Appendix

A **IDM**

Here, we introduce the first diffusion auction for selling single item, IDM [13]. A key concept of IDM is diffusion critical sequence. Given a profile digraph $G_{\theta'}$, for any buyers $i, j \in V_{\theta'}$, i is θ' -critical to j, denoted by $i \leq_{\theta'} j$, if all paths from s to j in $G_{\theta'}$ go through i. A diffusion critical sequence of i, denoted by C_i , is a sequence of all diffusion critical nodes of i and i itself ordered by θ' critical relation. That is, $C_i = (x_1, x_2, \dots, x_k, i)$, where $x_1 \leq_{\theta'} x_2 \leq_{\theta'} \ldots \leq_{\theta'} x_k \leq_{\theta'} i$. Based on this concept, IDM works as follows. IDM first locates the buyer m with the highest valuation among all buyers. Then it allocates the item to the buyer w, who has the highest valuation when the buyers after w are not considered. The winner w pays the highest bid without her participation, and each diffusion critical node is rewarded by the increased payment due to her participation.

PROOF OF LEMMA 4.6

Lemma 4.6. Given a reported global profile θ' , recursive *DPDM* REC is $\epsilon d_{\max} \Delta \sigma$ -differentially private, where ϵ is the DP parameter of REC.

Proof. Let θ and θ' be two profiles where a buyer i's reports i reports v_i in θ and v'_i in θ' such that $v_i \neq v'_i$. Consider the probabilities that $REC(\theta)$ and $REC(\theta')$ return a winner w. In a critical diffusion tree T_{θ} , let d_w denote the depth of w, a_w^{ℓ} be an ancestor of w with distance ℓ . Also, let $\operatorname{Exp}^{\theta}(T(a_w^{\overline{1}}) - T(w))$ and $\operatorname{Exp}^{\theta'}(T(a_w^{\overline{1}}) - T(w))$ denote the value derived from θ and θ' , respectively. Then by Equation (B), we have

$$\begin{split} \frac{\Pr[\text{REC}(\theta) = o_w]}{\Pr[\text{REC}(\theta') = o_w]} &= \frac{\frac{\text{Exp}(w)}{\text{Exp}^{\theta}(T(a_w^1) - T(w))}}{\frac{\text{Exp}^{\theta'}(w)}{\text{Exp}^{\theta'}(T(a_w^1) - T(w))}} \\ &\times \frac{\Pr_{T[a_w^1]}^{\theta} - \Pr_{a_w^1}^{\theta}}{\Pr_{T[a_1^1]}^{\theta'} - \Pr_{a_1^1}^{\theta'}} \end{split}$$

We repeatedly replace $\Pr_{T[a_w^{\ell}]}^{\theta}$, $\Pr_{a_w^{\ell}}^{\theta}$, $\Pr_{T[a_w^{\ell}]}^{\theta'}$, $\Pr_{a_w^{\ell}}^{\theta'}$ by expressions of $a_w^{\ell+1}$ until we get an expression of s. For each distance $0 \le \ell < d_w$, we denote $\frac{\operatorname{Exp}(T[a_w^\ell])}{\operatorname{Exp}(T(a_\ell^{\ell+1}))}$ as A_ℓ^θ ,

 $\frac{\mathrm{Exp}(a_w^\ell)}{\mathrm{Exp}(T(a_w^{\ell+1})\backslash T(a_w^\ell))}$ as $B_\ell^\theta.$ For $\theta',$ we have similar notations as $A_\ell^{\theta'}$ and $B_\ell^{\theta'}$. Then the above ratio can be written as

$$\frac{\Pr[\text{REC}(\theta) = o_w]}{\Pr[\text{REC}(\theta') = o_w]} = \frac{B_0^{\theta}}{B_0^{\theta'}} \times \prod_{\ell=1}^{d_w-1} \frac{A_\ell^{\theta} - B_\ell^{\theta}}{A_\ell^{\theta'} - B_\ell^{\theta'}}$$

Next we show for each $0 \le \ell < d_w$, $\frac{A_\ell^\theta - B_\ell^\theta}{A^{\theta'} - B^{\theta'}}$ is bounded by $\exp(\epsilon\Delta\sigma)$. To prove it, we first show for for each ℓ , $(A_{\ell}^{\theta}$ – $A_{\ell}^{\theta'}$) × $(B_{\ell}^{\theta} - B_{\ell}^{\theta'}) \ge 0$ by cases.

 $\begin{array}{l} \text{(1) When } i \in T[a_w^\ell] \text{, we have } A_\ell^\theta - A_\ell^{\theta'} \leq 0, B_\ell^\theta - B_\ell^{\theta'} \leq 0 \\ \text{or } A_\ell^\theta - A_\ell^{\theta'} \geq 0, B_\ell^\theta - B_\ell^{\theta'} \geq 0 \end{array}$

 $\begin{array}{l} \text{(2) When } i \in T[a_w^{\ell+1}] \setminus T[a_w^{\theta}] \text{, then } A_{\ell}^{\theta} - A_{\ell}^{\theta'} \leq 0, B_{\ell}^{\theta} - B_{\ell}^{\theta'} \leq 0 \text{ or } A_{\ell}^{\theta} - A_{\ell}^{\theta'} \geq 0, B_{\ell}^{\theta} - B_{\ell}^{\theta'} \geq 0 \\ \text{(3) When } i \notin T[a_w^{\ell+1}] \text{, then } A_{\ell}^{\theta} - A_{\ell}^{\theta'} = 0, B_{\ell}^{\theta} - B_{\ell}^{\theta'} = 0. \end{array}$

Without loss of generality, we assume that $A_{\ell}^{\theta'} =$ $\alpha_1 A_\ell^{\theta}, B_\ell^{\theta'} = \alpha_2 B_\ell^{\theta}, \alpha_1, \alpha_2 \in \mathbb{R}^+$. Plug in these two equations, and we get

$$\frac{A_{\ell}^{\theta} - B_{\ell}^{\theta}}{A_{\ell}^{\theta'} - B_{\ell}^{\theta'}} = \frac{A_{\ell}^{\theta} - B_{\ell}^{\theta}}{\alpha_1 A_{\ell}^{\theta} - \alpha_2 B_{\ell}^{\theta}}.$$

Then we consider two cases: (1) When $\alpha_1 \geq \alpha_2$, we have $\frac{A_{\ell}^{\theta} - B_{\ell}^{\theta}}{\alpha_1 A_{\ell}^{\theta} - \alpha_2 B_{\ell}^{\theta}} \leq \frac{A_{\ell}^{\theta} - B_{\ell}^{\theta}}{\alpha_1 A_{\ell}^{\theta} - \alpha_1 B_{\ell}^{\theta}} \leq$

(2) When $\alpha_2 \geq \alpha_1$, we have $\frac{A_{\ell}^{\theta} - B_{\ell}^{\theta}}{\alpha_1 A_{\ell}^{\theta} - \alpha_2 B_{\ell}^{\theta}} \leq \frac{A_{\ell}^{\theta} - B_{\ell}^{\theta}}{\alpha_2 A_{\ell}^{\theta} - \alpha_2 B_{\ell}^{\theta}} \leq$

After that, we show that both $\frac{1}{\alpha_1}$ and $\frac{1}{\alpha_2}$ are bounded by $\exp(\epsilon \Delta \sigma)$ as follows. By definition of α_1 , we have $\frac{1}{\alpha_1}$ $\frac{A_{\ell}^{\theta}}{A_{\ell}^{\theta'}} = \frac{\operatorname{Exp}^{\theta}(T[a_{w}^{\ell}])}{\operatorname{Exp}^{\theta'}(T[a_{w}^{\ell}])} \times \frac{\operatorname{Exp}^{\theta'}(T(a_{w}^{\ell+1}))}{\operatorname{Exp}^{\theta}(T(a_{w}^{\ell+1}))}.$ (1) When valuation $v_{i}' \leq v_{i}$, the second ratio is at most 1.

Then we have

$$\begin{split} \frac{1}{\alpha_1} &= \frac{A_\ell^\theta}{A_\ell^{\theta'}} \leq \frac{\operatorname{Exp}^\theta(T[a_w^\ell])}{\operatorname{Exp}^{\theta'}(T[a_w^\ell])} \\ &\leq \frac{\sum_{k \in T[a_w^\ell]} \exp(\epsilon \sigma(\theta, o_k))}{\sum_{k \in T[a_w^\ell]} \exp(\epsilon(\sigma(\theta, o_k) - \Delta \sigma))} \leq \exp(\epsilon \Delta \sigma) \end{split}$$

(2) When valuation $v'_i \geq v_i$, the first ratio is at most 1. We

$$\begin{split} \frac{1}{\alpha_1} &= \frac{A_{\ell}^{\theta}}{A_{\ell}^{\theta'}} \leq \frac{\operatorname{Exp}^{\theta'}(T(a_w^{\ell+1}))}{\operatorname{Exp}^{\theta}(T(a_w^{\ell+1}))} \\ &\leq \frac{\sum_{k \in T(a_w^{\ell+1})} \exp(\epsilon(\sigma(\theta, o_k) + \Delta\sigma))}{\sum_{k \in T(a_w^{\ell+1})} \exp(\epsilon\sigma(\theta, o_k))} \leq \exp(\epsilon\Delta\sigma) \end{split}$$

In a similar way, we can show that $\frac{1}{\alpha_2} \leq \exp(\epsilon \Delta \sigma)$.

Therefore we have

$$\begin{split} \frac{\Pr[\text{REC}(\theta) = o_w]}{\Pr[\text{REC}(\theta') = o_w]} &\leq \exp(\epsilon \Delta \sigma) \times \prod_{1 \leq \ell < d_w} \exp(\epsilon \Delta \sigma) \\ &\leq \exp(\epsilon d_w \Delta \sigma) \leq \exp(\epsilon d_{\max} \Delta \sigma) \end{split}$$

C PROOF OF LEMMA 5.2

Lemma 5.2. Given a reported global profile θ' , layered DPDM LAY is $\epsilon \Delta \sigma$ -differential private, where ϵ is the privacy parameter of LAY.

Proof. Given a global profile θ , for each buyer i with (v_i, r_i) , we have

$$\begin{aligned} \mathbf{E}_{\text{LAY}}[u_i(\theta)] &= (v_i - p_i(\theta)) \text{Pr}_i(\theta_i) \\ &= \int_0^{v_i} \text{Pr}_i^{\text{LAY}}((x, r_i)) dx \ge 0. \end{aligned}$$

Therefore, the lemma holds.

D PROOF OF LEMMA 5.4

Lemma 5.4. Given a reported global profile θ' , layered DPDM LAY is $\epsilon \Delta \sigma$ -differential private, where ϵ is the privacy parameter of LAY.

Proof. Given two reported global profiles θ and θ' that differ in an arbitrary buyer i's reported valuation such that i reports v_i in θ and v_i' in θ' , we consider the probabilities that $LAY(\theta)$ and $LAY(\theta')$ return a winner w.

Without loss of generality, we assume that w is in L_{ℓ} , then we have

$$\frac{\Pr[\text{LAY}(\theta) = o_w]}{\Pr[\text{LAY}(\theta') = o_w]} = \frac{\Pr_{L_{\ell}} \times \frac{\exp^{\theta}(w)}{\exp^{\theta}(L_{\ell})}}{\Pr_{L_{\ell}} \times \frac{\exp^{\theta'}(w)}{\exp^{\theta'}(L_{\ell})}}$$
$$= \frac{\exp^{\theta}(w)}{\exp^{\theta'}(w)} \frac{\exp^{\theta'}(L_{\ell})}{\exp^{\theta}(L_{\ell})}$$

When i is not on layer L_{ℓ} , $\frac{\Pr[\text{LAY}(\theta) = o_w]}{\Pr[\text{LAY}(\theta') = o_w]} = 1 \leq \exp(\epsilon \Delta \sigma)$. Otherwise, when i is on layer L_{ℓ} , we consider two cases.

(1) $v_i < v_i'$. As $\sigma(\cdot)$ is non-decreasing in v_i , the first ratio is at most 1. Then we have

$$\begin{split} \frac{\Pr[\text{LAY}(\theta) = o_w]}{\Pr[\text{LAY}(\theta') = o_w]} &\leq \frac{\exp^{\theta'}(L_{\ell})}{\exp^{\theta}(L_{\ell})} \\ &\leq \frac{\sum_{j \in L_{\ell}} \exp(\epsilon(\sigma(\theta, o_j) + \Delta \sigma))}{\sum_{j \in L_{\ell}} \exp(\epsilon \sigma(\theta, o_j))} \\ &< \exp(\epsilon \Delta \sigma) \end{split}$$

(2) $v_i > v_i'$. In this case, the second ratio is at most 1. Then we have

$$\frac{\Pr[\text{LAY}(\theta) = o_w]}{\Pr[\text{LAY}(\theta') = o_w]} \le \frac{\exp^{\theta}(w)}{\exp^{\theta'}(w)} \le \frac{\exp(\epsilon\sigma(\theta, o_w))}{\exp(\epsilon(\sigma(\theta, o_w) - \Delta\sigma))}$$

$$\le \exp(\epsilon\Delta\sigma)$$

E PROOF OF THEOREM 5.6

Theorem 5.6 Given a global profile θ , layered DPDM LAY has $\mathbf{E}_{\mathrm{LAY}}[sw_{\mathrm{LAY}}(\theta)] \geq \gamma_{d_{\mathrm{max}}}\mathbf{E}_{\mathrm{EMD}}[sw_{\mathrm{EMD}}(\theta)]$.

Proof. Given a global profile θ , the expected social welfare of LAY is

$$\begin{split} \mathbf{E}_{\mathrm{LAY}}[sw_{\mathrm{LAY}}(\theta)] &= \sum_{i \in V} \left(v_i \times \mathrm{Pr}_i^{\mathrm{LAY}}(\theta_i) \right) \\ &= \sum_{i \in V} v_i \frac{\exp(\epsilon, \sigma(\theta, o_i))}{\sum_{j \in L_{d_i}} \frac{1}{\gamma_{d_i}} \exp(\epsilon, \sigma(\theta, o_j))} \\ &\geq \gamma_{d_{\mathrm{max}}} \sum_{i \in N} v_i \frac{\exp(\epsilon, \sigma(\theta, o_i))}{\sum_{j \in L_{d_i}} \exp(\epsilon, \sigma(\theta, o_j))} \\ &\geq \gamma_{d_{\mathrm{max}}} \sum_{i \in N} v_i \frac{\exp(\epsilon, \sigma(\theta, o_i))}{\sum_{j \in V} \exp(\epsilon, \sigma(\theta, o_j))} \\ &= \gamma_{d_{\mathrm{max}}} \mathbf{E}_{\mathrm{LAY}}[sw_{\mathrm{LAY}}(\theta)] \end{split}$$