
A Limitations and future work490

We believe that the NeuroSEED framework has the potential to be applied to numerous problems and491

this work constitutes an initial analysis of its geometrical properties and applications. Here, we list492

some of the limitations of the current analysis and the potential directions of research to cover them.493

Type of sequences Both real-world datasets analysed consist of sequence reads of the same part494

of the genome. This is a widespread set-up for sequence analysis but not ubiquitous. Shotgun495

metagenomics consists of sequencing random parts of the genome. This would generate sequences496

lying on a low-dimensional manifold where the hierarchical relationship of evolution is combined497

with the relationship based on the specific position in the whole genome. Therefore, more complex498

geometries, such as product spaces [47, 48], might be best suited. Moreover, while the sequence499

reads in our datasets were all of approximately the same size, this might not be the case in every500

domain. Future work could explore the best way to extend the architectures to inputs of significantly501

different length.502

Type of labels In this project, we work with edit distances between sequences, these are too503

expensive for large-scale analysis, but it is feasible to produce a large enough training set. For504

different definitions of distance, however, this might not be the case, future work could explore the505

robustness of this framework to inexact estimates of the distances as labels.506

Architectures Throughout the project, we used models that have been shown to work well for507

other types of sequences and tasks. However, the correct inductive biases that models should have to508

perform NeuroSEED might be different and even dependent on the type of distance they try to preserve.509

[21, 12] provide some initial work in this direction with respect to the edit distance. Moreover, the510

capacity of the hyperbolic space could be further exploited using models that directly operate in the511

space [46, 49, 50].512

Self-supervised embeddings Finally, the direct use of the embeddings produced by NeuroSEED513

for downstream tasks would enable the application of a wide range of geometric data processing tools514

to the analysis of biological sequences.515

Long-term impact We believe the combination of NeuroSEED embeddings and geometric deep516

learning [51, 52] techniques could be beneficial to analyse and track the spectrum of mutations in a517

wide variety of biological and medical applications. This would have positive societal impacts in518

domains like microbiome analysis and managing epidemics. However, this could also have unethical519

applications in fields such as genome profiling.520

B Bioinformatics tasks521

The field of bioinformatics has developed a wide range of algorithms to tackle the classical problems522

that we explore. We describe here the methods that are most closely related to our work. For a more523

comprehensive overview, the interested reader is recommended Gusfield [53] and Compeau et al.524

[54].525

B.1 Edit distance approximation526

The task of finding the distance or similarity between two strings and the related task of global527

alignment lies at the foundation of bioinformatics.528

Alignment-based methods Classical algorithms to find the edit distance, such as Needle-529

man–Wunsch [4], are based on the process of finding an alignment between the two strings via530

dynamic programming. However, these are bound to a quadratic complexity w.r.t. the length of the531

input sequence, the best algorithm [55] has a complexity O(M2/ logM) and there is evidence that532

this cannot be improved [56].533

Alignment-free methods With the rapid improvement of sequencing technologies and the subse-534

quent increase in demand for large-scale sequence analyses, alternative computationally efficient535

sequence comparison methods have been developed under the category of alignment-free methods.536
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k-mer [5] is the most commonly used alignment-free method and basis for many other algorithms537

(such as FFP [57], ACS [58] and kmacs [59]). It considers all the sequences of a fixed length k,538

k-mers, and constructs a vector where each entry corresponds with the number of occurrences of a539

particular k-mer in the sequence. The distance between the strings is then approximated by some540

type of distance d between the vectors. Therefore, k-mer generates vectors of size 4k and estimates541

the edit distance as ED(s1, s2) ≈ n α d(k-mer(s1), k-mer(s2)) where α is the only parameter of the542

model whose optimal value can be obtained with a single pass of the training set 2:543

α∗ = argmin
α

∑
ij

(rij − αpij)2 (3)

where rij = n−1ED(si, sj) and pij = d(k-mer(si), k-mer(sj)). Therefore:544

∂

∂α

∑
ij

(rij − αpij)2|α=α∗ = 0

∑
ij

∂

∂α
(r2ij − 2αrijpij + α2p2ij)|α=α∗ = 0

∴ α∗ =

∑
ij rijpij∑
ij p

2
ij

(4)

B.2 Hierarchical clustering545

Single, Complete and Average Linkage The most common class of algorithms for hierarchical546

clustering, referred to as agglomerative methods, works in a bottom-up manner recursively merging547

similar clusters. These differ by the heuristics used to choose clusters to merge and include Single548

[16], Complete [17] and Average Linkage (or UPGMA) [6]. They typically run in O(N2 logN) and549

require the whole N2 distance matrix as input. Thus, with the edit distance, the total complexity is550

O(N2(M2/ logM + logN))).551

Dasgupta’s cost Dasgupta [15] proposed a global objective function that can be associated with the552

HC trees. Given a rooted binary tree T , for two datapoints i and j let wij be their pairwise similarity,553

i ∨ j their lowest common ancestor in T and T [i ∨ j] the subtree rooted at i ∨ j. Dasgupta’s cost of554

T given w is then defined as:555

CDasgupta(T ;w) =
∑
ij

wij | leaves(T [i ∨ j]) | (5)

In this work wij is taken to be 1− dij where dij is the normalised distance between sequences i and556

j.557

B.3 Multiple sequence alignment558

Multiple Sequence Alignment (MSA) consists of aligning three or more sequences and is regularly559

used for phylogenetic tree estimation, secondary structure prediction and critical residue identification.560

Finding the global optimum alignment ofN sequences is NP-complete [60], therefore many heuristics561

have been proposed.562

Progressive alignment The most commonly used programs such as the Clustal series [7] and563

MUSCLE [61] are based on a phylogenetic tree estimation phase from the pairwise distances which564

produces a guide tree, which is then used to guide a progressive alignment phase. To replicate the565

classical edit distance used, Clustal is run with a substitution matrix with all the entries -1 except 0566

on the main diagonal and gap opening and extension penalties equal to 1.567

Consensus error and Steiner string It is hard to quantify the goodness of a particular multiple568

alignment and there is no single well-accepted measure [53]. One option is to find the sequence s∗569

that minimises the consensus error to the set of strings S: E(s∗) =
∑
si∈S ED(s∗, si). The optimal570

string s∗ is known as Steiner string, while the centre string sc is the one in S which minimises E(sc)571

and has an upper bound E(sc) ≤ (2− 2/M)E(s∗) [53]. Algorithms to find an approximation of the572

Steiner string typically use greedy heuristics [45, 44].573

2Except when using the hyperbolic space, in which case the radius of the hypersphere to which points are
projected and α are learned via gradient descent.
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B.4 Datasets574

For all tasks as real-world datasets we used the Qiita and RT988 datasets of 16S rRNA subsequences.575

Experiments were also run on synthetic datasets formed by sequences randomly generated. In all576

datasets the splitting of sequences between train/val/test was random and duplicate sequences were577

discarded. Below we list the sizes of the datasets used for the results presented, these datasets can be578

downloaded from the public code repository.579

Edit distance approximation RT988 5000/500/1200 sequences (train/val/test, 25M training pair-580

wise distances), Qiita 7000/700/1500 sequences (49M distances), synthetic 70k/10k/20k sequences581

(3.5M distances).582

Hierarchical clustering the RT988 dataset is formed by 6.7k sequences to cluster while the Qiita583

one contains 10k sequences. The Qiita dataset used in the unsupervised approach is disjoint from the584

training set of the models.585

Multiple sequence alignment for the unsupervised approach the test set from the edit distance586

RT988 dataset was used, while the Steiner string approach was tested on the RT988 dataset using587

4500/700 sequences for training/validation and 50 groups of 30 sequences for each of which the588

model computes an approximation of the Steiner string.589

C Neural architectures590

The framework of NeuroSEED is independent of the choice of architecture for the encoder. For each591

approach proposed in this project, we experiment with a series of models among the most commonly592

used in the literature for the analysis of sequences. In this section, we give some detail on how each593

model was adapted to the task at hand.594

Linear & MLP operate on the input sequence using the one-hot encodings, padding to the maxi-595

mum sequence length and flattening as a vector.596

CNN is also applied to the padded sequence of one-hot elements. They are conceptually similar to597

the k-mer baseline with a few distinctions: CNNs can learn the kernels to apply, CNNs are equivariant598

not invariant to the translation of the patterns and, with multiple layers, CNNs can exploit hierarchical599

patterns in the data.600

GRU [25] operates on the sequence of one-hot sequence elements.601

Transformer [26] every token is formed by 4-16 bases and is given a specific positional encoding602

using sinusoidal functions. We test both global attention where every token queries all the others and603

local where it only queries its 2 neighbours. Local attention allows the model to have a complexity604

linear w.r.t. the number of tokens.605

All the models are integrated with various forms of regularisation including weight decay, dropout606

[62], batch normalisation [63] and layer normalisation [64] and optimised using the Adam optimiser607

[65]. In the hyperbolic space, the embedded points are first projected on a hypersphere of learnable608

radius and then to the hyperbolic space.609

D Distance functions610

The key idea behind NeuroSEED is to map sequences into a vector space so that the distances in611

the sequence and the vector space are correlated. In this appendix, we present various definitions612

of distance in the vector space that we explored: L1 (referred as Manhattan), L2 (Euclidean), L2613

squared (square), cosine and hyperbolic distances. For the hyperbolic space, we use the Poincaré ball614

model that embeds the points of the n-dimensional Riemannian manifold in an n-dimensional unit615

sphere Bn = {x ∈ Rn : ‖x‖ < 1} where ‖·‖ denotes the Euclidean norm. Given a pair of vectors p616

and q of dimension k, the definitions for the distances are:617

Manhattan d(p,q) = ‖p− q‖1 =

k∑
i=0

|pi − qi| (6)
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618

Euclidean d(p,q) = ‖p− q‖2 =

√√√√ k∑
i=0

(pi − qi)2 (7)

619

square d(p,q) = ‖p− q‖22 =

k∑
i=0

(pi − qi)2 (8)

620

cosine d(p,q) = 1− p · q
‖p‖‖q‖

= 1−
∑k
i=0 piqi√∑k

i=0 p
2
i

√∑k
i=0 q

2
i

(9)

621

hyperbolic d(p,q) = arcosh

(
1 + 2

‖p− q‖2

(1− ‖p‖2)(1− ‖q‖2)

)
(10)

E Distortion on synthetic datasets622

We used a dataset of randomly generated sequences to test the importance of data-dependent ap-623

proaches and understand whether the improvements shown in Section 5 are brought by a better624

capacity of the neural models to model the edit distance mutation process or their ability to focus on625

the lower-dimensional manifold that the real-world data lies on.626

Model Cosine Euclidean Square Manhattan Hyperbolic

2-mer 10.49 7.11 10.53 7.28 7.11

3-mer 5.71 6.02 5.81 6.01 5.99

4-mer 3.74 6.24 3.87 5.92 6.23

5-mer 3.92 6.75 3.97 5.72 6.75

6-mer 4.71 7.26 4.72 5.37 7.31

Linear 4.77±0.04 33.90±35.12 5.25±0.03 - 6.50±0.60

MLP 9.79±0.08 9.40±0.05 7.74±0.05 9.82±0.06 10.71±0.18

CNN 4.18±0.25 4.93±0.04 4.93±0.03 5.48±0.06 4.60±0.15

GRU 6.30±4.93 5.11±0.10 5.60±4.33 5.68±0.22 8.54±0.84

Global T. 4.51±0.01 4.74±0.02 5.23±0.03 4.67±0.04 4.75±0.04

Local T. 4.45±0.03 4.86±0.03 5.05±0.03 4.87±0.02 4.49±0.03

Figure 10: % RMSE test set results on the synthetic dataset. The embedding space dimensions are as
in Figure 2.

The picture that emerges from the results shown in Figure 10 is dramatically different from the one of627

real-world datasets and confirms the hypothesis that the advantage of neural models in real-world628

datasets is mainly due to their capacity to exploit the low-dimensional assumption. Here, instead,629

the best neural models perform only on par (taking into account the difference embedding space630

dimension) with the baselines. This is caused by two related challenges: the incredibly large space631

of sequences (41024) that the model is trying to encode and the diversity between training and test632

sequences due to the random sampling. These make the task of learning a good encoding task too633

tough for currently feasible sizes of models and training data.634

F Closest string retrieval635

This task consists of finding the sequence that is closest to a given query among a large number of636

reference sequences and is very commonly used by biologists to classify newly sequenced genes.637

Task formulation Given a pretrained encoder fθ, its closest string prediction is taken to be the638

string rq ∈ R that minimises d(fθ(rq), fθ(q)) for each q ∈ Q. This allows for sublinear retrieval via639

locality-sensitive hashing or other data structures which is critical in real-world applications where640

databases can have billions of reference sequences. As performance measures, we report the top-1,641

top-5 and top-10 percentage accuracies, where top-k indicates the percentage of times the closest642

string is ranked in the top-k predictions.643
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Triplet loss The triplet loss [66, 67, 68] is widely used in the field of metric learning [39, 40] to644

learn embeddings that can be considered as a more direct form of supervision for this task. Given645

three examples with feature vectors a (anchor), p (positive) and n (negative) where the p is supposed646

to be closer to a than n, the triplet loss is typically defined as:647

L(a, p, n) = max(0, d(a, p)− d(a, n) +m) (11)

where m is the safety margin and d a given distance function between vectors (typically Euclidean or648

cosine).649

Model
Cosine Euclidean Square Manhattan Hyperbolic

top 1 top 5 top 10 top 1 top 5 top 10 top 1 top 5 top 10 top 1 top 5 top 10 top 1 top 5 top 10

K
-m

e
r

2-mer 25.5 42.4 50.8 23.0 40.7 49.2 23.0 40.7 49.2 21.5 38.6 47.3 25.5 42.4 50.8

3-mer 38.1 54.0 60.6 35.9 53.2 59.7 35.9 53.2 59.7 36.7 53.7 60.2 38.1 54.0 60.6

4-mer 43.8 60.3 66.9 41.5 58.3 64.3 41.5 58.3 64.3 43.2 59.4 65.8 43.8 60.3 66.9

5-mer 45.9 62.9 69.6 44.7 60.9 67.9 44.7 60.9 67.9 45.3 62.6 68.8 45.9 62.9 69.6

6-mer 45.5 62.7 68.2 44.9 60.9 67.3 44.9 60.9 67.3 44.9 62.6 68.3 45.5 62.7 68.2

M
SE

Linear 47.7 65.1 72.2 38.6 49.9 54.1 42.5 54.1 58.8 39.8 50.3 53.8 43.2 63.7 71.4

MLP 37.8 50.6 55.9 37.4 52.5 59.4 35.4 48.2 53.6 31.8 46.2 53.0 43.4 67.9 78.2

CNN 47.0 75.5 84.2 40.0 65.3 75.2 38.1 62.4 72.3 32.0 52.9 62.2 50.1 77.2 85.9

GRU - - - 36.5 62.0 71.7 33.4 58.0 68.2 36.7 59.7 68.2 28.6 50.3 59.9

Global T. 51.3 75.9 84.5 45.8 72.3 81.8 48.2 67.5 76.0 46.2 67.4 76.7 49.5 75.5 84.0

Local T. 49.8 75.0 84.4 42.3 66.7 75.7 47.4 66.8 75.7 43.7 68.4 77.3 48.8 75.1 84.5

Tr
ip

le
t Linear 47.4 70.1 78.2 41.4 53.6 58.6 43.7 54.4 58.2 40.9 51.3 54.8 - - -

CNN 46.3 76.7 85.7 32.4 56.6 68.1 24.1 44.3 54.1 33.7 60.3 71.8 - - -

Global T. 48.3 75.8 84.5 45.5 71.7 81.4 45.8 70.2 80.4 44.1 69.8 79.4 - - -

Figure 11: Models’ performance averaged over 4 runs of different models for closest string retrieval
on the Qiita dataset (1k reference and 1k query sequences, disjoint from training set).

Results Figure 11 shows that convolutional and attention-based data-dependent models significantly650

outperform the baselines even when these operate on larger dimensions. In terms of distance functions,651

the cosine distance achieves performances on par with the hyperbolic. An explanation is that for a652

set of points on the same hypersphere, the ones with the smallest cosine or hyperbolic distance are653

the same. The models trained with MSE of pairwise distances and the ones with triplet loss from654

Section 5 performed similarly except for the hyperbolic space where the triplet loss produces unstable655

training. The stabilisation of the triplet loss in the hyperbolic space and further comparisons between656

the two training frameworks are left to future work.657

G Steiner string approach to MSA658

In this section we explain more in details the Steiner string approach to multiple sequence alignment659

introduced in Section 7.2.660

Training For this approach, it is necessary to train not only an encoder model but also a decoder.661

The resulting autoencoder is trained with pairs of sequences (and their true edit distance) which662

are encoded into the latent vector space and then decoded. The loss combines an edit distance663

approximation component and a sequence reconstruction one. The first is expressed as the MSE664

between the real edit distance and the vector distance between the latent embeddings. The second is665

expressed as the mean element-wise cross-entropy loss of the outputs with the real sequences. While666

this element-wise loss does not perfectly reflect the edit distance, it is an effective solution to the667

problem of lack of differentiability of the latter. Therefore, given two strings s1 and s2 of length n668

and a vector distance d, the loss of a model with encoder fθ and decoder gθ′ is:669

L(θ, θ′) = (1− α) LED(θ)︸ ︷︷ ︸
edit distance

+ α LR(θ, θ
′)︸ ︷︷ ︸

reconstruction

(12)

670

where LED(θ) =
(
n−1ED(s1, s2)− d(fθ(s1), fθ(s2))

)2
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671

and LR(θ, θ
′) =

1

2n

n−1∑
i=0

(
H(s1[i], gθ′(fθ(s1))[i]) +H(s2[i], gθ′(fθ(s2))[i])

)
where α is a hyperparameter that controls the trade-off between the two components and H(c, ĉ) =672

c log (̂c) + (1− c) log(1− ĉ) represents the cross-entropy.673

One issue with this strategy is that the decoder is not learning to decode any point in the continuous674

space, but only those of the discrete subspace of points to which the generator maps some sequence675

from the domain. This creates a problem when, at test time, we try to decode points that are outside676

the subspace hoping to retrieve the string that maps to the point in the subspace closest to it. To677

alleviate this issue, during training, Gaussian noise is added to the embedded point in the latent space678

before decoding it, which forces the decoder to be robust to points not produced by the encoder.679

To make the noisy model trainable with gradient descent, we employ the reparameterization trick680

commonly used for Variational Auto-Encoders [69] making the randomness an input to the model.681

Therefore, the reconstruction loss becomes:682

LR(θ, θ
′, ε) =

1

2n

n−1∑
i=0

(
H(s1[i], gθ′(fθ(s1) + ε1i)[i]) +H(s2[i], gθ′(fθ(s2) + ε2i)[i])

)
(13)

where ∀i, j εij ∼ N (0, σ2I) and σ is a hyperparameter.683

In the hyperbolic space adding the Euclidean Gaussian distribution would not distribute uniformly,684

therefore we Wrapped Normal generalisation of the Gaussian distribution to the Poincaré ball [70]685

was used. Finally, for the cosine space, we normalise the outputs of the encoder and the input of the686

decoder to the unit hyper-sphere.687

Testing At test time, given a set of strings, we want to obtain an approximation of the Steiner string,688

which minimises the consensus error (sum of distance to the strings in the set). In the sequence689

space with the edit distance finding the median point is a hard combinatorial optimisation problem.690

However in the space of real vectors with the distance functions used in this project, it becomes a691

relatively simple procedure which can be done explicitly in some cases (e.g. with square distance)692

or using classical optimisation algorithms3. Therefore, the Steiner string s∗ of a set of strings S is693

approximated by:694

s∗ = argmin
s′

∑
si∈S

ED(s′, si) ≈ gθ′
(
argmin

x

∑
si∈S

d(x, fθ(si))
)

(14)

The continuous optimisation is performed using the COBYLA [71] (for the hyperbolic distance) and695

BFGS [72, 73, 74, 75] (for all the others) algorithms implemented in the Python library SciPy [76].696

The produced predictions are then discretised to obtain actual sequences taking the most likely697

character for each element in the sequence and then evaluated by computing their average consensus698

error:699

E(ŝ∗) =
1

|S|
∑
s′∈S

ED(ŝ∗, s′) (15)

3If the distance function is convex such as in the Euclidean case, the resulting optimisation problem is also
convex.
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