Appendix

A IDM

Here, we introduce the first diffusion auction for selling
single item, IDM [13]. A key concept of IDM is diffusion
critical sequence. Given a profile digraph Gy, for any buy-
ers 1,5 € Vy, i is ' -critical to j, denoted by i =gy 7,
if all paths from s to j in Gy go through i. A diffusion
critical sequence of i, denoted by Cj, is a sequence of
all diffusion critical nodes of 4 and ¢ itself ordered by 6'-
critical relation. That is, C; = (z1,22...,xk, %), where
r1 ¢ T2 ¢ ... ¢ T =¢ 1. Based on this concept,
IDM works as follows. IDM first locates the buyer m with
the highest valuation among all buyers. Then it allocates
the item to the buyer w, who has the highest valuation when
the buyers after w are not considered. The winner w pays
the highest bid without her participation, and each diffusion
critical node is rewarded by the increased payment due to
her participation.

B PROOF OF LEMMA 4.4

Lemma 6. Given a reported global profile 0, recursive
DPDM REC is ed . Ao-differentially private, where € is
the DP parameter of REC.

Proof. Let 0 and 6’ be two profiles where a buyer 4’s re-
ports ¢ reports v; in 6 and v} in 8" such that v; # v}. Con-
sider the probabilities that REC(#) and REC(6’) return a
winner w. In a critical diffusion tree Tjy, let d,, denote the
depth of w, af; be an ancestor of w with distance ¢. Also,

let Exp?(T(al) — T(w)) and Exp? (T(al,) — T'(w)) de-
note the value derived from 6 and @', respectively. Then by

Equation (3), we have

Exp(w)

PrREC(0) = ow] _ Exp?(T(al)-T(w)
Pr[REC(0') = 0u] Exp? (w)
Exp? (T (al,)—T(w))
PYT[ ] Prz}u
PI‘T[ ] Prg%}

We repeatedly replace PreT[a L prf Prf}/[aﬂ L Przlfu by

al,»
expressions of aZJr1 until we get an expression of s. For
each distance 0 < ¢ < d,,, we denote % as AY,

Exp(ag,) / : :
Exp(T(a“l)\T(af“)) as Bz . For §’, we have similar notations

as A9 and BY'. Then the above ratio can be written as

Pr[REC() =o0,] _ Bf dﬁ Af - BY
Pr[REC(¢") = 0,,] BY A9 — BY
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Next we show foreach 0 < ¢ < d is bounded by

w» AB’ B9'
exp(eAa). To prove it, we first show for for each ¢, (AJ —
AY') x (BY Be,) > 0 by cases.

(l)Whenz € Tla’], wehave A — A9 <0,B! —BY <0
0rA9 A‘9 >0, Bz BG >0

(2) When i € Tla EHN\ Tlal)], then AY — A9 <0, BY —
BY <0orAY — AY >0,B —BY >0

(3) When i ¢ T[afjl], then A9 — A9 =0,B! — BY = 0.

Without loss of generality, we assume that Azl =
0£1A2), Bgl = Oéng, a1, € RT. Plug in these two equa-
tions, and we get

Al - By Al -

6’ 0 6 6
Ay — By a1 Aj — o B}

Then we consider two cases:

Aj-B] Aj-B¢
(1) When a7 > o, we have AT Bl = o AT—aiBY <
1
o

Aj-B]  _ _Aj-B]

(2) When as > a4, we have -
1

ag”

1A9—a3BY — azAf—azBY

After that, we show that both a% and a% are bounded by
exp(eAc) as follows. By definition of o, we have 0711 =
Al Exp?(Tlal) | Exp® (T(afh))

A7 Bxp? (Tlat,]) = Exp®(T(a™)

(1) When valuation vg < w;, the second ratio is at most 1.
Then we have

1A BTl
a1~ AV = Bxp” (Tlat,)
> ker(at,) exp(€0(0,0k))

N ZkeT - exp(e(o (0,0k) — A0o))

< exp(eAo)

(2) When valuation vg > v;, the first ratio is at most 1. We
have

o~ A7 = Bl (T(a)
ZkeT( e+1) exp(e(o (8, ox) + Ao))
ZkeT ) exp(ea (0, 0r))

1_A9<M

< exp(eAo)

In a similar way, we can show that 0%2 < exp(eAo).
Therefore we have

Pr[REC(0) = 0y]
Pr[REC(6") = 04)]

< exp(eAo) x H exp(eAo)

1<b<dy
< exp(ed,yAc) < exp(edmaxAo)

O



C PROOF OF LEMMA 5.2

Lemma B2. Given a reported global profile 0', layered
DPDM LAY is eAo-differential private, where ¢ is the pri-
vacy parameter of LAY.

Proof. Given a global profile 6, for each buyer i with
(vi, r;), we have

Epay(ui(0)] = (vi — pi(0))Pri(6:)
/Ui PriAY ((z,7;))dz > 0.
0

Therefore, the lemma holds.

D PROOF OF LEMMA 54

Lemma B4. Given a reported global profile ¢, layered
DPDM LAY is eAo-differential private, where ¢ is the pri-
vacy parameter of LAY.

Proof. Given two reported global profiles 6 and 6’ that dif-
fer in an arbitrary buyer #’s reported valuation such that ¢
reports v; in 6 and v} in 6’, we consider the probabilities
that LAY (0) and LAY (¢) return a winner w.

Without loss of generality, we assume that w is in Ly, then
we have

Exp? (w
Pr[LAY () = 04] Prp, x Exge((Lz))
Pr[LAY (0") = 0] Exp®’ (w)
[ ( ) ] PrL[ X Expel(Lg)
Exp’ (w) Exp” (L)

 Exp” (w) Exp’(Ly)

When i is not on layer Ly, %

1 <
exp(eAc). Otherwise, when ¢ is on layer Ly, we consider
two cases.

(1) v; < v}. As o(-) is non-decreasing in v;, the first ratio
is at most 1. Then we have

Pr[LAY(G) =o0,] _ Exp’ (L)
Pr[LAY(60) = ow] ~ Exp’(Ly)
< ZjeL[ GXP(E(U(97 Oj) + AU))
T Yjer, &p(ea(0,05))
< exp(eAo)

(2) v; > v}. In this case, the second ratio is at most 1. Then
we have

Pr[LAY(0) = 0,] _ Exp’(w) exp(eo (8, 0w))
Pr[LAY(0") = 0w] =~ Exp? (w) ~ exp(e(a (6, 0u) — Ao))
< exp(eAo)
O

12

E PROOF OF THEOREM

Theorem B8 Given a global profile 0, layered DPDM LAY
has Epay [swLay (0)] > Vi EEMD [swEMD (0)]. -

Proof. Given a global profile 6, the expected social welfare
of LAY is

Z (vl X PrLAY(HZ))

%
( (9,01))
ZGZV ZjeLd % exp(e, (6, 05))
exp(e, (6, 0;))

Z Ydmax Z Z]eLd exp(e,a(0,0;))

1EN

Epay[swray(6)]

exp(e, (8, 0;))

Z Vdmax Z deVeXp<€ a(0,04))

i€EN

= Vdgax ELAY [S0LAY (0)]
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