
Accelerating Voting by Quantum Computation

Abstract

Studying the computational complexity of deter-
mining winners under voting rules and designing
fast algorithms are classical and fundamental ques-
tions in computational social choice. In this paper,
we accelerate voting by leveraging quantum com-
puting. We propose a quantum voting algorithm
that can be applied to any anonymous voting rule.
We further show that our algorithm can be quadrat-
ically faster than any classical sampling algorithm
under a wide range of common voting rules, includ-
ing plurality, Borda, Copeland, and STV. Precisely,
our quantum voting algorithm achieves an accu-
racy of at least 1− ε with runtime Θ

(
n·log(1/ε)

MoV

)
,

where n is the number of votes and MoV is mar-
gin of victory, the smallest number of voters to
change the winner. On the other hand, any classi-
cal voting algorithm based on sampling a subset
of voting achieves the same accuracy with runtime
Θ
(

n2·log(1/ε)
MoV2

)
[Bhattacharyya and Dey, 2021].

Our theoretical results are supported by experi-
ments under the plurality and Borda rule.

1 INTRODUCTION

Driven by the critical public need of revolutionalizing mod-1

ern democratic systems [Mancini, 2015, Brill, 2018], voting2

has been widely applied in many collective decision-making3

scenarios beyond political elections. Examples include4

search engine [Dwork et al., 2001], crowdsourcing [Mao5

et al., 2013], database management [Belardinelli and Grandi,6

2019], and blockchain governance [Grossi, 2021], just to7

name a few.8

In such large-scale, high-frequency collective decision-9

making scenarios, it is desirable that the winner is computed10

as soon as possible, perhaps at the (small) cost of accuracy.11

In fact, the study of computational complexity and algorith- 12

mic aspects of voting rules has been a key topic of the field 13

of computational social choice [Brandt et al., 2016]. 14

One natural approach is to randomly sample a subset of 15

votes (with or without replacement) and compute the winner 16

of the sampled votes. The idea can be dated back to Venetian 17

elections in the 13th century [Walsh and Xia, 2012] and has 18

recently attracted much attention from the computational 19

social choice community [Bhattacharyya and Dey, 2021, 20

Flanigan et al., 2020, 2021]. However, the performance of a 21

sampling algorithm is restricted by the number of samples 22

needed to guarantee a certain level of correctness, which de- 23

termines its runtime. Bhattacharyya and Dey [2021] showed 24

that the runtime of the sampling algorithm would be quadrat- 25

ically related to the number of votes. (See Table 1.) Is there 26

a faster algorithm, for example, sub-linear to the number of 27

votes, that still preserves a high probability of correctness? 28

Quantum computation appears to be a promising approach, 29

as it has successfully accelerated many computational tasks 30

such as search [Grover, 1996], optimization [Hogg and Port- 31

nov, 2000], and machine learning [Benedetti et al., 2016, 32

Ajagekar and You, 2020, 2021]. However, we are not aware 33

of previous work on accelerating voting using quantum com- 34

putation. Thus, the following problem remains open. 35

Can voting be accelerated by quantum computation? 36

We address this question with YES both theoretically and ex- 37

perimentally. We accelerate voting by designing a sub-linear 38

quantum voting algorithm where a small probability of “er- 39

rors” are allowed, which outperforms the classical sampling 40

voting algorithms. Our contributions are three-fold. First, 41

we propose the quantum voting algorithm (Algorithm 1). 42

Our algorithm leverages classical techniques of quantum 43

counting [Brassard et al., 1998] to generate the histogram 44

of the votes. The simple architecture guarantees that our 45

algorithm will be easy to implement in the future. Second, 46

we theoretically prove that our algorithm is quadratically 47

faster than any classical sampling algorithm for many com- 48

Submitted to the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). To be used for reviewing only.

Runtime Space Requirement

Quantum (Theorem. 1) Θ
(

n·log(1/ε)
MoV

)
Θ
(
log(n·log(1/ε)MoV)

)
Classical [Bhattacharyya and Dey, 2021] Θ

(
n2·log(1/ε)

MoV2

)
Θ
(
log(n

2·log(1/ε)
MoV2)

)
Table 1: Summary for the theoretical results, where n is the number of votes, and MoV means the margin of victory, the
smallest number of voters needed to change the winner. All results in the table assume algorithms output the correct winner
with no less than 1− ε probability.

mon voting rules including plurality, positional scoring rule,49

Copeland, and STV (see Table 1). Third, we experimentally50

verified our theoretical results on plurality and Borda rule51

(Section 6). In Section 7, we provide heuristics that may52

further improve the performance of quantum voting.53

Our quantum algorithm accelerates voting most significantly54

in the case where the margin of victory is sub-linear to n,55

i.e. MoV = Θ(nc) with c ∈ (0, 1). In this case, MoV is56

relatively small compared with n, and a Θ(n
MoV) accelera-57

tion from classical to quantum algorithm is significant. And58

the ratio n
MoV = Θ(n1−c) implies that the algorithm is sub-59

linear. Also see Section 5 for a detailed explanation of when60

quantum computation accelerates.61

Related works and discussions. To the best of our knowl-62

edge, none of the literature has used quantum computation63

to accelerate voting. Vaccaro et al. [2007]introduced the idea64

of quantum computation to voting. The quantum voting algo-65

rithm in Vaccaro et al. [2007] provides security guarantees66

(against colluding attacks [Lian and Zhang, 2009]). Xue and67

Zhang [2017] improved the result in Vaccaro et al. [2007]68

by proposing a simpler voting protocol but with stronger69

security guarantees. Khabiboulline et al. [2021] proposed70

an “all-in-one” quantum voting protocol, which focuses71

on achieving anonymity without losing security guarantees.72

However, all of the above approaches require Ω(n) quantum73

communication cost, which means their methods take Ω(n)74

time.75

There is a large literature on efficient algorithms for the76

winner determination problem. Wang et al. [2019] purposed77

fast algorithms to compute winners in ranked pairs and STV78

under parallel-universes tiebreaking [Conitzer et al., 2009],79

which is known to be NP-complete. Various papers have80

shown that the winner of Dodgson rule, while is NP-hard to81

compute in the worst case [Bartholdi et al., 1989], can be82

efficiently computed with high probability when the ranking83

is generated i.i.d. [McCabe-Dansted et al., 2008, Homan84

and Hemaspaandra, 2009] and under some semi-random85

models [Xia and Zheng, 2022]. Most of these work focus on86

provide efficient algorithms NP-hard winner determination87

problem, and few consider fast, randomized voting.88

2 PRELIMINARIES

Voting. In a voting scenario, n > 1 voters cast their votes 89

on m > 1 candidates. A vote Vi is a full-ranking (linear 90

order) over candidates that represents a voter’s preference 91

towards the candidates. Since there are m! types of full- 92

rankings for m candidates, a vote can be represented as 93

a m!-dimensional unit vector. Here, if the vote is the j-th 94

type, the j-th dimension of the vector is 1, and all other 95

dimensions are 0’s. The vote of the i-th voter is denoted as 96

Vi = (Vi,1, · · · , Vi,m!). For example, if the i-th vote is the 97

j-th type, we have that Vi,j = 1 and Vi,j′ = 0 for all j′ ̸= j. 98

A profile P is a collection of n agents’ rankings. A voting 99

rule r is a mapping from the profile P to the winner among 100

m candidates. 101

In this paper, we assume that the voting rule r satisfies 102

anonymity and canceling out [Liu et al., 2020]. An anony- 103

mous voting rule selects the winner only based on the his- 104

togram of the profile and does not depend on the identity 105

of the voter. A histogram hist is a m! dimension vector that 106

records the number of each type of ranking in the profile. 107

We use r(hist) to denote the winner under anonymous vot- 108

ing rule r and a profile with histogram hist. A voting rule 109

satisfies canceling out if the winner does not change after 110

adding one copy of each ranking to the profile. Many com- 111

mon voting rules satisfy anonymity and canceling-out, such 112

as plurality, Borda, and STV. 113

Margin of victory (MoV) describes the smallest number k 114

such that k voters can change the winner by voting differ- 115

ently. 116

For the quantum computation, we introduce the technique 117

of quantum counting [Brassard et al., 1998] which we ap- 118

plied in our quantum voting algorithm. An introduction to 119

quantum computing and implementation can be found in 120

Appendix A.1. 1
121

Quantum Counting Algorithm [Brassard et al., 1998]. 122

Quantum counting algorithm is a quantum algorithm that 123

counts the number of solutions to a search problem. Given 124

a binary function f : {0, 1, · · · , 2t − 1} → {0, 1}, the 125

quantum counting circuit for f computes the number of 126

x ∈ {0, 1, · · · , 2t − 1} such that f(x) = 1. A quantum 127

1This paper adopts the same notation system as Nielsen and
Chuang [2010], which is a textbook about quantum computation.

2

counting circuit uses t quantum bits to encode the function128

and s quantum bits to calculate and record the output. More129

specifically, suppose there are exactly n1 solutions of f . The130

quantum counting circuit with t+ s quantum bits outputs131

a binary decimal φ̂ = 0.b1b2 · · · bs that is an estimation of132

φ = arcsin
(√
n1 · 2−t

)
/π. For example, binary decimal133

0.011 represents (2−2 + 2−3) = 3/8. We present a useful134

error bound for quantum counting.135

Lemma 1 (Error bound for quantum counting, Inequal-136

ity (5.34) in [Nielsen and Chuang, 2010]). For any δ > 2−s,137

138

Pr[|φ̂− φ| ≥ 2−s + δ] ≤ 1

2(δ · 2s − 1)
.

The number of quantum bits s affects both the precision139

and the runtime of the quantum counting algorithm. A large140

s leads to a more precise estimation of the result while141

being time-costly, as the runtime of the quantum counting142

algorithm is Θ(2s). The detailed implementation of the143

quantum counting circuit and the reasoning behind why it144

accelerates voting can be found in Appendix A.2.145

Applying Quantum Counting to Voting. We apply the146

quantum counting algorithm to count the histogram of a147

profile. For a type j, we can count the number of j-th type148

of votes by setting the following binary function:149

fj(x) =

 1 if candidate x’s vote is j-th type

0 otherwise
,

The number of x such that fj(x) = 1 is exactly the num-150

ber of votes of j-th type, i.e. histj . The histogram of the151

votes is generated by enumerating all the j. We assume that152

the information of fj functions is stored in the quantum153

RAM and can be efficiently encoded into quantum circuits154

[Giovannetti et al., 2008b,a, Park et al., 2019].155

3 QUANTUM VOTING ALGORITHM

Formal definition of quantum voting. We formally define156

quantum voting in Algorithm 1. In classical voting, votes are157

usually sent to an “aggregator”, who is responsible for aggre-158

gating the votes and announcing the winner. Our quantum159

voting follows a similar procedure, where the “aggregator”160

is the quantum counting algorithm.161

Basically, Algorithm 1 repeats the quantum counting162

algorithm by K rounds. In each round, quantum counting163

estimates the histogram of the profile hist and applies the164

voting rule to the estimated histogram ĥist to compute the165

winner. Then, the “aggregator” announces the candidate166

who wins in the most rounds as the winner of the voting.167

A tie-breaking rule is applied when there are multiple168

candidates with the most winning rounds. Next, we will169

introduce the functionality of each step of Algorithm 1 in170

detail. 171

172

Algorithm 1: Quantum Voting Algorithm
1: Inputs: n voters’ votes V0, · · · ,Vn−1, a voting rule r,

number of iteration K, and the number of qubits s ≥ 2
2: Initialization: Construct the binary functions
f1, f2, · · · , fm! based on V0, · · · ,Vn−1

3: for k ∈ {1, · · · ,K} do
4: Initialize an m!-dimensional vector ĥist
5: for j ∈ {1, · · · ,m!} do
6: Construct and apply quantum counting circuit for

fj with s qubits. Denote the output of the
quantum counting circuit as 0.b1 · · · bs.

7: Set the j-th component of ĥist as
2t · sin2 (π · 0.b1 · · · bs)

8: end for
9: Set r(ĥist) as the winner of the k-th iteration

10: end for
11: Announce the candidate that wins in the largest number

of iterations

Construct binary functions. For each type j of preferences, 173

we construct a binary function fj where all j-th type votes in 174

the profile are solutions. Formally, fj : {0, 1, · · · , 2t−1} → 175

{0, 1} is defined as 176

fj(x) =

 1 if voter x’s vote is j-th type

0 otherwise
,

where t = 2⌈logn⌉ is the number of quamtum bits to encode 177

n, and voters an numbered from 0 to (n − 1). For x = 178

n, · · · , 2t − 1, we just set fj(x) = 0. Then, the number of 179

x such that fj(x) = 1 is exactly the number of votes of j-th 180

type, i.e. histj . 181

Count the histogram. For each type j, a quantum counting 182

circuit is constructed and counts the solution of fj . The 183

output of the counting circuit is the estimation 0.b1b2 · · · bs 184

of φ = arcsin
(√

histj · 2−t
)
/π. Therefore, we set ĥistj 185

as 2t · sin2 (π · 0.b1 · · · bs). By enumerating all types j, we 186

get the estimation ĥist of the histogram hist. 187

Decide the winner. The quantum counting procedure runs 188

for K rounds. In each round, the winner is computed on 189

the estimated histogram ĥist. The overall winner of the 190

algorithm is the candidate that wins in the most rounds. 191

4 THEORETICAL ANALYSIS OF FAST
QUANTUM VOTING

In Section 3, we proposed our quantum voting algorithm 192

(Algorithm 1). In this section, we provide theoretical 193

guarantees about the accuracy (probability of outputting 194

3

Theorem 1:
main result

Theorem 2:
𝐾𝐾 = 1 case

Theorem 3: accuracy, runtime, and
space requirement for general 𝑠𝑠.

Lemma 2: small difference between
the estimated and the real histogram.

Lemma 3: histograms with small
difference shares the same winner.

set 𝐾𝐾
set 𝑠𝑠

Lemma 1: bound of quantum counting.

Figure 1: Logical chain of theorems and technical lemmas.
For example, the arrow from Theorem 2 to Theorem 1 rep-
resents that Theorem 1 is proved by applying Theorem 2.

the correct winner), runtime, and space requirements of our195

algorithm.196

197

Our bound for the quantum voting algorithm depends on198

three factors: the number of votes n, the margin of victory199

MoV, and the error probability ε. We regard the number of200

candidates m as fixed in the analysis. Figure 1 shows how201

the theorems are logically founded.202

Theorem 1 (Theoretical guarantee of quantum vot-203

ing). For arbitrary constant ε ∈ (0, 1), quantum vot-204

ing (Algorithm 1) has the following three properties205

when parameters K = 24 ln(1/ε) and s = 2 +206

⌈t+ log(2(m!) + 2) + log(π(m!))− log(MoV)⌉.207

1. It outputs the correct voting outcome with at least 1− ε208

probability.209

2. Its runtime is Θ
(

n log(1/ε)
MoV

)
.210

3. Its space requirement is Θ
(
log(n log(1/ε)

MoV)
)

.211

Proof. Theorem 1 holds by applying Theorem 2 with ε = 1
4 .

By setting s as in the statement, the algorithm outputs the
correct result in each round with a probability of at least p =
3
4 . Then by Chernoff bound, the probability that the correct
result is chosen for at least K/2 rounds (which guarantees
to be the most rounds) is at least

1− ε ≥ 1− exp

(
−(1− 1

2p
)2 ·K · p/2

)
,

which is equivalent to212

K ≥ 2p · ln(1/ε)
(p− 1/2)2

≈ 24 · ln(1/ε).

213

Theorem 2 (Theoretical guarantee of quantum vot-214

ing when K = 1). For arbitrary constant ε ∈215

(0, 1), quantum voting (Algorithm 1) has the follow-216

ing three properties when K = 1 and s = 2 +217

⌈
t+ log(m!

2ε + 2) + log(π(m!))− log(MoV)
⌉
. 218

1. It outputs the correct voting outcome with at least 1− ε 219

probability. 220

2. Its runtime is Θ
(

n
ε·MoV

)
. 221

3. Its space requirement is Θ
(
log(n

ε·MoV)
)
. 222

Proof. The proof of Theorem 2 follows by setting a proper
parameter s for Theorem 3. From Theorem 3, for a given s,
the accuracy of Algorithm 1 is at least 1− m!

2(δ·2s−1) . In order
to achieve the accuracy of 1−ε, constraint δ ≥ 2−s(m!

2ε +1)
needs to be satisfied. Then, s needs to be large enough to
guarantee that the feasible region of δ is not empty, i.e.

2−s(
m!

2ε
+ 1) <

MoV
2t+1π(m!)

− 2−s.

It’s not hard to verify that s in the statement of the theorem 223

satisfies this constraint. Then, by setting δ = 2−s(m!
2ε + 1), 224

we get that the accuracy is at least 1− ε. 225

Theorem 3. For any s ≥ 2, quantum voting (Algorithm 1) 226

with K = 1 has the following three properties. 227

1. For all δ ∈ (2−s, MoV
2t+1π(m!) − 2−s), it outputs the correct 228

winner with at least 1− m!
2(δ·2s−1) probability. 229

2. Its runtime is Θ(2s) 230

3. Its space requirement is Θ(log(n) + s). 231

Remark 1. Property 1 has a guarantee of accuracy only 232

when the feasible region of δ is non-empty, which sets a 233

constraint of s. 234

The proof of the accuracy is obtained by applying two lem- 235

mas. Lemma 2 guarantees that for all dimension j, the dif- 236

ference of histj and the estimation ĥistj is bounded by 237

MoV/(m!) with at least 1− m!
2(δ·2s−1) probability. Lemma 3 238

guarantees that any histogram in the neighborhood of hist 239

shares the same winner with hist. Therefore, with at least 240

1 − m!
2(δ·2s−1) probability, ĥist leads to the correct winner. 241

The runtime and the space requirement come from the quan- 242

tum counting algorithm. Recall that a quantum counting 243

algorithm has a runtime of Θ(2s). 2 And since it requires 244

t+s quantum bits where t = ⌈log n⌉, the space requirement 245

is Θ(log(n) + s). 246

In the following lemma, let histj be the histogram by 247

adding the same fraction of each ranking to ĥist so that 248

the sum of the histogram is n: for all dimension j, histj = 249

ĥistj+(||hist||1−||ĥist||1)/(m!). (Recall that ||hist||1 = n 250

is known.) By the assumption of canceling-out, we know 251

that r(hist) = r(ĥist). Therefore, it is suffice to show that 252

the difference between histj and histj is bounded. 253

2As the anonymous rule r computes the winner based on a m!
dimension histogram, its runtime will only depend on the number
of candidates m, which is Θ(1) in our analysis.

4

Lemma 2. For all δ ∈ (2−s, MoV
2t+1π(m!) − 2−s), the prob-254

ability that |histj − histj | < MoV
m! for all dimension j is at255

least 1− m!
2(δ·2s−1) .256

Proof. In this proof, we fix an arbitrary pair of s and δ sat-257

isfying the condition. By applying the sum of probability on258

Lemma 1 for all dimension j, we know that the probability259

that |φ̂j − φj | < 2−s + δ for every dimension j is at least260

1− m!
2(δ·2s−1) . Then we show that |φ̂j − φj | < 2−s + δ for261

all dimension j implies |histj − histj | < MoV
m! for all j.262

Suppose |φ̂j − φj | < 2−s + δ holds for all dimension
j. Let h(x) = 2t sin2(πx). We have h(φ̂j) = ĥistj and
h(φj) = histj . Note that dh(x)

dx = 2tπ sin(2πx) ≤ 2tπ.
Therefore,

|ĥistj − histj | ≤ 2tπ|φ̂j − φj | < 2tπ(δ + 2−s).

Given the bound of difference between ĥist and hist, we
show that since hist is the modified ĥist, the difference
between hist and hist is also bounded. Let d = 2tπ(δ+2−s).
By summarizing all dimensions j, we have∣∣∣||ĥist||1 − ||hist||1

∣∣∣ ≤ ∑
j∈m!

|ĥistj − histj | < (m!)d.

Now we consider the difference between histj and histj for263

any dimension j.264

For the upper bound, we have ĥistj < histj + d and
||hist||1 − ||ĥist||1) < (m!)d. Therefore,

histj =ĥistj + (||hist||1 − ||ĥist||1)/(m!)

<histj + 2d.

Similarly, for the lower bound, we have ĥistj > histj − d.265

Therefore, histj > histj − 2d.266

Therefore, for all dimension j, |histj − histj | < 2d. The267

condition that δ < MoV
2t+1π(m!) − 2−s guarantees that 2d =268

2t+1π(δ + 2−s) < MoV
m! . Therefore, for all dimension j,269

|histj − histj | < MoV
m! , which finishes our proof.270

Lemma 3. For any histogram ĥist such that ||hist||1 =271 ∣∣∣∣∣∣ĥist
∣∣∣∣∣∣
1

and
∣∣∣∣∣∣hist − ĥist

∣∣∣∣∣∣
1
< 2MoV, r(hist) = r(ĥist).272

Proof. We consider the voting rule r that allows voters to273

vote fractionally. That is, each voter has a total weight of274

1 and can assign the weight arbitrarily to every ranking.275

Accordingly, MoV is the smallest amount of weight of votes276

to change the winner.277

Suppose the statement is not true, and there exists a ĥist
such that

∣∣∣∣∣∣hist − ĥist
∣∣∣∣∣∣
1
< 2MoV and r(hist) ̸= r(ĥist).

Let J1 be the set of dimension j such that ĥistj > histj , and
J2 be the set of j such that ĥistj < histj . Since ||hist||1 =∣∣∣∣∣∣ĥist

∣∣∣∣∣∣
1
= n, there exists a way of transferring ĥist to hist

by accumulating all the excess weights of the dimensions in
J1 and assigning it to the dimensions in J2. The changes in
the weight∑

j∈J1

|ĥistj − histj | =
∑
j∈J2

|ĥistj − histj | ≥ MoV

by the definition of MoV. However, this contradicts the
assumption that∣∣∣∣∣∣hist − ĥist

∣∣∣∣∣∣
1
=

∑
j∈(J1∪J2)

|ĥistj − histj | < 2MoV.

Therefore, for any histogram ĥist such that 278∣∣∣∣∣∣hist − ĥist
∣∣∣∣∣∣
1
< 2MoV, r(hist) = r(ĥist). 279

5 COMPARE QUANTUM AND
CLASSICAL VOTING

In this section, we compare quantum voting (Algorithm 1) 280

with classical fast voting algorithms. The classical algorithm 281

is designed according to the idea of sampling (either with 282

or without replacement). At the high level, it uses (the his- 283

togram of) randomly sampled votes to estimate the winner. 284

We analyze the runtime and space requirement for classical 285

sampling algorithms and compare them with those of our 286

quantum voting algorithm. 287

When does quantum voting (may) accelerate? Firstly, we 288

provide an intuitive explanation of when quantum voting 289

would accelerate the most. We first think about the cases 290

where classical algorithms (e.g., randomly sampling a subset 291

of votes and using the subset to predict the winner) do not 292

need to be improved or cannot be improved. 293

When the margin of victory MoV = Θ(n), classical al- 294

gorithms are already very fast according to the Chernoff 295

bound, which says the classical algorithms’ error rate can 296

be exponentially small in terms of runtime [Bhattacharyya 297

and Dey, 2021]. 298

Another case is when MoV is very small (e.g., MoV = 299

Θ(1)) where classical algorithms’ performance is close to 300

the optimal. In this case, any algorithms have to look into 301

each vote to decide the winner. Since the complexity of 302

counting every vote is Θ(n), there is not a lot of space for 303

the classical algorithms to be improved. 304

Between these two extremes, is the case where quantum 305

voting accelerates most significantly, for example, when the 306

margin of victory MoV = Θ(nc), where c ∈ (0, 1) is a 307

constant. In this case, the classical voting would be as slow 308

as Ω(n) when c ≤ 1
2 , and the acceleration of Θ(n

MoV) from 309

5

quantum voting is significant. On the other hand, the runtime310

of the quantum voting Θ(n log(1/ε)
MoV) is still sub-linear and311

satisfies the requirement of “fast voting”. For example, in the312

experiment of m = 2 and MoV = 10 in our experimental313

verification (See the right column in Figure 2), the number314

of voters n ≈ 106 and MoV =
√
n. In this example, the315

winner only got ∼0.2% more votes than the loser.316

Our comparison between classical and quantum voting al-317

gorithms also lies in the case of MoV = Θ(nc).318

Runtime. The runtime of a sampling algorithm is the num-319

ber of sample it needs to achieve the given level of cor-320

rectness. Bhattacharyya and Dey [2021] proposes a generic321

sample bound of sampling algorithms that hold for a wide322

range of voting rules.323

Theorem 4 (Bhattacharyya and Dey [2021]). Given an324

election where the MoV is at least αn, where α can be a325

function of n, the sample needed to determine the winner of326

the election with probability at least 1− ε is Θ
(

log(1/ε)
α2

)
327

for plurality, approval, scoring rules, maximin, Copeland,328

Bucklin, plurality with runoff, and STV voting rules.329

The lower bound in Theorem 4 derives from the lower bound330

of samples to distinguish two distributions [Canetti et al.,331

1995], and the upper bound is proved by Chernoff bound.332

Given MoV = Θ(nc) for some c ∈ (0, 1) we set the param-333

eter α = MoV
n = Θ(nc−1) and get the following bound of334

runtime characterized by n and MoV.335

Corollary 1. For all c ∈ (0, 1) and MoV = Θ(nc), the336

runtime of any sampling algorithm with accuracy at least337

1−ε is Θ
(

n2 log(1/ε)
MoV2

)
for plurality, approval, scoring rules,338

maximin, Copeland, Bucklin, plurality with runoff, and STV339

voting rules.340

Space Requirement. Consider a sampling algorithm with341

T samples. An algorithm needs to store an integer Tj for342

each j which denotes the number type j preferences in343

the votes. For either average-case analysis or worst-case344

analysis, storing all the Tj requires Θ(log T) bits. Therefore,345

given the runtime bound in Corollary 1, we know the space346

requirement of any sampling algorithm with accuracy 1− ε347

is Θ
(
log

(
n2 log(1/ε)

MoV2

))
.348

Recall that our quantum algorithm (Algorithm 1) has349

a runtime of Θ
(

n log(1/ε)
MoV

)
and space requirement350

Θ
(
log

(
n log(1/ε)

MoV

))
. Comparing the complexities, our351

quantum algorithm is quadratically faster than any classical352

sampling algorithm.353

6 EXPERIMENTAL RESULTS

Basic settings. We numerically compare the proposed quan-354

tum voting (Algorithm 1) with a classical voting (Algo-355

rithm 2), whose general idea is sampling without replace- 356

ment. We set the number of samples T in Algorithm 2 to be 357

K ·2s, where s andK are the parameters of Algorithm 1. By 358

doing this, the runtime of both algorithms is Θ(K · 2s). We 359

set the number of voters n = 220 ≈ 106, which is at a simi- 360

lar order of magnitude as the number of voters in each state 361

of the United States. For example, the number of registered 362

voters in New Hampshire is 1,009,004 ≈ 106 [Independent 363

Voter Project, 2020]. We compare quantum voting and clas- 364

sical voting on two widely-used voting rules, plurality and 365

Borda, which are formally defined as follows. 366

Algorithm 2: Classical Sampling Voting Algorithm
1: Inputs: n voters’ votes V0, · · · ,Vn−1, a voting rule r,

number of samples T
2: Sample T votes uniformly at random without

replacement
3: Build the histogram ĥist of the sampled votes.
4: Set r(ĥist) as the winner.

Plurality. The plurality rule counts the top-ranked candidate 367

of each vote. The candidate ranked top in the most votes is 368

announced as the winner. For plurality, we set the number 369

of candidates m = 2 (Figure 2) and m = 4 (Figure 3). 370

Borda. Borda rule computes a Borda score for each can- 371

didate. A candidate ranked i-th in a vote gains a score of 372

m− i− 1 from that vote. For example, the Borda scores for 373

a vote c1 ≻ c2 ≻ c3 ≻ c4 are {c1 : 3, c2 : 2, c3 : 1, c4 : 0}. 374

The Borda score of a candidate is the sum of scores it gains 375

from each vote. The candidate with the largest Borda score 376

is announced as the winner. For Borda, we also set the num- 377

ber of candidates m = 2 (Figure 7 in Appendix B) and 378

m = 4 (Figure 8 in Appendix B). 379

Implementation details. For any margin of victory MoV,
we set the profile for plurality rule as

n+(m!−2)MoV
m! voters vote for c1 ≻ · · · ≻ cm

n−2MoV
m! voters vote for each other type of rankings

.

For Borda, we let d = 4MoV
(m−2)!·m and set the profile as

n+(m−1)d
m! voters vote for each type of votes such that

c1 is top-ranked

n−d
m! voters vote for each other kind of rankings

.

It’s easy to check that the margin of victory for both pro- 380

files is MoV. In all experiments of this paper, we first draw 381

105 independent trails for the sampled profile and calculate 382

the winner for each trail. Then, we estimate the probability 383

of outputting the correct winner (Pr[correct]) by the fre- 384

quency of observing the correct winner in the trails. The 385

horizontal axis, log2(K · 2s) can be seen as the logarithm 386

6

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 64

Quantum
Classical

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 256

Quantum
Classical

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 1024

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 64

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1
Pr

[c
or

re
ct

]
K = 3, MOV = 256

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 1024

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 64

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 256

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 1024

Quantum
Classical

Figure 2: Compare quantum voting (blue circles) with classic voting (red squares) for plurality rule when m = 2. The
horizontal axis can be seen as the logarithm of the algorithms’ runtime.

of the algorithms’ runtime in all figures. For all curves, we387

set s = 4, · · · , 16 for the twelve points from left to right388

respectively. We set K = 1, 3, or 5 to avoid ties in the389

quantum algorithm. For plurality, we set MoV = 64, 256,390

or 1024, or equivalently, MoV = n0.3, n0.4 or n0.5. For391

Borda, we set MoV = 1024, 4096, or 16384, or equiva-392

lently, MoV = n0.5, n0.6, or n0.7. All experiments of this393

paper are implemented through MATLAB 2022b and run394

on a Windows 11 desktop with AMD Ryzen 9 5900X CPU395

and 32GB RAM.396

Observations. The first observation is: the quantum voting397

algorithm has better accuracy than classical voting no mat-398

ter which setting when the runtime is fixed. For example,399

MoV = 1024, K = 1, m = 2, and s = 14, the quan-400

tum voting algorithm outputs the correct winner almost for401

certain. However, the classical algorithm only has ∼60% 402

probability to output the correct winner. The second observa- 403

tion is: for MoV = 1024, K = 1, m = 2, to achieve ∼90% 404

for Pr[correct], the quantum algorithm requires 210 runtime. 405

In comparison, the classical algorithm with 216 runtime can 406

only achieve ∼70% for Pr[correct]. This matches our the- 407

oretical result: the proposed quantum voting algorithm is 408

quadratically faster than any classical voting algorithm. 409

7 HEURISTICS TO FURTHER
ACCELERATE QUANTUM VOTING.

In this section, we would like to provide further insights into 410

quantum voting algorithms. Can quantum voting be further 411

accelerated? We provide several possible heuristics. 412

7

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 64

Quantum
Classical

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 256

Quantum
Classical

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 1024

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 64

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 256

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 1024

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 64

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 256

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 1024

Quantum
Classical

Figure 3: Compare quantum voting (blue circles) with classic voting (red squares) for plurality rule when m = 4. The
horizontal axis can be seen as the logarithm of the algorithms’ runtime.

Pre-sampling. One way to improve the average perfor-413

mance of the quantum voting algorithm is to pre-sample414

a small subset of the votes. For example, in the majority415

vote for binary candidates, if the pre-sample votes indicate416

an almost irreversible win of a candidate, then we directly417

announce the winner and skip the quantum computing. By418

carefully setting the pre-sampling size and the skipping419

thresholds, we may improve the average run-time while420

keeping high accuracy.421

Sampling + Quantum. Another natural idea is to apply the422

quantum voting algorithm on a sampled subset of the votes.423

Sampling decreases the number of votes, so the quantum424

circuit consumes fewer bits and operators, which reduces the425

time and space cost. However, such improvement sacrifices426

accuracy, as both sampling and quantum computing has a427

probability to make a mistake. It is still unclear if such a428

sampling-quantum algorithm would be faster to achieve the429

same level of accuracy.430

8 CONCLUSIONS AND FUTURE WORKS

In conclusion, we took the first step in using quantum com- 431

putation to accelerate voting. We found that a variety of 432

common voting rules can be accelerated quadratically us- 433

ing quantum computation, including plurality, Borda, STV, 434

Copeland, and so on. Our proposed quantum computation 435

has the potential to improve the efficiency of voting in large- 436

scale and/or high-frequency decision-making scenarios. 437

An extension of this paper is to further accelerate the quan- 438

tum voting algorithm by combining existing acceleration 439

techniques of classical fast voting algorithms. It would also 440

be interesting to extend the theoretical guarantee to a wider 441

range of voting rules, such as generalized scoring rules Xia 442

[2013], Liu et al. [2020], which contain most of the widely- 443

used voting rules in real-world elections, and preference 444

functions whose output is aggregated preference among all 445

the candidates. 446

8

References447

Akshay Ajagekar and Fengqi You. Quantum computing448

assisted deep learning for fault detection and diagnosis449

in industrial process systems. Computers & Chemical450

Engineering, 143:107119, 2020. ISSN 0098-1354.451

Akshay Ajagekar and Fengqi You. Quantum computing452

based hybrid deep learning for fault diagnosis in electrical453

power systems. Applied Energy, 303:117628, 2021. ISSN454

0306-2619.455

John Bartholdi, III, Craig Tovey, and Michael Trick. Voting456

schemes for which it can be difficult to tell who won the457

election. Social Choice and Welfare, 6:157–165, 1989.458

Francesco Belardinelli and Umberto Grandi. Social choice459

methods for database aggregation. Electronic Proceed-460

ings in Theoretical Computer Science, 297:50–67, jul461

2019. doi: 10.4204/eptcs.297.4. URL https://doi.462

org/10.4204%2Feptcs.297.4.463

Marcello Benedetti, John Realpe-Gómez, Rupak Biswas,464

and Alejandro Perdomo-Ortiz. Estimation of effective465

temperatures in quantum annealers for sampling appli-466

cations: A case study with possible applications in deep467

learning. Phys. Rev. A, 94:022308, Aug 2016.468

André Berthiaume and Gilles Brassard. Oracle quantum469

computing. Journal of modern optics, 41(12):2521–2535,470

1994.471

Arnab Bhattacharyya and Palash Dey. Predicting winner and472

estimating margin of victory in elections using sampling.473

Artificial Intelligence, 296:103476, 2021. ISSN 0004-474

3702.475

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jerome Lang,476

and Ariel D. Procaccia, editors. Handbook of Computa-477

tional Social Choice. Cambridge University Press, 2016.478

Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum479

counting. In Kim G. Larsen, Sven Skyum, and Glynn480

Winskel, editors, Automata, Languages and Program-481

ming, pages 820–831, Berlin, Heidelberg, 1998. Springer482

Berlin Heidelberg. ISBN 978-3-540-68681-1.483

Markus Brill. Interactive Democracy. In Proceedings of484

AAMAS, 2018.485

Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds486

for sampling algorithms for estimating the average. In-487

formation Processing Letters, 53(1):17–25, 1995. ISSN488

0020-0190.489

Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Pref-490

erence functions that score rankings and maximum like-491

lihood estimation. In Proceedings of the Twenty-First492

International Joint Conference on Artificial Intelligence493

(IJCAI), pages 109–115, Pasadena, CA, USA, 2009.494

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. 495

Rank aggregation methods for the web. In Proceedings 496

of the 10th World Wide Web Conference, pages 613–622, 497

2001. 498

Bailey Flanigan, Paul Gölz, Anupam Gupta, and Ariel D 499

Procaccia. Neutralizing self-selection bias in sam- 500

pling for sortition. In H. Larochelle, M. Ranzato, 501

R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad- 502

vances in Neural Information Processing Systems, 503

volume 33, pages 6528–6539. Curran Associates, 504

Inc., 2020. URL https://proceedings. 505

neurips.cc/paper/2020/file/ 506

48237d9f2dea8c74c2a72126cf63d933-Paper. 507

pdf. 508

Bailey Flanigan, Paul Gölz, Anupam Gupta, Brett Hennig, 509

and Ariel D Procaccia. Fair algorithms for selecting 510

citizens’ assemblies. Nature, 596(7873):548–552, 2021. 511

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Ar- 512

chitectures for a quantum random access memory. Phys. 513

Rev. A, 78:052310, Nov 2008a. doi: 10.1103/PhysRevA. 514

78.052310. URL https://link.aps.org/doi/ 515

10.1103/PhysRevA.78.052310. 516

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 517

Quantum random access memory. Physical review letters, 518

100(16):160501, 2008b. 519

Davide Grossi. Social Choice Around the Block: On the 520

Computational Social Choice of Blockchain. In Proceed- 521

ings of AAMAS, 2021. 522

Lov K. Grover. A fast quantum mechanical algorithm for 523

database search. In Proceedings of the Twenty-Eighth 524

Annual ACM Symposium on Theory of Computing, page 525

212–219, New York, NY, USA, 1996. Association for 526

Computing Machinery. ISBN 0897917855. 527

Tad Hogg and Dmitriy Portnov. Quantum optimization. 528

Information Sciences, 128(3-4):181–197, 2000. 529

Christopher M. Homan and Lane A. Hemaspaandra. Guaran- 530

tees for the success frequency of an algorithm for finding 531

Dodgson-election winners. Journal of Heuristics, 15: 532

403—423, 2009. 533

2020 Independent Voter Project. New hampshire voter statis- 534

tics, 2020. 535

Elham Kashefi, Adrian Kent, Vlatko Vedral, and Konrad 536

Banaszek. Comparison of quantum oracles. Physical 537

Review A, 65(5):050304, 2002. 538

Alastair Kay. Tutorial on the quantikz package, 2018. 539

Emil T Khabiboulline, Juspreet Singh Sandhu, Marco Ugo 540

Gambetta, Mikhail D Lukin, and Johannes Borregaard. 541

Efficient quantum voting with information-theoretic se- 542

curity, 2021. 543

9

https://doi.org/10.4204%2Feptcs.297.4
https://doi.org/10.4204%2Feptcs.297.4
https://doi.org/10.4204%2Feptcs.297.4
https://proceedings.neurips.cc/paper/2020/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://link.aps.org/doi/10.1103/PhysRevA.78.052310
https://link.aps.org/doi/10.1103/PhysRevA.78.052310
https://link.aps.org/doi/10.1103/PhysRevA.78.052310

Shiguo Lian and Yan Zhang. Handbook of research on544

secure multimedia distribution. IGI Global, Hershey, PA,545

2009. ISBN 1605662623.546

Ao Liu, Yun Lu, Lirong Xia, and Vassilis Zikas. How547

private are commonly-used voting rules? In Conference548

on Uncertainty in Artificial Intelligence, pages 629–638.549

PMLR, 2020.550

Pia Mancini. Why it is time to redesign our political system.551

European View, 14(69–75), 2015.552

Andrew Mao, Ariel D. Procaccia, and Yiling Chen. Bet-553

ter human computation through principled voting. In554

Proceedings of the National Conference on Artificial In-555

telligence (AAAI), Bellevue, WA, USA, 2013.556

John C. McCabe-Dansted, Geoffrey Pritchard, and Arkadii557

Slinko. Approximability of Dodgson’s rule. Social558

Choice and Welfare, 31:311—330, 2008.559

Michael A. Nielsen and Isaac L. Chuang. Quantum Com-560

putation and Quantum Information: 10th Anniversary561

Edition. Cambridge University Press, 2010.562

Daniel K Park, Francesco Petruccione, and June-Koo Kevin563

Rhee. Circuit-based quantum random access memory for564

classical data. Scientific reports, 9(1):3949, 2019.565

Joan Alfina Vaccaro, Joseph Spring, and Anthony Chefles.566

Quantum protocols for anonymous voting and surveying.567

Physical Review A, 75(1):012333, 2007.568

Wim Van Dam. Quantum oracle interrogation: Getting all569

information for almost half the price. In Proceedings 39th570

Annual Symposium on Foundations of Computer Science571

(Cat. No. 98CB36280), pages 362–367. IEEE, 1998.572

Toby Walsh and Lirong Xia. Lot-based voting rules. In573

Proceedings of the Eleventh International Joint Confer-574

ence on Autonomous Agents and Multi-Agent Systems575

(AAMAS), pages 603–610, Valencia, Spain, 2012.576

Jun Wang, Sujoy Sikdar, Tyler Shepherd, Zhibing Zhao,577

Chunheng Jiang, and Lirong Xia. Practical algorithms for578

multi-stage voting rules with parallel universes tiebreak-579

ing. Proceedings of the AAAI Conference on Artificial580

Intelligence, 33(01):2189–2196, 2019.581

Lirong Xia. Generalized scoring rules: a framework that rec-582

onciles borda and condorcet. ACM SIGecom Exchanges,583

12(1):42–48, 2013.584

Lirong Xia and Weiqiang Zheng. Beyond the worst case:585

Semi-random complexity analysis of winner determina-586

tion. In Web and Internet Economics, pages 330–347,587

Cham, 2022. Springer International Publishing.588

Peng Xue and Xin Zhang. A simple quantum voting scheme589

with multi-qubit entanglement. Scientific reports, 7(1):590

1–4, 2017.591

10

A IMPLEMENTATION OF QUANTUM
VOTING ALGORITHM.

In this section, we aim to introduce the implementation of592

quantum voting algorithm in a more technical perspective.593

We will first introduce the basics in quantum computing.594

Then we will specify the implementation of circuits of quan-595

tum counting in Algorithm 1, and why they accelerates the596

voting process.597

A.1 QUANTUM BASICS.

Basic quantum computation. Quantum bit (or qubit in598

short) is the counterpart of classical bit, which takes a de-599

terministic binary from {0, 1}. Qubit, on the other hand, is600

represented by a linear combination of {|0⟩, |1⟩}, which are601

counterparts to {0, 1}, respectively. That is, every qubit |ψ⟩602

is written as603

|ψ⟩ = α|0⟩+ β|1⟩,
where α and β are complex numbers and are usually called604

amplitudes. If we measure the qubit, there is |α|2 probability605

to get 0 and |β|2 probability to get 1. Naturally, we always606

have |α|2 + |β|2 = 1 because the probabilities should sum607

to 1. Qubits sometimes are written as vectors to simplify608

notations. Formally,609 [
α
β

]
≜ α|0⟩+ β|1⟩.

t > 1 qubits are presented as a 2t-dimensional vector, where610

the j-th component of the vector (denoted as αj) represents611

the amplitude of |j1 · · · jt⟩ (or |j⟩), where j1 · · · jt is the612

binary representation of j. Similar to the 1-qubit case, the613

probability of observing j1, · · · , jt from those t qubit equals614

to |αj |2.615

A quantum operation (quantum gate) Q on t qubits is de-616

noted by a 2t × 2t unitary matrix, which means the matrix’s617

inverse is its Hermitian conjugate. Applying a quantum op-618

eration Q on quantum state |ψ⟩ is denoted by619

Q|ψ⟩ ≜ Q(2t×2t) ψ⃗(2t),

where the the quantum operator Q(2t×2t) is a 2t×2t unitary620

matrix and the quantum state ψ⃗(2t) is a 2t dimensional621

column vector.622

623

Quantum circuit of some useful quantum operators.3624

Quantum circuits run from the left-hand side to the right-625

hand side. For example, the following circuit means apply-626

ing Hadamard gate H on a quantum state |ψ⟩.627

|ψ⟩ H where H =
1√
2

[
1 1
1 −1

]
.

3All quantum circuits of this paper are drawn using the Quan-
tikz package [Kay, 2018] for LATEX.

The quantum circuit notion 628

|ψ⟩
0/1

b

denotes measuring quantum state |ψ⟩ with 0/1 base (b de- 629

notes the result of measurement). Naturally, the complexity 630

of quantum measurement and Hadamard gate are both Θ(1). 631

Quantum oracle [Berthiaume and Brassard, 1994, Van Dam, 632

1998, Kashefi et al., 2002] is a widely-used operator to en- 633

code binary functions or binary information. Given t qubits 634

and a binary function f : {0, · · · , 2t − 1} 7→ {0, 1}, quan- 635

tum oracle (based on function f(·)) applies a phase shift of 636

−1 = eπi if f(x) = 1 and does nothing otherwise. We can 637

query oracle many times and regard the number of queries 638

as the cost [Grover, 1996]. Formally, 639{
Of |x⟩ = |x⟩ if f(x) = 1
Of |x⟩ = −|x⟩ otherwise .

Suppose we have a quantum gate G on t qubits. The follow- 640

ing operation is called controlled-G. 641

G

=

[
I(2t×2t) 0(2t×2t)

0(2t×2t) G(2t×2t)

]
,

where I denotes the identity matrix, and 0 denotes the zeros 642

matrix. To simplify notations, we also write 643

Ga

=

. . .

. . .G G

(repeat a times).

A.2 IMPLEMENTATION OF QUANTUM
COUNTING CIRCUIT.

Figure 4 shows the quantum counting circuit, which is a 644

combination of Grover search algorithm [Grover, 1996] and 645

quantum reverse Fourier transformation (the QFT † opera- 646

tor) Followings we focus on introducing Grover algorithm 647

and why it accelerates the computation. 648

Grover operator. Grover algorithm is an efficient search 649

algorithm. Given a binary function f : {0, 1, · · · , 2t−1} → 650

{0, 1}, Grover algorithms returns an x with f(x) = 1 with 651

high probability. The Grover operation in Algorithm 1 is 652

constructed by the quantum circuit in Figure 5, where t = 653

⌈log n⌉ denotes the minimum number of quantum bits to 654

encode n. The quantum operator QPS is called quantum 655

phase shifting, which provides a phase shift of −1 on every 656

state except |0⟩. Mathematically, 657

|0⟩ QPS−→ |0⟩ and

|x⟩ QPS−→ −|x⟩ for any x ∈ 1, · · · , 2t − 1.

11

|0⟩ . . .
0/1

b1

|0⟩ . . .
0/1

b2

...
...

...
...

|0⟩ . . .
0/1

bs

|0⟩ . . .

...
...

. . .

|0⟩ . . .

Register 1
s qubits

H

QFT †
H

H

Register 2
t qubits

H

G20 G21 G2s−1 trash

H

Figure 4: The circuit for quantum counting algorithm.

...
...t qubits Ofj

H

QPS

H

H H

Figure 5: The circuit for Grover operator.

Here, |x⟩ represents the x-th base state of the t qubits. The658

high-level idea of Grover operator’s functionality is shown659

in Figure 6, where |ψ⟩ is the input of Grover operators in660

quantum counting, and {|α⟩, |β⟩} is a pair of orthogonal661

bases. The formal definition of |ψ⟩, |α⟩, and |β⟩ can be662

found in Appendix A.3. Under the |α⟩ |β⟩ base, the quantum663

oracle Ofj reflects |ψ⟩ over |α⟩, while the rest parts of G664

reflectsOfj |ψ⟩ over |ψ⟩. The angle between the output state665

G|ψ⟩ and initial state |ψ⟩666

θ = 2arcsin
(√

histj · 2−t
)
,

which includes the information about histj . Since function667

arcsin(
√
x) grows quadratically faster than linear functions668

when x is small, we expect that an estimation about669

arcsin(
√
x) could be quadratically more accurate than670

directly estimate x.671

672

A.3 FUNCTIONALITY FOR GROVER
ALGORITHM

According to (6.4) in Nielsen and Chuang [2010], Hadamard673

gate changes t qubits of |0⟩ to an equal superposition state674

G| ۧ𝝍

| ۧ𝝍

Of | ۧ𝝍

| ۧ𝜷

| ۧ𝜶

𝜃

𝜃/2

𝜃/2

Figure 6: An illustration of Grover operator’s functionality
(Figure 6.3 in Nielsen and Chuang [2010]).

(equal probability of observing any outcome under quantum 675

measurements). 676

|ψ⟩ = 1

2t/2
·
2t−1∑
x=0

|x⟩.

Letting f : {0, · · · , 2t−1} 7→ {0, 1} be the binary function 677

to construct the quantum oracle, and ◦
n1 be the number of x 678

such that f(x) = 1. The orthogonal bases |α⟩ and |β⟩ are 679

12

defined as,680

|α⟩ ≜ 1√
2t − ◦

n1
·

∑
x:f(x)=0

|x⟩ and

|β⟩ ≜ 1√
◦
n1

·
∑

x:f(x)=1

|x⟩.

Under the |α⟩ |β⟩ base, the equal superposition state681

|ψ⟩ =
√

2t − ◦
n1

2t
|α⟩+

√
◦
n1
2t

|β⟩.

Since682

θ = 2arcsin
(√

◦
n1 · 2−t

)
,

we have683

|ψ⟩ = cos

(
θ

2

)
|α⟩+ sin

(
θ

2

)
|β⟩,

Of |ψ⟩ = cos

(
θ

2

)
|α⟩+ sin

(
−θ
2

)
|β⟩, and

G|ψ⟩ = cos

(
3θ

2

)
|α⟩+ sin

(
3θ

2

)
|β⟩.

B ADDITIONAL EXPERIMENTAL
RESULTS

Figure 7 and Figure 8 plot the comparison between quantum684

voting and classical voting for m = 2 and m = 4 respec-685

tively when the voting rule is Borda. Similar behavior as686

the plurality can be observed for Borda. We note that the687

probability of the quantum algorithm outputting the correct688

winner does not necessarily increase with the runtime. This689

is because a finer quantization process may decrease the690

probability of getting the best estimation.691

13

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 1024

Quantum
Classical

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 4096

Quantum
Classical

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 16384

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 1024

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 4096

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 16384

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 1024

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 4096

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 16384

Quantum
Classical

Figure 7: Compare quantum voting (blue circles) with classic voting (red squares) for Borda rule when m = 2. The
horizontal axis can be seen as the logarithm of the algorithms’ runtime.

14

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 1024

Quantum
Classical

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 4096

Quantum
Classical

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 16384

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 1024

Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 4096
Quantum
Classical

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 16384

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 1024
Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 4096

Quantum
Classical

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 16384
Quantum
Classical

Figure 8: Compare quantum voting (blue circles) with classic voting (red squares) for Borda rule when m = 4. The
horizontal axis can be seen as the logarithm of the algorithms’ runtime.

15

	Introduction
	Preliminaries
	Quantum Voting Algorithm
	Theoretical Analysis of Fast Quantum Voting
	Compare Quantum and Classical Voting
	Experimental Results
	Heuristics to further accelerate quantum voting.
	Conclusions and Future Works
	Implementation of Quantum Voting Algorithm.
	Quantum Basics.
	Implementation of Quantum Counting Circuit.
	Functionality for Grover algorithm

	Additional Experimental Results

