
Appendix1

In this appendix, we provide details skipped in the main text. The content is organized as follows:2

• Section 1. Detailed algorithms of GPS, including binary search and simulation process. (c.f .3

§5.4 of the main text)4

• Section 2. Validation of the switching point existence. (c.f . §4.3 of the main text)5

• Section 3. Validation on the properties of the simulation methods. (c.f . §5.2 of the main6

text)7

• Section 4. Additional experimental results and ablation studies. (c.f . §6.2, §6.5 and §6.6 of8

the main text)9

• Section 5. Exploration of new base policies based on curriculum learning, and their perfor-10

mance with GPS.11

• Section 6. Experimental details and hyperparameters. (c.f . §6.1 of the main text)12

1 Detailed Algorithms13

1.1 Simulation Process14

The pseudocode of our simulation process (Fig. 2 in the main text) is listed in Algorithm 1. We use15

the notation P1:i to represent the task distributions from P1 to Pi. Likewise, we use the notation16

s1:i to represent the switching point from s1 to si. The memory construction function BuildM takes17

as arguments the previous memory and a list of switching points. This function internally checks18

whether the list of switching points are enough to construct the current memory. If yes, it constructs19

the memory as described in §4; otherwise, it utilizes the described pseudo-memory construction20

methods as described in §5.21

Algorithm 1 GlobalSim

Input: Tested point ai; Pseudo-task distributions P̃(i+1):T ; Switching points s1:(i−1); Local updating method
g; Current model parameters θi and current memoryMi−1.
Initialize θ̃i:i ← θi
Initialize memory M̃i ← BuildM(Mi−1, s1:(i−1) ∪ {ai})
j ← i+ 1
while j ≤ T do

Local update: θ̃i:j ← g(θ̃i:(j−1), P̃j ,M̃j−1)

Build memory: M̃j ← BuildM(M̃j−1, s1:i)
j ← j + 1

end while
Compute loss: l← E(xj ,yj)∼Pj

ℓ(yj , f(xj ; θ̃j:T))
return Loss: l

1.2 Binary Search22

In the global binary search as listed in Algorithm 2, we take a search stride ϵ = 20 to increase the23

robustness of the algorithm.24

1.3 GPS Algorithm25

Based on the simulation process and binary search, we describe our Global Pseudo-task Simulation26

method in Algorithm 3.27

1

Algorithm 2 GlobalBS

Input: Number of tasks T ; Task distributions P1:i; Switching points s1:(i−1); Local updating
method g; Current model parameters θi and current memoryMi−1; Search stride ϵ.
Synthesize pseudo-tasks from Pi with task distributions.
start← 0
end← |M|/i
Loss dictionary: loss_dict← ∅
while end− start ≥ ϵ do

next← (start+ end)/2
if next not in loss_dict then

loss← GlobalSim(next, P̃(i+1):T , s1:(i−1), g, θi,Mi−1)
loss_dict← loss_dict ∪ {next : loss}

else
loss← loss_dict[next]

end if
if next− ϵ not in loss_dict then

left_loss← GlobalSim(next− ϵ, P̃(i+1):T , s1:(i−1), g, θi,Mi−1)
loss_dict← loss_dict ∪ {next− ϵ : left_loss}

else
left_loss← loss_dict[next− ϵ]

end if
if next+ ϵ not in loss_dict then

right_loss← GlobalSim(next+ ϵ, P̃(i+1):T , s1:(i−1), g, θi,Mi−1)
loss_dict← loss_dict ∪ {next+ ϵ : right_loss}

else
right_loss← loss_dict[next+ ϵ]

end if
if left_loss < loss then

end← next
continue

else if right_loss < loss then
start← next
continue

else
si ← next
break

end if
end while
if si is not assigned then

si ← argminloss(loss_dict)
end if
return Switching point: si

Algorithm 3 Global Pseudo-task Simulation (GPS)

Input: Number of tasks T ; Task distributions Pi, i ∈ T ; Local updating method g(·).
Initialize parameters θ0
Initialize memoryM0 = ∅
i← 1
while i ≤ T do

Local update: θi ← g(θi−1, Pi,Mi−1)
Find switching point: si ← GlobalBS(T, P1:i, s1:(i−1), g, θi,Mi−1)
Build memory:Mi ← BuildM(Mi−1, s1:i)
i← i+ 1

end while
return Model parameters: θT

2

2 Validation of the Switching Point Existence28

As a validation of our switching point existence, we further show the switching point of other29

benchmarks in our experiments. For each benchmark, we plot the global loss LG as a function of ai30

and select 5 different tasks ti. Each plot shows clearly the switching point in Fig. 1.

TinyImageNet S-CIFAR-100 P-MNIST

Figure 1: Switching points of the first 5 tasks in three evaluation benchmarks: TinyImageNet, S-
CIFAR-100, P-MNIST. We show the change of the global loss, LG w.r.t. the ratio of ER-Ring-Full in
the memory.

31

3 Validation of the Simulation Method32

In this section, we provide the empirical supporting evidences for our hypotheses of the simulation33

method.34

3.1 Task Difficulties35

First, we show the task difficulties in the evaluated benchmarks have small variations, as in Table 1.36

For P-MNIST, S-CIFAR-100 and TinyImageNet, we evaluate the first 5 tasks end-to-end for simplicity.37

For S-CIFAR-10, we evaluate all the tasks end-to-end.

Table 1: Accuracy and variance of accuracy of tasks from four vision benchmarks trained end-to-end.

Dataset Task 1 Task 2 Task 3 Task 4 Task 5 Variance

P-MNIST 97.48 97.28 97.33 97.78 97.53 0.03
S-CIFAR-10 98.20 94.85 96.50 98.90 98.15 2.18
S-CIFAR-100 85.70 87.70 88.10 88.10 86.20 1.02
TinyImageNet 78.20 76.80 77.30 76.50 77.20 0.33

38

Further, we evaluate the difficulty along the pseudo-task sequence synthesized from the first task of39

S-CIFAR-100 by permutation, rotation and blurring, we generate 5 tasks for each simulation method.40

The results in Table 2 shows permutation and rotation generate tasks with similar difficulties as the41

original S-CIFAR-100 tasks, while blurring generate tasks with increasing difficulties as the task42

sequence grows.43

3

Table 2: Accuracy and variance of accuracy of pseudo-tasks synthesized by different methods from
the first task of S-CIFAR-100.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Variance

Permutation 85.50 85.70 85.30 86.10 85.10 0.11
Rotation 85.40 85.40 85.70 84.90 84.50 0.18
Blurring 83.90 81.70 78.90 74.40 69.50 26.80

3.2 Forward Transfer Ability of Tasks44

Next, we explore the forward transfer ability of the pseudo-tasks vs. the real tasks. We evaluate45

the model trained on the first two tasks of S-CIFAR-100 on task sequences different by different46

simulation methods.47

Table 3 shows that the permutation pseudo-tasks and the real tasks both allows zero transfer ability,48

as the random guess accuracy of a 10-class classification is 10%. Rotation, instead, creates a task49

sequence that allows nearly perfect forward transfer ability. Blurring creates a task sequence which50

allows some forward transfer ability from the beginning, but it gradually reduces to a random guess51

as task difficulty grows.

Table 3: Forward transfer ability of different simulation methods after training task t1 and task t2 on
S-CIFAR-100. Numbers are the accuracy of the task.

Dataset Method Task 3 Task 4 Task 5 Task 6 Task 7

Real 11.80 10.40 10.30 9.40 9.70
S-CIFAR-100 Permutation 10.50 10.40 10.30 10.10 11.10

Rotation 75.40 78.10 77.70 79.90 80.50
Blurring 70.90 65.70 52.90 30.40 15.50

52

3.3 Global Loss w.r.t. Single Task Loss53

The empirical analysis on four benchmarks suggests the summed global loss and the single final loss54

of a task tj are positively correlated as a function of aj . Specifically, the switching point for both55

functions are similar. Fig. 2 shows four tasks in four benchmarks, respectively. This observation56

implies our simulation objective well approximate the global objective as in the offline setting.57

Lo
ss

Global Loss Single Loss

Figure 2: Global loss w.r.t. single task loss with four tasks on four benchmarks.

4 Additional Experimental Results58

4.1 Accuracy of GPS with Small Memory Buffer59

We have also carried out experiments of GPS to evaluate its performance when the memory buffer60

is relatively small, as shown in Table 4. With a small size memory buffer, GPS does not show61

significant improvement. One reason is the switching point si is very close to 1, i.e., taking the pure62

4

ER-Ring-Full policy is good enough. Another cause is our base policy assumption does not work63

very well under the small memory buffer size as model becomes more sensitive to points selection64

under smallM.65

Table 4: Accuracy of GPS using permutation and ER baselines on four datasets with smaller buffer
sizes.

Method P-MNIST S-CIFAR-10 S-CIFAR-100 TinyImageNet
|M| 100 20 200 200

ER-Res 65.59±1.38 80.68±2.28 64.99±1.74 38.60±0.74

ER-Ring-Full 66.10±1.36 81.30±1.98 65.95±0.96 40.85±0.78

ER-Hybrid 66.30±1.21 81.43±2.54 66.30±1.32 40.75±0.54

GPS 66.50±1.11 81.78±1.56 66.51±0.88 40.89±0.45

4.2 Results of GPS with DER++, HAL and Baselines66

We put complete results of GPS+DER, GPS+DER++, GPS+HAL and baselines in Table 5. Note the67

A-GEM [5], iCaRL [9] and GSS [1] use the same memory size as the ER series for fair comparison.68

The results stand as a complete empirical support to illustrate that the performance of other ER69

variants have been improved after using our GPS method. We also reported the results of GPS+DER,70

GPS+DER++ and GPS+HAL with smaller memory sizes in Table 6.71

Table 5: Accuracy of GPS using permutation incorporating DER, DER++ [3] and HAL [4], compar-
ing to other methods. ‘-’ indicates experiments we were unable to run, due to compatibility issues
(e.g. Domain IL for iCaRL) or intractable training time or memory utilization (e.g. OGD, GSS on
TinyImageNet).

P-MNIST S-CIFAR10 S-CIFAR100 TinyImageNet
oEWC 69.21±2.92 62.97±3.55 55.37±2.71 20.81±0.95

iCaRL - 88.97±2.77 78.21±1.01 38.77±3.68

GSS 86.34±4.28 87.80±2.71 77.34±3.21 -
A-GEM 77.36±1.28 83.87±1.55 69.61±1.47 25.30±0.87

OGD 81.52±2.21 - - -

P-MNIST S-CIFAR10 S-CIFAR100 TinyImageNet
|M| 1000 200 2000 2000

HAL 87.69±0.34 89.29±1.31 80.81±1.21 61.27±1.10

GPS+HAL 88.73±0.03 91.27±0.93 82.33±0.47 63.24±0.80

DER 90.47±2.69 91.04±0.18 81.78±0.50 60.90±1.08

GPS+DER 90.27±1.78 91.53±0.13 83.39±0.44 61.89±1.06

DER++ 91.14±0.22 92.06±0.20 82.20±0.89 62.67±1.08

GPS+DER++ 91.84±0.16 92.57±0.10 83.53±0.64 63.01±0.98

Table 6: Accuracy of GPS using permutation incorporating DER, DER++ [3] and HAL [4] with
small memory sizes |M|.

P-MNIST S-CIFAR10 S-CIFAR100 TinyImageNet
|M| 100 20 200 200

HAL 80.77±1.31 82.56±2.01 52.89±0.97 38.64±0.89

GPS+HAL 81.45±0.94 83.74±1.75 53.57±0.77 39.37±0.44

DER 81.72±1.11 85.57±1.59 57.51±0.60 40.21±0.77

GPS+DER 82.04±0.97 85.68±1.49 57.83±0.59 40.54±0.54

DER++ 83.57±0.59 83.45±1.76 58.18±1.08 40.67±1.16

GPS+DER++ 83.86±0.35 83.57±1.45 58.15±0.78 40.70±1.03

5

5 New Base Policies based on Curriculum Learning72

To further test the power of GPS, we substitute the base policies with two novel memory construction73

methods designed by us based on curriculum learning [7], ER-CurRes and ER-CurRing-Full. The74

inspiration of these two methods comes from recent findings that curriculum can help when noisy75

data are present [11, 8, 10]. We believe data points of future task can be viewed as noisy interference76

for samples stored inM. In these two policies, curricular easy points of each task are picked as77

candidates forM.78

5.1 Algorithm79

Curricular Easy Samples We rank data examples from easy to hard based on the implicit cur-80

ricula [11]. Specifically, we first record the learned epochs as an attribute of an example, which is81

the earliest epoch in training where a model correctly predicts this example for that and subsequent82

epochs till now. As the learned epoch is a positive integer attribute, it is defined as a subset of the83

totally ordered set Z+. We also record the current loss of each example as another attribute. The loss84

attribute is defined as a subset of the totally ordered set R. The ranking of examples is based on the85

lexicographical order on the Cartesian product of the two attributes, i.e., first sorting the examples by86

the learned epoch attribute, and then ordering examples within the same ranked epoch by their losses.87

As a result, each training example of a task would be associated with an unique ranking. Also, the88

ranking would be updated after each epoch.

Algorithm 4 ER-CurRes (for a single task)

Input: Reservoir memory bufferM; Number of epochs k; Task distribution P ; Dataset size |D|;
Batch size B; Portion of easy data γ; Model parameters θ; Seen examples N .
Initialize a random easy pool P easy from P
for ep ∈ {1, ..., k} do

for iter ∈ 1, ..., |D|/B do
Sample a batch BP from P and a batch BM fromM
Update θ with BP ∪BM
if ep ≤ ⌈k/2⌉ then

UpdateM with a probability |M|/N for each examples in BP

N = N + 1
else

UpdateM with a probability |M|/(γ ∗N) for each examples in BP ∩ P easy

N = N + 1/γ
end if

end for
Update P easy: order examples based on the implicit curriculum and select the first γ|D|

end for
Select the memory for the current task asMnow and the memory for all previous tasks asMpast
for idx ∈Mnow do

if idx /∈ P easy then
Replace the slot inMnow with samples from (P easy −Mnow)

end if
end for
Return Updated θ andM =Mnow ∪Mpast

89

ER-CurRes The ER-CurRes algorithm is shown in Algorithm. 4. Different from ER-Res which90

stores examples sampled from the whole distribution Pi of a task ti [6], we sample subset of data91

points from an “easy pool”, i.e. P easy
i . The size is calculated by the dataset size |Di| multiplying92

a hyperparameter γ, whose value is reported for each evaluation dataset in Section 6. Compared93

to taking the top few easiest points of each class, sampling from the pool utilizes the benefits of94

randomness [2, 11]. Suppose we train a total of k epochs of task ti, in order to obtain a smooth95

transition and the samples based on a more stable curriculum ranking, we take the examples obeying96

ER-Res policy (i.e., samples from Pi) for the first ⌈k/2⌉ epochs, and take the examples obeying97

6

Algorithm 5 ER-CurRing-Full (for a single task)

Input: Ring-Full memory bufferM; Number of epochs k; Task distribution P ; Dataset size |D|;
Batch size B; Portion of easy data γ; Model parameters θ.
Initialize a random easy pool P easy from P
Reallocate the memoryMpast for all previous tasks, and allocate the memoryMnow for the current
task
for e ∈ {1, ..., k} do

for iter ∈ 1, ..., |D|/B do
Sample a batch BP from P and a batch BM fromM
Update θ with BP ∪BM
if e ≤ ⌈k/2⌉ then

UpdateMnow with BP

else
UpdateMnow with BP ∩ P easy

end if
end forUpdate P easy: order examples based on the implicit curriculum and select the first γ

portion of each class
end for
for idx ∈Mnow do

if idx /∈ P easy then
Replace the slot inMnow with samples from (P easy −Mnow)

end if
end for
Return: Updated θ andM =Mnow ∪Mpast

ER-CurRes policy (i.e., samples from P easy
i) for the last ⌊k/2⌋ epochs. When we finish training, we98

replace the examples of task ti in the memory which are not from P easy
i .99

ER-CurRing-Full Likewise, as shown in Algorithm. 5, ER-CurRing-Full follows the ER-Ring-Full100

strategy in the first ⌈k/2⌉ epochs to fill a FIFO memory [6]. After that, we substitute the memory101

slots with points from the easy pool of each observed class. In the construction of the easy pool,102

instead of taking the easiest γ|D| examples as in ER-CurRes, we use the easiest γ|D|/C examples of103

each class based on the ranking, where C is the number of classes.104

5.2 Experimental Results of GPS w/ Cur105

The accuracy comparison between GPS w/ Cur and GPS w/ ER-CurRes, ER-CurRing-Full are shown106

in Table 7. From the table, we can see GPS w/ Cur outperforms both ER-CurRes and ER-CurRing-107

Full in both datasets. Moreover, it shows leveraging curriculum in base policies of GPS can further108

improve its performance compared to its plain version.109

Table 7: Accuracy of GPS using curriculum-based policies vs. the corresponding baselines.

P-MNIST S-CIFAR10 S-CIFAR100 TinyImageNet
|M| 1000 200 2000 2000

ER-CurRes 86.78±0.49 92.47±0.20 81.38±0.51 61.89±0.03

ER-CurRing-Full 86.16±0.49 91.70±0.50 81.16±0.65 61.03±0.42

GPS w/ Cur 88.35±0.18 93.58±0.17 82.34±0.79 62.88±0.03

P-MNIST S-CIFAR10 S-CIFAR100 TinyImageNet
|M| 100 20 200 200

ER-CurRes 65.34±0.69 81.59±3.23 65.43±1.37 40.75±0.98

ER-CurRing-Full 66.42±1.03 81.54±2.46 66.73±0.12 41.54±0.57

GPS w/ Cur 66.92±0.54 81.68±1.98 67.08±0.36 41.80±0.49

7

Table 8: Other hyperparameters used in our experiments.

Dataset Method Parameters

P-MNIST

CurER-Res γ: 0.2
CurER-Ring-Full γ: 0.1
GPS w/ Cur γ: 0.2
DER α: 0.5
DER++ α: 1.0 β: 0.5
GPS+DER α: 0.5
GPS+DER++ α: 1.0 β: 0.5
HAL λ: 0.1 β: 0.5 γ: 0.1
GPS+HAL λ: 0.1 β: 0.5 γ: 0.1
oEWC λ: 0.7 γ: 1.0
GSS gmbs: 10 nb: 1
OGD stored gradients : 100/task (perm)

S-CIFAR-10

CurER-Res γ: 0.2
CurER-Ring-Full γ: 0.1
GPS w/ Cur γ: 0.2
DER α: 0.3
DER++ α: 0.1 β: 0.5
GPS+DER α: 0.3
GPS+DER++ α: 0.1 β: 0.5
HAL λ: 0.1 β: 0.5 γ: 0.1
GPS+HAL λ: 0.1 β: 0.5 γ: 0.1
oEWC λ: 0.7 γ: 1.0
iCaRL wd: 0
GSS gmbs: 32 nb: 1

S-CIFAR-100

CurER-Res γ: 0.2
CurER-Ring-Full γ: 0.1
GPS w/ Cur γ: 0.2
DER α: 0.5
DER++ α: 0.5 β: 0.5
GPS+DER α: 0.5
GPS+DER++ α: 0.5 β: 0.5
HAL λ: 0.1 β: 0.5 γ: 0.1
GPS+HAL λ: 0.1 β: 0.5 γ: 0.1
oEWC λ: 0.7 γ: 1.0
iCaRL wd: 10−5

GSS gmbs: 32 nb: 1

TinyImageNet

CurER-Res γ: 0.2
GPS w/ Cur γ: 0.2
CurER-Ring-Full γ: 0.1
DER α: 0.1
DER++ α: 0.1 β: 0.5
GPS+DER α: 0.1
GPS+DER++ α: 0.1 β: 0.5
HAL λ: 0.1 β: 0.5 γ: 0.1
GPS+HAL λ: 0.1 β: 0.5 γ: 0.1
oEWC λ: 0.7 γ: 1.0
iCaRL wd: 10−5

6 Experimental Details110

6.1 Simulation Details111

In experiments, we set the number of examples in each synthesized pseudo-task the same as the size112

of the memory buffer, i.e., if |M| = 1000, we then generate 1000 examples for each pseudo-task. For113

computational efficiency, we set the number of training epochs small in the simulated training process.114

We train 1 epoch for pseudo-tasks synthesized in the P-MNIST dataset, 3 epochs for pseudo-tasks in115

8

S-CIFAR-10, S-CIFAR-100 and TinyImageNet. As for the batch size, the optimizer and the learning116

step during the simulation process, they are all the same as in the real training process.117

6.2 Other Hyperparameters118

We disclose the experimental hyperparameters values not reported in the main manuscript in Table 8.119

In the table, γ in the ‘Cur-’ series methods is the easy pool ratio of the curriculum-based policies as120

we discussed in Section 5, while other symbols refer to the respective methods. In all the experimental121

evaluation by accuracy, reported numbers are averaged over 5 runs.122

6.3 Time Measurement123

We measure our training and simulation time for each dataset in a single NVIDIA Tesla K80 GPU124

for fair comparison. The time we report is the total processing time averaged on 5 runs, assessed in125

wall-clock time (seconds) at the end of the last task and then converted into minutes.126

References127

[1] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection128

for online continual learning, 2019.129

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.130

[3] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark131

experience for general continual learning: a strong, simple baseline, 2020.132

[4] Arslan Chaudhry, Albert Gordo, Puneet K. Dokania, Philip Torr, and David Lopez-Paz. Using133

hindsight to anchor past knowledge in continual learning, 2021.134

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient135

lifelong learning with a-gem, 2019.136

[6] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.137

Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual138

learning, 2019.139

[7] Jeffrey Elman. Learning and development in neural networks: the importance of starting small.140

Cognition, 48:71–99, 08 1993.141

[8] Melike Nur Mermer and Mehmet Fatih Amasyali. Training with growing sets: A simple142

alternative to curriculum learning and self paced learning, 2018.143

[9] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:144

Incremental classifier and representation learning, 2017.145

[10] Sebastian Ruder and Barbara Plank. Learning to select data for transfer learning with bayesian146

optimization, 2017.147

[11] Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work?, 2021.148

9

	Detailed Algorithms
	Simulation Process
	Binary Search
	GPS Algorithm

	Validation of the Switching Point Existence
	Validation of the Simulation Method
	Task Difficulties
	Forward Transfer Ability of Tasks
	Global Loss w.r.t@汥瑀瑯步渠. Single Task Loss

	Additional Experimental Results
	Accuracy of GPS with Small Memory Buffer
	Results of GPS with DER++, HAL and Baselines

	New Base Policies based on Curriculum Learning
	Algorithm
	Experimental Results of GPS w/ Cur

	Experimental Details
	Simulation Details
	Other Hyperparameters
	Time Measurement

