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1 Appendix

1.1 Highlights of our contribution

To sum up, our contributions are:

e We propose a novel fine-grained spatial-aware communication strategy, where each agent can
decide where to communicate and pack messages only related to the most perceptually critical spatial
areas. This strategy not only enables more precise support for other agents, but also more targeted
request from other agents in multi-round communication.

e We propose Where2comm, a novel collaborative perception framework based on the spatial-aware
communication strategy. With the guidance of the proposed spatial confidence map, Where2comm
leverages novel message packing and communication graph learning to achieve lower communication
bandwidth, and adopts confidence-aware multi-head attention to reach better perception performance.

e We conduct extensive experiments to validate Where2comm achieves state-of-the-art performance-
bandwidth trade-off on multiple challenging datasets across views and modalities.

1.2 Detailed information about the system pipeline

Alg. |l|presents the pipeline of our multi-round spatial confidence-aware collaborative perception
system.

1.3 Detailed information about the module design

Spatial confidence-aware message packing. Fig.|I|presents the detail about the spatial confidence-

aware message packing module. For the message from agent ¢ to agent j at k&th communication round,

)

the module takes the spatial confidence map CZ(-k) of agent ¢ and the request map R§k_1 of agent j

as input, and outputs the message 777@ ; including the masked feature map 2’1@ ; and the request map
of agent 7.

Spatial confidence-aware communication graph construction. Fig. 2| presents the comparisons on
the communication graph with previous works. Fully connected versus agent-level partially connected
versus ours spatial-decouple partially connected communication. Fully connected communication
results in a large amount of bandwidth usage, growing on the order of O(N?), where N is the number
of agents in a network. Agent-level partially connected communication prune irrelevant connections
between agents while may erroneously sever the information connection. Spatial-decouple partially
connected communication could further flexibly prune irrelevant connections per-location and can
substantially reduce the overall network complexity.

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



cWort? MY ool
RD g
J
A 2
=]
i F

Figure 1: Spatial confidence-aware message packing module. ® denotes point-wise multiplication, &
denotes point-wise minus by a matrix with the same shape as the input and filled with 1. Best viewed

in color. Grey denotes the location being filled with zeros for the binary selection matrix MEQ ; and

the feature map Z (k)
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Figure 2: Spatial confidence-aware communication graph construction module. We spatially decouple
the full feature map, and could flexibly involve the informative spatial areas in the communication.
This Spatial-decouple partially connected communication could further flexibly prune irrelevant
connections per-location and is more bandwidth-efficient.
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Figure 3: Spatial confidence-aware message fusion module. Each agent attentively augments the
features with the received messages at each location. And the per-location multi-head attention are
separately operated at each location in parallel, it takes the features and the corresponding confidence
scores as input, and outputs the augmented features.
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Algorithm 1 Multi-round spatial confidence-aware collaborative perception system

1: Define N as the number of agents , K as communication round
2: # Initialization
3: fori =1,2,...,N,do

4: ]_-i(o) = Pope(&;) € REXWXD > Extract intermediate feature
5: end for
6: fork=0,1,..., K —1,do
7: fori=1,2,...,N,do # Each agent is computing individually
8: Cgk) ‘I’generamr(]: (k)) € REXW > Generate spatial confidence map
9: forj=1,2,...,N,do
10: # Message packing
11: R(k) C(k) € REXW > Pack request map
12: if k: =0 then
13: M( ) = @Sclcct(c( )) € {0, 1}H*xW > Select critical areas
14: else . " K1)
15: MEH)J = @belect(C( ® R( ) € {0, 1}H>xW > Select requested areas
16: en% if " "
17: Zz( _2 = ME S O0F (k) ¢ RHXWxD > Pack spatially sparse features
18: # Commumcatlon graph learning
19: if £ = (O then
20: AL ;=1 > Broadcast critical features and request
21: else
22: Al(@j = maxp, . (ME’;)J)}I €{0,1} > Communicate only when necessary
23: end if 7
24: end for
25: # Communication
26: Send P;_,; = (Zl(i)], R(k)> to other agents
27: Receive {P;_,; = (ZJ@H7 R(k)> ,J # i} from other agents
28: # Message fusion
k k
2. FED = fruse (FOAEEL BRI, G = 1,2, N}) e REXWD

30: end for

31: Store ]-'Z-(kﬂ) and {R;k),j # i} for the next round

32: end for

33: OL(K) = Dgoc(F; (K)) > Output the final detections

Spatial confidence-aware message fusion. Fig. 3| presents the detail about the spatial confidence-
aware message fusion module. Given the received messages {Pj(,k_zi, j € N;}, each agent 7 attentively

augments the features with the received messages at each location. And the request map ng) in

the received message is firstly decoded to the confidence map C§k) via a point-wise minus. Then
the per-location multi-head attention are separately operated at each location in parallel, it takes the
features and the corresponding confidence scores as input, and outputs the augmented features.

1.4 Experimental settings

Implementation details. For camera-only 3D object detection task on OPV2V, we implement the
detector following CADDN [1]]. The model is trained 100 epoch with initial learning rate of le-3,
and decay by 0.1 at epoch 80. For LiDAR-based 3D object detection task, our detector follows
MotionNet [2]. We train 120 epoch with learning rate 1e-3. For the camera-only 3D object detection
task on CoPerception-UAVs, our detector follows the CenterNet [3]] with DLA-34 [4] backbone. The
model is trained 140 epoch with learning rate 5e-4.

Inference strategy in multi-round setting. For the single-round communication, all the communi-
cation budget are used in this broadcast communication round. For the two-round communication,
a small bandwidth (about 20%) is allocated to activate the collaboration; for the next round, the
remained relatively large (about 80%) bandwidth 3is allocated to transmit the targeted information to



48
49
50
51
52
53

54

55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70

71

72
73
74
75

-1.0
= -0.8
D’J =
0 0.6
g -0.4
il
0.2
(d) @go) 0.0
-1.0
)
ac':.:, =g -0.8
]
0 0.6
0, 0.4
0.2
~ 0.0
© R} " 28, @ W, (h) OF"

Figure 4: Visualization of collaboration between Vehicle 1 and Vehicle 2 on OPV2V dataset,
including spatial confidence map (C§0>), selection matrix (MQQ), message ({Réo)7 ZQ(O_)H}) in the
ngﬂ’ and Vehicle 1’s

detection results before (@§0)) and after ((’351)) collaboration. and red boxes denote ground-
truth and detection, respectively. The objects occluded can be detected through transmitting spatially
sparse, yet perceptually critical message.

communication module, attention weight in the fusion module (Wg%l,

meet agents’ request. For more than two rounds communication setting, we strategically allocate
communication budget across multiple communication rounds. For the initial broadcast round, a
small bandwidth (about 20%) is allocated to activate the collaboration; for the next round, a relatively
large (about 60%) bandwidth is allocated to transmit the targeted information to meet agents’ request;
then, the bandwidth is gradually reduced, accounting for the communication degradation with the
increasing rounds.

1.5 Visualization of spatial confidence map

Visualization of collaboration in OPV2V. Fig. | illustrates how Where2comm is empowered by the
proposed spatial confidence map. In the scene, with Vehicle 2’s help, Vehicle 1 is able to detect
the missed objects in the single view. Fig.[d] (a-d) shows Vehicle 1°s spatial confidence map, binary
selection matrix, ego attention weight, and the detection results by its own observation. Fig.[d] (e-f)
shows Vehicle 2’s message sent to Drone 1, including the request map (opposite of confidence map)
and the sparse feature map, achieving efficient communication. Fig. ] (g) shows the attention weight
for Vehicle 1 to fuse Vehicle 2’s messages, which is sparse, yet highlights the objects’ positions.
Fig.[](d) and (h) compares the detection results before and after the collaboration with Vehicle 2. We
see that the proposed spatial confidence map contributes to spatially sparse, yet perceptually critical
message, which effectively helps Vehicle 1 detect occluded objects.

Visualization of spatial confidence map on V2X-Sim. Fig. [5]illustrates how Where2comm is
empowered by the proposed spatial confidence map on V2X-Sim dataset. We see that: i) the
confidence map is extremely sparse and highlights the spatial regions with objects; ii) the constructed
binary communication graph promotes similar sparsity as the spatial confidence map; and iii) among
the communicating spatial areas, the regions with objects have higher fusion weights than background
areas.

1.6 Ablation on bandwidth allocation

Fig.[6]shows the bandwidth allocation ablation study in multi-round communication setting. We see
that allocating more bandwidth in the second and subsequent communication rounds achieves a better
performance-bandwidth trade-off than allocating all bandwidth in the initial communication round,
and the gain is stable for different bandwidth allocation strategies. The reason is that multi-round
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(a) GTs in BEV. (b) Confidence map. (c) Selection matrix. (d) Fusion weight.
Figure 5: Visualization of V2X-Sim dataset. The spatial confidence map is extremely sparse and the
spatial regions with objects are highlighted. The constructed binary communication graph promotes
similar sparsity as the spatial confidence map. And among the communicating spatial areas, the

regions with objects have higher fusion weights than background areas.
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Figure 6: Bandwidth allocation ablation study in multi-round communication. (a-b) shows the percep-
tion performance and communication bandwidth trade-offs for 2- and 3-round communication using
different bandwidth allocation strategies on the OPV2V dataset. The legend shows the bandwidth
ratio from the initial communication round to the entire communication round. Allocating more band-
width in the second and subsequent communication rounds achieves a better performance-bandwidth
trade-off than allocating all bandwidth in the initial communication round.

communication employs a request map in the second and subsequent communication rounds to
denote the spatial area where each agent needs more information, which enables more targeted and
efficient communication.
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