacts with the environment, the amount of data the agent has observed keeps718

growing. Due to this we tune the regularization term based on the number of time steps719

agent has interacted with the environment. For mlp, ensemble, ensemble+, and hypermodel720

agents we use an L2 weight decay of λ
2
√

β

t , where β is the temperature, t is the number of721

the time steps the agent has interacted with the environment, and λ is the default weight722

scale of the agent. For dropout we choose the L2 weight decay as 2
√

βl

t , where l is the723

default length scale used in the dropout agent. For bbb we scale the prior term by 1
t . As724

described above, all hyperparmeters are chosen to be the ones which minimize the aggregated725

KL score dagg
KL = d1

KL + 1
10 d10

KL.726

E.3 Results727

Figures 8 and 9 shows the correlation between performance on testbed performance and728

sequential decision problems with an input dimension of 50. Different points of an agent in729

these figures corresponds to different random seeds for the testbed and sequential problems.730

We can see that performance on sequential decision problems is strongly correlated with731

testbed joint performance τ = 10 and not correlated with the testbed marginal performance.732

In Figures 16 and 17 we show a similar correlation plots between testbed performance733

and sequential decision problems across different input dimensions for sequential decision734

problems. We can see that performance on sequential decision problems has clear correlation735

with testbed joint performance τ = 10, and no correlation with testbed marginal performance736

τ = 1, across all the input dimensions considered.737

These results offer empirical evidence that practical deep learning approaches separated738

by the quality of their joint predictions, but not their marginals, can lead to differing739

performance in downstream tasks. In addition, we show that our simple 2D testbed can740

provide insights that scale to much higher dimension problems.741

20

/bandit/
/agents/factories/

Algorithm 4 Evaluation on Bandit Problem
Require: Evaluation on bandit problem requires the following inputs

1. Distribution over the environment P(E ∈ ·), input distribution PX , and the
number of actions N .

2. Agent fθ

3. Number of time steps T
4. Number of sampled problems J

for j = 1, 2, . . . , J do
Step 1: Sample environment and action set

1. Sample environment E ∼ P(E ∈ ·)
2. Sample a set X of N actions x1, x2, . . . , xN i.i.d. from PX

3. Obtain the mean rewards corresponding to actions in X conditioned on the
environment

Rx = P(Yt+1 = 1|E , Xt = x), ∀x ∈ X

4. Compute the optimal expected reward R∗ = maxx∈X Rx

Step 2: Agent interaction with the environment
Initialize the data buffer D0 = {}
for t = 1, 2, . . . , T do

1. Update agent fθt
belief distribution based on the data in the buffer Dt−1

2. TS action selection scheme:
i. Sample Êt from the agent belief distribution

Êt ∼ P
(

Ê ∈ ·|θt

)
ii. Act greedily based on Êt

Xt ∈ arg max
x∈X

P(Ŷt+1 = 1|Êt, Xt = x)

iii. Generate observation Yt+1 based on action Xt

Yt+1 ∼ P (Yt+1 ∈ ·|E , Xt = Xt)

3. Update the buffer Dt = D0 ∪ (Xt, Yt+1)
end for
Compute the total regret incurred in T time steps

Regretj(T) =
T∑

t=1

(
R∗ − RXt

)
end for
return 1

J

∑J
j=1 Regretj(T)

21

0
0.2
0.4
0.6

KL
 e

st
im

at
e

on
 ta

u=
1

temperature = 0.01 temperature = 0.1 temperature = 0.5

ensem
ble+

0
0.2
0.4
0.6

hyperm
odel

0
0.2
0.4
0.6 ensem

ble

0
0.2
0.4
0.6 dropout

0
0.2
0.4
0.6 sgm

cm
c

0
0.2
0.4
0.6

bbb

0
0.2
0.4
0.6

deep_kernel

0
0.2
0.4
0.6

knn

0
0.2
0.4
0.6

random
_forest

0
0.2
0.4
0.6

logistic_regression

1 10 100 1000
0

0.2
0.4
0.6

1 10 100 1000 1 10 100 1000
Number of training points

prior

Figure 13: Performance of benchmark agents on the Testbed evaluated on τ = 1, compared
against the MLP baseline.

22

0
2
4
6

KL
 e

st
im

at
e

on
 ta

u=
10

temperature = 0.01 temperature = 0.1 temperature = 0.5

ensem
ble+

0
2
4
6 hyperm

odel

0
2
4
6 ensem

ble

0
2
4
6 dropout

0
2
4
6 sgm

cm
c

0
2
4
6

bbb

0
2
4
6 deep_kernel

0
2
4
6

knn

0
2
4
6

random
_forest

0
2
4
6

logistic_regression

1 10 100 1000
0
2
4
6

1 10 100 1000 1 10 100 1000
Number of training points

prior

Figure 14: Performance of benchmark agents on the Testbed evaluated on τ = 10, compared
against the MLP baseline.

23

1 3 10 30
Average training time (x MLP training time)

0.7

0.8

0.9

1

No
rm

al
ize

d
KL

 e
st

im
at

e

agent
bbb

dropout

ensemble

ensemble+

hypermodel

mlp

sgmcmc

Figure 15: Normalized d10
KL vs training time of different agents

0.11 0.12 0.13 0.14
10

100

1000

to
ta

l r
eg

re
t

input dimension: 2
correlation: 0.01 (-0.16, 0.17)

agent
mlp
ensemble
bbb
dropout
ensemble+
hypermodel

0.11 0.12 0.13 0.14

input dimension: 10
correlation: -0.21 (-0.36, -0.04)

0.11 0.12 0.13 0.14
marginal KL loss (= 1)

input dimension: 50
correlation: -0.12 (-0.33, 0.07)

Figure 16: Testbed marginal performance d1
KL is not significantly positively correlated with

sequential decision performance. This result is robust across input dimensions 2, 10, and 50.

0.9 1 1.1 1.2 1.3 1.4 1.5
10

100

1000

to
ta

l r
eg

re
t

input dimension: 2
correlation: 0.45 (0.32, 0.59)

agent
mlp
ensemble
bbb
dropout
ensemble+
hypermodel

0.9 1 1.1 1.2 1.3 1.4 1.5

input dimension: 10
correlation: 0.72 (0.63, 0.81)

0.9 1 1.1 1.2 1.3 1.4 1.5
joint KL loss (= 10)

input dimension: 50
correlation: 0.69 (0.61, 0.77)

Figure 17: Testbed joint performance d10
KL is significantly positively correlated with

sequential decision performance. This result is robust across input dimensions 2, 10, and 50.

24

	Introduction
	Key contributions
	Related work

	Evaluating predictive distributions
	Environment and predictions
	Kullback–Leibler loss

	The Neural Testbed
	Synthetic data generating processes
	Why do we need a synthetic testbed?
	Benchmark agents

	Results
	Performance in marginal predictions
	Performance beyond marginals

	Sequential decisions
	Neural bandit
	Agent performance

	Robustness of generative model
	Conclusion
	Open source code
	Testbed Pseudocode
	Agents
	MLP
	Ensemble
	Dropout
	Bayes-by-backprop
	Stochastic gradient Langevin dynamics
	Ensemble+
	Hypermodel
	Non-parametric classifiers
	Gaussian process with learned kernel
	Other agents

	Testbed results
	Visualizing ensemble vs ensemble+
	Performance breakdown
	Training time

	Sequential Decision Problems
	Problem formulation
	Agent definition
	Results

