
Appendix

A IDM

Here, we introduce the first diffusion auction for selling
single item, IDM [13]. A key concept of IDM is diffusion
critical sequence. Given a profile digraph Gθ′ , for any buy-
ers i, j ∈ Vθ′ , i is θ′-critical to j, denoted by i "θ′ j,
if all paths from s to j in Gθ′ go through i. A diffusion
critical sequence of i, denoted by Ci, is a sequence of
all diffusion critical nodes of i and i itself ordered by θ′-
critical relation. That is, Ci = (x1, x2 . . . , xk, i), where
x1 "θ′ x2 "θ′ . . . "θ′ xk "θ′ i. Based on this concept,
IDM works as follows. IDM first locates the buyer m with
the highest valuation among all buyers. Then it allocates
the item to the buyer w, who has the highest valuation when
the buyers after w are not considered. The winner w pays
the highest bid without her participation, and each diffusion
critical node is rewarded by the increased payment due to
her participation.

B PROOF OF LEMMA 4.6

Lemma 4.6. Given a reported global profile θ′, recursive
DPDM REC is εdmax∆σ-differentially private, where ε is
the DP parameter of REC.

Proof. Let θ and θ′ be two profiles where a buyer i’s re-
ports i reports vi in θ and v′i in θ′ such that vi #= v′i. Con-
sider the probabilities that REC(θ) and REC(θ′) return a
winner w. In a critical diffusion tree Tθ, let dw denote the
depth of w, a"w be an ancestor of w with distance $. Also,
let Expθ(T (a1w) − T (w)) and Expθ

′
(T (a1w) − T (w)) de-

note the value derived from θ and θ′, respectively. Then by
Equation (3), we have

Pr[REC(θ) = ow]

Pr[REC(θ′) = ow]
=

Exp(w)
Expθ(T (a1

w)−T (w))

Expθ′ (w)

Expθ′ (T (a1
w)−T (w))

×
PrθT [a1

w] − Prθa1
w

Prθ
′

T [a1
w] − Prθ

′

a1
w

We repeatedly replace PrθT [a"
w], Pr

θ
a"
w

, Prθ
′

T [a"
w], Pr

θ′

a"
w

by
expressions of a"+1

w until we get an expression of s. For
each distance 0 ≤ $ < dw, we denote Exp(T [a"

w])

Exp(T (a"+1
w ))

as Aθ
" ,

Exp(a"
w)

Exp(T (a"+1
w )\T (a"

w))
as Bθ

" . For θ′, we have similar notations

as Aθ′

" and Bθ′

" . Then the above ratio can be written as

Pr[REC(θ) = ow]

Pr[REC(θ′) = ow]
=

Bθ
0

Bθ′
0

×
dw−1∏

"=1

Aθ
" −Bθ

"

Aθ′
" −Bθ′

"

Next we show for each 0 ≤ $ < dw, Aθ
"−Bθ

"

Aθ′
" −Bθ′

"

is bounded by

exp(ε∆σ). To prove it, we first show for for each $, (Aθ
" −

Aθ′

" )× (Bθ
" −Bθ′

" ) ≥ 0 by cases.
(1) When i ∈ T [a"w], we have Aθ

" −Aθ′

" ≤ 0, Bθ
" −Bθ′

" ≤ 0
or Aθ

" −Aθ′

" ≥ 0, Bθ
" −Bθ′

" ≥ 0
(2) When i ∈ T [a"+1

w ] \ T [a"w], then Aθ
" − Aθ′

" ≤ 0, Bθ
" −

Bθ′

" ≤ 0 or Aθ
" −Aθ′

" ≥ 0, Bθ
" −Bθ′

" ≥ 0
(3) When i /∈ T [a"+1

w ], then Aθ
" −Aθ′

" = 0, Bθ
" −Bθ′

" = 0.

Without loss of generality, we assume that Aθ′

" =
α1Aθ

" , B
θ′

" = α2Bθ
" ,α1,α2 ∈ R+. Plug in these two equa-

tions, and we get

Aθ
" −Bθ

"

Aθ′
" −Bθ′

"

=
Aθ

" −Bθ
"

α1Aθ
" − α2Bθ

"

.

Then we consider two cases:
(1) When α1 ≥ α2, we have Aθ

"−Bθ
"

α1Aθ
"−α2Bθ

"
≤ Aθ

"−Bθ
"

α1Aθ
"−α1Bθ

"
≤

1
α1

.

(2) When α2 ≥ α1, we have Aθ
"−Bθ

"

α1Aθ
"−α2Bθ

"
≤ Aθ

"−Bθ
"

α2Aθ
"−α2Bθ

"
≤

1
α2

.

After that, we show that both 1
α1

and 1
α2

are bounded by
exp(ε∆σ) as follows. By definition of α1, we have 1

α1
=

Aθ
"

Aθ′
"

= Expθ(T [a"
w])

Expθ′ (T [a"
w])

×Expθ′ (T (a"+1
w ))

Expθ(T (a"+1
w ))

.
(1) When valuation v′i ≤ vi, the second ratio is at most 1.
Then we have

1

α1
=

Aθ
"

Aθ′
"

≤ Expθ(T [a"w])

Expθ
′
(T [a"w])

≤
∑

k∈T [a"
w] exp(εσ(θ, ok))∑

k∈T [a"
w] exp(ε(σ(θ, ok)−∆σ))

≤ exp(ε∆σ)

(2) When valuation v′i ≥ vi, the first ratio is at most 1. We
have

1

α1
=

Aθ
"

Aθ′
"

≤ Expθ
′
(T (a"+1

w ))

Expθ(T (a"+1
w ))

≤
∑

k∈T (a"+1
w ) exp(ε(σ(θ, ok) +∆σ))

∑
k∈T (a"+1

w ) exp(εσ(θ, ok))
≤ exp(ε∆σ)

In a similar way, we can show that 1
α2

≤ exp(ε∆σ).

Therefore we have

Pr[REC(θ) = ow]

Pr[REC(θ′) = ow]
≤ exp(ε∆σ)×

∏

1≤"<dw

exp(ε∆σ)

≤ exp(εdw∆σ) ≤ exp(εdmax∆σ)
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C PROOF OF LEMMA 5.2

Lemma 5.2. Given a reported global profile θ′, layered
DPDM LAY is ε∆σ-differential private, where ε is the pri-
vacy parameter of LAY.

Proof. Given a global profile θ, for each buyer i with
(vi, ri), we have

ELAY[ui(θ)] = (vi − pi(θ))Pri(θi)

=

∫ vi

0
PrLAY

i ((x, ri))dx ≥ 0.

Therefore, the lemma holds.

D PROOF OF LEMMA 5.4

Lemma 5.4. Given a reported global profile θ′, layered
DPDM LAY is ε∆σ-differential private, where ε is the pri-
vacy parameter of LAY.

Proof. Given two reported global profiles θ and θ′ that dif-
fer in an arbitrary buyer i’s reported valuation such that i
reports vi in θ and v′i in θ′, we consider the probabilities
that LAY(θ) and LAY(θ′) return a winner w.

Without loss of generality, we assume that w is in L", then
we have

Pr[LAY(θ) = ow]

Pr[LAY(θ′) = ow]
=

PrL" ×
Expθ(w)
Expθ(L")

PrL" ×
Expθ′ (w)

Expθ′ (L")

=
Expθ(w)

Expθ
′
(w)

Expθ
′
(L")

Expθ(L")

When i is not on layer L",
Pr[LAY(θ)=ow]
Pr[LAY(θ′)=ow] = 1 ≤

exp(ε∆σ). Otherwise, when i is on layer L", we consider
two cases.
(1) vi < v′i. As σ(·) is non-decreasing in vi, the first ratio
is at most 1. Then we have

Pr[LAY(θ) = ow]

Pr[LAY(θ′) = ow]
≤ Expθ

′
(L")

Expθ(L")

≤
∑

j∈L"
exp(ε(σ(θ, oj) +∆σ))

∑
j∈L"

exp(εσ(θ, oj))

≤ exp(ε∆σ)

(2) vi > v′i. In this case, the second ratio is at most 1. Then
we have

Pr[LAY(θ) = ow]

Pr[LAY(θ′) = ow]
≤ Expθ(w)

Expθ
′
(w)

≤ exp(εσ(θ, ow))

exp(ε(σ(θ, ow)−∆σ))

≤ exp(ε∆σ)

E PROOF OF THEOREM 5.6

Theorem 5.6 Given a global profile θ, layered DPDM LAY
has ELAY[swLAY(θ)] ≥ γdmaxEEMD[swEMD(θ)]. .

Proof. Given a global profile θ, the expected social welfare
of LAY is

ELAY[swLAY(θ)] =
∑

i∈V

(
vi × PrLAY

i (θi)
)

=
∑

i∈V

vi
exp(ε,σ(θ, oi))∑

j∈Ldi

1
γdi

exp(ε,σ(θ, oj))

≥ γdmax

∑

i∈N

vi
exp(ε,σ(θ, oi))∑

j∈Ldi
exp(ε,σ(θ, oj))

≥ γdmax

∑

i∈N

vi
exp(ε,σ(θ, oi))∑

j∈V exp(ε,σ(θ, oj))

= γdmaxELAY[swLAY(θ)]
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