
A Algorithm 1 explanation599

We follow the standard Knapsack problem dynamic programming solution to break down the original600

problem into sub-problems. Specifically, for each neuron j (or neuron group) in layer l, we can601

choose to either include or not include it under the latency constraint c. When it is kept, the total602

importance score increases Ij
l while the latency constraint for the other neurons becomes c− cjl ; If603

the neuron is removed, the latency constraint for the other neurons remains c. We choose to keep or604

remove the current neuron to maximize total importance. At the same time, we check whether the605

more important neurons in the same layer are included to ensure the correctness of the latency. The606

neuron selection from the remaining neurons is a sub-problem to solve.607

Precisely, we use a vector maxV ∈ R(C+1) to store the maximum importance that we can achieve608

under the latency constraint c, 0 ≤ c ≤ C and keep ∈ RL×(C+1), a 2D vector where keep[l, c] denotes609

the number of neuron groups we need to maintain in layer l to obtain the maximum importance610

maxV[c]. We process the neurons according to their importance score in decreasing order. In this611

way, all preceding neurons to the current one (i.e., neurons with a higher importance score in the same612

layer) will be always considered first. To decide if we keep or remove the current neuron, we check613

the total importance score and the inclusion status of its preceding neurons, so we can maximize the614

total importance and ensure the latency cost correctness.615

B Experimental settings616

For image classification, in the main paper we focus on pruning networks on the large-scale ImageNet617

ILSVRC2012 dataset [52] (1.3M images, 1000 classes). Each pruning process consumes a single618

node with eight NVIDIA Tesla V100 GPUs. We use PyTorch [48] V1.4.0 model zoo for pretrained619

weights for our pruning for a fair comparison with literature.620

In our experiments we perform iterative pruning. Specifically, we prune every 320 minibatches after621

loading the pretrained model with k = 30 pruning steps in total to satisfy the constraint. Unless622

otherwise specified, we finetune the network for 90 epochs in total with an individual batch size623

at 128 for each GPU. For finetuning, we follow NVIDIA’s recipe [47] with mixed precision and624

Distributed Data Parallel training. The learning rate is warmed up linearly in the first 8 epochs and625

reaches the highest learning rate, then follows a cosine decay over the remaining epochs [37]. For the626

result in Fig.1 that is trained with knowledge distillation, we use RegNetY-16GF (top1 82.9%) as the627

teacher model when finetuning the pruned model. We use hard distillation on the logits and the final628

training loss is calculated as L = (1 − α)Lbase + αLdistil where α = 0.5 to balance between the629

original loss Lbase and the distillation loss Ldistil.630

For latency lookup table construction, we target a NVIDIA TITAN V GPU with batch size 256 for631

latency measurement to allow for highest throughput for inference, and target a Jetson TX2 with632

inference batch size 32. We pre-generate a layer latency look-up table on the platform by iteratively633

reducing of the number of neurons in a layer to characterize the latency with NVIDIA cuDNN [7]634

V7.6.5. We profile each latency measurement 100 times and take the average to avoid randomness.635

We also provide pruning results on the small-scale CIFAR10 [29] dataset in appendix Sec. C. For636

CIFAR10 experiments with ResNet-50/-56, we train the model on a single GPU for 200 epochs in637

total where we perform pruning step very one epoch in the first 30 epochs and finetune the pruned638

model during the remaining 170 epochs. The initial learning rate is set to 0.1 with batch size 128.639

For DenseNet, we extend the finetuning epochs to 300 epochs640

C More pruning results on CIFAR10 and ImageNet641

We provide the pruning results of our method on CIFAR10 dataset in this section. We chose 3 network642

architectures for the experiment: ResNet50, ResNet56 and DenseNet40-12 [26]. As most of the643

prior methods perform pruning under the FLOPs constraint, in our CIFAR10 experiment we also use644

FLOPs constraint instead of the latency constraint. We also add some additional ImageNet-ResNet50645

results comparison in the table. For a fair comparison, in the ImageNet50 experiment, we also provide646

the model accuracy under the same finetuning recipe and epochs as the methods to be compared to647

alleviate the potential impact of the different finetuning settings. Specifically, when compared to648
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Table 5: Additional pruning results and comparison on CIFAR10 and ImageNet dataset. FLOPS (%)
are relative to those of the unpruned network

Dataset Model Method FLOPs (%) ↓ Top1 (%) ↑

CIFAR10

ResNet50 ChipNet [58] 17.7 92.8
LASP(Ours) 13.7 93.2

ResNet56

CHIP [55] 27.7 92.05
LASP (Ours) 26.8 93.22

GDP [19] 34.36 93.55
LASP (Ours) 33.72 93.68

DenseNet40-12† QCQP [28] 29.2 93.80†

LASP (Ours) 29.2 93.15†

ImageNet ResNet50

GBN-60 [67] 59.46 76.19
QCQP [28] 59.0 76.00

LASP (Ours) 58.12
76.93

(76.49∗ / 76.53∗∗)

GBN-50 [67] 44.94 75.18
LASP (Ours) 42.05 76.09 (75.27∗∗)

Dataset Model Method Inf speedup (%) ↑ Top1 drop (%) ↓

ImageNet ResNet50 QCQP [28] 1.52× 0.32
LASP (Ours) 1.60× −0.22 (0.16∗∗)

† The baseline model used in QCQP has 95.01% top1 accuracy, while our pretrained model has 94.40% top1 accuracy.
The accuracy drop is 1.21% vs. 1.25%, which is comparable.

∗ use the same finetune recipe and epochs as GBN [67]
∗∗ use the same finetune recipe and epochs as QCQP [28]

Table 6: Pruning MobileNet-V1 and MobileNet-V2 on the ImageNet dataset with different targets.
Method FLOPs Top1 Top5 FPS Speedup(M) (%) (%) (im/s)

MobileNet-V1
No pruning 569 72.64 90.88 3415 1×
LASP-40% 154 67.20 87.32 8293 2.43×
LASP-42% 171 68.30 88.08 7940 2.32×
LASP-50% 237 69.79 89.08 6887 2.02×
LASP-60% 297 71.31 90.05 5754 1.68×
LASP-70% 360 71.78 90.39 4870 1.43×
LASP-80% 416 72.52 90.78 4167 1.22×
LASP-90% 507 72.95 91.02 3765 1.10×

Method FLOPs Top1 Top5 FPS Speedup(M) (%) (%) (im/s)

MobileNet-V2
No pruning 301 72.10 90.60 3080 1×
LASP-60% 183 70.42 89.75 5668 1.84×
LASP-65% 218 71.41 90.08 5003 1.62×
LASP-70% 227 71.88 90.39 4478 1.45×
LASP-75% 249 72.16 90.44 4109 1.33×
LASP-90% 273 72.45 90.68 3443 1.12×
LASP-95% 281 72.55 90.79 3265 1.06×

GBN [67], we finetune the pruned network for 60 epochs, where initial learning rate is set to 0.01649

with batch size 256. The learning rate is divided by 10 at epoch 36, 48 and 54. When compared to650

QCQP [28], the pruned network is finetuned for 80 epochs with batch size 384 and the initial learning651

rate of 0.015. Then, the learning rate is decayed at epoch 30 and 60 by deviding 10. As shown in652

Tab. 5, LASP method consistently outperforms with lower FLOPs and higher Top1 accuracy. When653

it comes to the actual inference speed comparison with QCQP [28], our method yields 0.16% less654

accuracy drop while getting 0.08× faster speed.655
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Figure 5: Pruning MobileNets on the ImageNet dataset.

Table. 6 and Fig. 5 provide additional prun-656

ing results for lightweight networks such as657

MobileNet-V1 and MobileNet-V2. For the un-658

pruned models, we find that even MobileNet-V2659

has significantly lower FLOPs, the inference660

time is larger compared to MobileNet-V1.In661

both cases, LASP yields inference speeds-ups662

of 1.22× and 1.33× for MobileNet-V1 and663

MobileNet-V2 respectively, while maintaining664

the original top1 accuracy.665

D Efficacy of neuron grouping on MobileNet666

In this section, we show the benefits of latency-aware neuron grouping and the performance under667

different group size settings on MobileNetV1.668

Since MobileNet has group convolutional layers to speedup the inference, we take the group convolu-669

tional layer with its preceding connected convolutional layer together as coupled cross-layers [17] to670
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Figure 6: Performance comparison of our latency-aware grouping to
different fixed sizes for a MobielNetV1 pruned with different latency
constraints on ImageNet. We compare to heuristic-based group selection
studied by [66]. LG denotes the proposed latency-aware grouping in
LASP that yields consistent latency benefits per final accuracy.

make sure the input channel number and out-671

put channel number of the group convolution672

remain the same. All the 27 convolutional lay-673

ers can be divided into 14 coupled layers. In our674

method, with the neuron grouping, we set the675

individual group size of 1 coupled layer to 16,676

of 3 coupled layers to 32 and 10 coupled layers677

to 64. Also, for MobileNetV1 pruning, we add678

the additional constraint that each layer has at679

least one group of neurons remaining to make680

sure that the pruned network is trainable.681

We compare our latency-aware neuron grouping682

with an heuristic option by setting a fixed group683

size for all layers. Fig. 6 shows the comparison684

results between our neuron grouping method and various fixed group sizes for a MobielNet pruned685

with different latency constraints on ImageNet. As shown, similar to ResNet50, using small group686

sizes such as 8, 16 leads to worse performance; a large group size like 128 also harms the performance687

significantly. Our observations on ResNet50 pruning also hold in MobileNetV1 setting, further688

emphasizing the efficacy of our latency-aware neuron grouping.689

E Ablation study of pruning step k690
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Figure 7: Performance comparison of different pruning steps k for
ResNet50 pruning on ImageNet.

In this work, similar to many other prior meth-691

ods [2, 44, 68], we do iterative pruning with k692

pruning steps in total. In this experiment, we693

analyze the the accuracy of the final result as694

a function of k. We set the value of k to 10,695

20, 30 and 40 for iterative pruning, and also use696

k = 1 to perform a single-shot pruning. The697

result of this experiment is shown in Fig. 7. As698

shown, we get similar results independent of699

k. Imporantly, all these results outperform Ea-700

gleEye [31]. As expected, there is a drop in701

accuracy for single-shot pruning (k = 1), espe-702

cially for large pruning ratios. The main reason is the neuron importance would change as we remove703

some other neurons and, in this setting, the value is not updated. Iterative pruning does not have this704

limitation as the importance score and the latency cost of the remaining neurons is updated after each705

pruning step to reflect any changes. In our experiments, we use k = 30 as it provides a good trade off706

between latency and accuracy.707

F Comparison with EagleEye on ImageNet708

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 inference time (ms/image)

73

74

75

76

77

78

 T
o

p
1

 A
c
c
(%

)

No pruning

EagleEye Li et al. ECCV (2020)

LASP (Ours)

Figure 8: Pruning ResNet50 on the ImageNet dataset using the same
baseline model as in EagleEye with a top-1 accuracy of 77.23%. The
proposed LASP surpasses EagleEye ECCV20 [31] in accuracy and
latency. Top-left is better.

We now use the same unpruned baseline model709

provided by EagleEye [31] to compare our pro-710

posed LASP method with EagleEye [31] vary-711

ing the latency constraint. As shown in Fig. 8,712

our approach dominates EagleEye by consis-713

tently delivering a higher top-1 accuracy with a714

significantly faster inference time.715

We then analyze the structure difference be-716

tween our pruned model and the EagleEye717

model. As mentioned in the main text that the718

proposed LASP method tries to make the num-719

ber of remaining neurons in each layer fall to the720

right side of a step if the latency on the targeting721

platform presenting a staircase pattern. Fig. 9722

shows two examples of pruned layers after pruning from LASP-45% and EagleEye-2G model. In the723

18



Figure 9: Two examples of pruned layers from LASP model and EagleEye [31] model. The scattered
black points are the locations of the layers fall to after pruning.

Table 7: Pruning ResNet50 on the ImageNet dataset (TITAN V) targeting on inference with batch
size 1. LASP-X% indicates that X% latency to remain after pruning. The speedup is calculated as
the ratio of FPS between the pruned network and the unpruned model.

Method FLOPs Top1 Acc Top5 Acc FPS Speedup(G) (%) (%) (imgs/s)

No pruning 4.1 76.2 92.87 181 1×
0.75× ResNet50 [21] 2.3 74.8 - 192 1.06×

AutoSlim [68] 2.0 75.6 - 181 1.00×
MetaPruning [35] 2.0 75.4 - 190 1.05×
EagleEye-2G [31] 2.1 76.4 92.89 190 1.05×

GReg-2 [61] 1.8 75.4 - 196 1.09×
LASP-90% (Ours) 2.9 76.4 93.10 220 1.22×
0.50× ResNet50 [21] 1.1 72.0 - 193 1.07×

AutoSlim [68] 1.0 74.0 - 191 1.06×
MetaPruning [35] 1.0 73.4 - 196 1.09×
EagleEye-1G [31] 1.0 74.2 91.77 192 1.06×

GReg-2 [61] 1.3 73.9 - 206 1.14×
LASP-80% (Ours) 2.3 75.3 92.35 247 1.37×

left figure, we show that the layer in our pruned model has only 5 more neurons pruned than that in724

EagleEye model, the latency is reduced to a much lower level which is a 0.76ms drop while we have725

31 more input channels. In the right figure, we also show that sometimes we can remain a lot more726

neurons (30 neurons) in layer with only little latency (0.21ms) increase. These two examples both727

show the ability of method to fully exploit the latency traits and benefit the inference speed.728

Our method benefits a lot from the non-linear latency characteristic since we are trying to keep as729

many neurons as possible under the latency constraint. If the latency of the layer on the targeting730

platform shows linear pattern, the advantage of our method becomes smaller. Fig. 9 shows the latency731

behavior of the example layers on the targeting platform when reducing the number of input and732

output channels. As we can see, the staircase pattern becomes less obvious as the number of input733

channel reduces and the GPU has sufficient capacity for the reduced computation. This happens734

during pruning, especially for large prune ratios. In such a case, the FLOP count reflects the latency735

more accurately, and the performance gap between reducing FLOPs and reducing latency can possibly736

become small. Nevertheless, our method can help avoid some latency peaks as shown in Fig. 9, which737

could otherwise happen using other pruning methods.738

G Pruning results for small batch size739

In the main paper, we use a large batch 256 in the experiment to allow for highest throughput for740

inference, which also makes the latency of the convolution layers show apparent staircase pattern so741

that we can take full advantage of the latency characteristic. In this section, we show that with small742

batch size 1 that no obvious staircase pattern showing up in layer latency, our LASP algorithm still743

delivers better results compared to other methods.744

When we use batch size 1 for inference, the layer latency of ResNet50 does not show obvious staircase745

pattern in most of the layers due to the insufficient usage of GPU. Therefore in this experiment, we746

use the latency lookup table granularity as a neuron grouping size, which in our case is 2, to fully747

exploit the hardware latency traits during pruning. We show our pruned results and the comparison748
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Table 8: LASP for object detection on the PASCAL VOC dataset.
Model mAP FLOPs (G) params (M) FPS (BS=1) FPS (BS=32)

SSD512-RN50, base model 77.98 65.56 21.97 68.24 103.48

SSD512-RN50-slim 75.83 46.09 16.33 76.49 114.80
SSD300-RN50 75.69 16.23 15.43 128.85 309.32

SSD300-VGG16 [34] 76.72 31.44 26.29 122.28 262.93
FasterRCNN-VGG16 [51] 70.10 91.23 137.08 29.21 -

RetinaNet-RN50 [33] 77.27 106.50 36.50 36.92 -
SSD512-RN50-LASP (Ours) 77.42 15.38 10.40 132.57 323.36

with other methods in Tab. 7. As shown in the table, while other methods reduce the total FLOPs of749

the network after pruning, they do not reduce the actual latency much, which is up to 1.09× faster750

than the original one at the cost of 2.8% top1 accuracy drop. Compared to these methods, although751

we get less FLOPs reduction using our proposed method, the pruned models are faster and get higher752

accuracy, which is 1.22× faster than the unpruned model while getting slightly higher accuracy and753

1.37× faster with only 0.9% accuracy drop.754

H Pruning results on object detection755

In this section we show the detailed pruning results on objection detection task for Sec. 4.5. To prune756

the detector, we first train a SSD512 with ResNet50 as backbone. We also train some other popular757

models for performance comparison. The detailed numbers of Fig. 4 are shown in Tab. 8.758

I Implementation details759

Convert latency in float to int. Solving the neuron selection problem using the proposed augmented760

knapsack solver (Algo. 1 in the main paper), requires the neuron latency contribution and the latency761

constraint to be integers as shown in line 4 of the algorithm. To convert the measured latency from a762

full precision floating-point number to integer type, we multiply the latency by 1000 and perform763

rounding. Accordingly, we also scale and round the latency constraint value.764

Deal with negative latency contribution. The neuron latency contribution in our augmented765

knapsack solver must be a non-negative value since we have dp_array ∈ RC and we need to visit766

dp_array[c− cn] as in line 5 of Algo. 1 in the main paper. However, by analyzing the layer latency767

from the look-up table we find that for some layers the measured latency might even increase when768

reducing some number of neurons. This means that the latency contribution could possibly be negative.769

The simplest way to deal with the negative values is to directly set the negative latency contributions770

to be 0. This leads to the problem that the summed latency contribution would be larger than the771

actual latency value, causing less neurons being selected. Thus, during our implementation, we keep772

those negative latency values as they are, but update the vector size of dp_array to RC−min(min(c),0)773

where min(c) is the minimum latency contribution. With such, the vector size of dp_array would be774

extended when there is negative latency contribution. This makes it possible to add one neuron with775

negative latency contribution to a subset of neurons whose summed latency is larger than the latency776

constraint. After the addition, the total latency will still remain under the constraint.777

Pruning of the first layer. In our ImageNet experiments, we leave the first convolutional layer778

of ResNets unpruned to help maintain the top-1 classification accuracy. For MobileNet, the first779

convolutional layer is coupled with its following group convolutional layer. In our MobileNet780

experiments, we prune the first coupled layers at most to the half of neurons.781

SSD for object detection. Our SSD model is based on [34]. When we train SSD-VGG16, we use the782

exactly same structure as described in the paper. When we train a SSD-ResNet50, the main difference783

between our model and the model described in the original paper is in the backbone, where the VGG784

is replaced by the ResNet50. Following [27], we apply the following enhancements in our backbone:785

• The last stage of convolution layers, last avgpool and fc layers are removed from the original786

ResNet50 classification model.787

• All strides in the 3rd stage of ResNet50 layers are set to 1× 1.788
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Table 9: The additional convolution layers in SSD.
layer SSD512 SSD512-slim SSD300

layer1-conv1 (512, 3, 1, 1) (256, 1, 1, 0) (512, 3, 1, 1)
layer1-conv2 (512, 3, 2, 1) (512, 3, 2, 1) (512, 3, 2, 1)
layer2-conv1 (256, 1, 1, 0) (256, 1, 1, 0) (256, 1, 1, 0)
layer2-conv2 (512, 3, 2, 1) (512, 3, 2, 1) (512, 3, 2, 1)
layer3-conv1 (128, 1, 1, 0) (128, 1, 1, 0) (128, 1, 1, 0)
layer3-conv2 (256, 3, 2, 1) (256, 3, 2, 1) (256, 3, 2, 1)
layer4-conv1 (128, 1, 1, 0) (128, 1, 1, 0) (128, 1, 1, 0)
layer4-conv2 (256, 3, 2, 1) (256, 3, 2, 1) (256, 3, 1, 0)
layer5-conv1 (128, 1, 1, 0) (128, 1, 1, 0) (128, 1, 1, 0)
layer5-conv2 (256, 3, 2, 1) (256, 3, 2, 1) (256, 3, 1, 0)
layer6-conv1 (128, 1, 1, 0) (128, 1, 1, 0) -
layer6-conv2 (256, 4, 1, 1) (256, 4, 1, 1) -

Table 10: Pruning ResNet50 on the ImageNet dataset with FLOPs constraint and comparison with
state-of-the-art method EagleEye (ECCV’20) [31]. We remeasure the FLOPs, top1 and top5 accuracy
of EagleEye to get results with two digits.

Method FLOPs (G) Top1 Acc (%) Top5 Acc (%)

No pruning 4.1 77.23 93.70

EagleEye-3G 3.08 77.10 93.36
FLOP-T (Ours) 2.99 77.36 93.62

EagleEye-2G 2.06 76.38 92.90
FLOP-T (Ours) 1.95 76.64 93.21

EagleEye-1G 1.03 74.18 91.78
FLOP-T (Ours) 0.96 74.84 92.26 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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The backbone is followed by 6 additional coupled convolution layers for input size 512× 512, or 5789

for input size 300× 300. A BatchNorm layer is added after each convolution layer. The settings of790

these additional convolution layers are listed in Tab. 9, each layer is represented as (output channel,791

kernel size, stride, padding).792

The detector heads are similar to the ones in the original paper. The first detection head is attached to793

the last layer of the backbone.The rest detection heads are attached to the corresponding additional794

layers. No additional BatchNorm layer in the detector heads.795

J FLOPs-constrained pruning796

Our implementation of latency-constrained pruning can be easily converted to be a FLOPs-constrained.797

When constraining on FLOPs, Φ(·) in the objective function (Eq.1 in the main paper) becomes the798

FLOPs measurement function and C becomes the FLOPs constraint. Since the FLOPs of a layer799

linearly decreases as the number of neurons decreases in the layer, we do not need to group neurons800

in a layer any more. The problem can also be solved by original knapsack solver since each neuron’s801

FLOPs contribution in a layer is exactly the same and no preceding constraint is required. We conduct802

some experiments by constraining the FLOPs and compare the results with EagleEye [31]. We name803

the experiments using the same algorithm as LASP but targeting on optimizing the FLOPs as FLOP-T.804

As shown in Tab. 10, with our pruning framework applying the knapsack solver, our results show805

higher top-1 accuracy compared to the pruned networks of EagleEye with similar FLOPs remaining.806

We also observe a larger gap between the methods when it comes to a more compact network.807

K FLOPs vs. latency808

FLOPs can be regarded as a proxy of inference latency; however, they are not equivalent [4, 33,809

35, 40, 42]. We do global filter-wise pruning and have the same problem as NAS. The latency on a810

GPU usually imposes staircase-shaped patterns for convolutional operators with varying channels811

and requires pruning in groups. In contrast, FLOPs will change linearly. Depth-wise convolution,812

compared to dense counterparts, has significantly fewer FLOPs but almost the same GPU latency813
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Table 11: ResNet50 pruning with FLOPs/latency constrain.
method Top1(%) FLOPs (G) FPS (imgs/s) FPS vs FLOPs
FLOP-T 74.84 0.962 2202
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LASPLASP 74.92 1.210 2396
FLOP-T 76.64 1.949 1436
LASP 76.55 1.957 1672

FLOP-T 77.36 2.988 1146
LASP 77.45 2.988 1203

due to execution being memory-bounded1. The discrepancy also holds for ResNets where the same814

amount of FLOPs impose more latency in earlier layers than later ones as the number of channels815

increases and feature map dimension shrinks – both increase compute parallelism. For example, the816

first 7× 7 conv layer and the first bottleneck 3× 3 conv in ResNet50 have nearly identical FLOPs817

but the former is 60% slower on-chip.818

We compare our results of FLOPs-targeted (FLOP-T) showed in Sec. J and results using latency-819

targeted pruning (LASP) in Tab. 11. As shown in the table, using different optimization targets leads820

to quite different FPS vs FLOPs curves. In overall, with similar FLOPs remaining, using our LASP821

algorithm targeting on reducing the actual latency can get more efficient networks with more image822

being processed per second.823

Figure 10: The measured latency vs. FLOPs of the
2nd convolution layer in the 1st residual block of
ResNet50.

We also show a more straightforward relationship between the824

actual latency of a layer and its FLOPs in Fig. 10. We use the825

2nd convolution layer in the 1st residual block of ResNet50 as826

an example. We vary the number of neurons of the layer from827

0 to 128 and measure the actual latency on GPU (TITAN V)828

as well as the FLOPs of the layer. We can see from the figure829

that the actual latency does not strictly linearly decrease as the830

FLOPs decreasing.831

L Different choice of importance calculation832

We use the first Taylor expansion [44] to estimate the loss change induced by pruning as the importance833

score of the neurons. It is a gradient-based importance calculation and is shown to be given promising834

results. In this section, we use the L2 norm of the neuron weights as the importance measurement835

and apply LASP framework to ResNet50 ImageNet classification task. As shown in Tab. 12, Our836

algorithm is generic applying to different importance measurements. As shown, using L2 norm of837

weights as importance measurements leads to slightly lower accuracy.

Table 12: The results of LASP algorithm on ResNet50 ImageNet classification task with different
choices of neuron importance measurements.

Method First-Taylor Expansion (gradient-based) L2 norm (magnitude-based)

FLOPs(G) Top1(%) Top5(%) FPS(im/s) FLOPs(G) Top1(%) Top5(%) FPS(im/s)

LASP-80% 3.0 77.5 93.60 1203 3.0 77.3 93.60 1196
LASP-55% 2.1 76.7 93.16 1672 2.0 75.7 92.66 1595

838

M Latency look-up table creation and calibration839

In this section, we provide additional details to build the latency look-up table used in LASP,840

computational cost and the correlation between the estimated and the real ones. As mentioned in841

Appendix B, we pre-generate the layer latency look-up table on the platform with NVIDIA cuDNN [7]842

V7.6.5. For each layer, we iteratively reduce the number of neurons in the layer (each time reduce843

8 neurons) and characterize the corresponding latency. For each latency measurement, we use one844

profile for GPU warm up and another 3 profiles and take the average to avoid randomness. The845

average standard deviation of profiles for an operation is 8.67e−3.846

1
https://tlkh.dev/depsep-convs-perf-investigations/
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Figure 11: The correlation between the predicted latency reduction and
the real latency reduction of the pruned models.

On a single TITAN V GPU, it takes around 5847

hours to build the look-up table for ResNets fam-848

ily and 1 hour for MobileNets family. Note that849

the LUT can be shared by the network architec-850

tures within the same family since they usually851

have similar layer structures. We only need to852

create the latency look-up table once for all the853

possible latency targets.854

There are some gaps between the predicted la-855

tency and the real latency of the model, because856

the latency look-up table is created layer-wise857

on convolution layers. There are additional costs858

in real inference such as pooling, non-linear ac-859

tivation etc. We plot the correlation between the860

expected latency reduction from look-up table and the real latency reduction ratio of our pruned861

models in Fig. 11. We also calculate the Pearson Correlation Coefficient r for all the networks in the862

figure. We can clearly see a linear correlation between the predicted and real latency reduction from863

the figure, showing that the latency lookup table provides a good approximation and it is possible to864

calibrate the latency estimation using the linear coefficient to have a better estimation.865

Limitation of layer-wise latency lookup table. We apply layer-wise latency lookup table in our866

method, which does not consider the caching and parallelization among layers. For networks like867

VGG without bypass paths, the layer operations will be executed sequentially, in which case, the868

latency lookup table models the actual latency well. For models with parallel paths, it depends on869

the hardware implementation whether there will be parallel execution in practice. When there is870

parallelization, e.g., in accelerators, models like ResNets still work well because the skip connection871

only takes small portion of computation; for models like InceptionNet, taking the parallelization872

and into consideration when generating the lookup table would help better estimate the latency. For873

wider applications in the future, the more domain knowledge we have about the GPU execution and874

improve accordingly, the more accurate estimation we will obtain using the latency lookup table.875

Comparison with quadratic model. Recent work QCQP [28] models latency using a quadratic876

equation and solve a latency constrained optimization problem. The main difference between our877

estimation from lookup table and the QCQP’s estimation from quadratic modeling is that we use878

different ways to model each layer’s latency. QCQP[1] uses αl + βl||r(l−1)||1 + δl||r(l−1)||1||r(l)||1879

to model the layer latency where ||r||l is the number of remaining channels in the corresponding layer,880

α, β and δ are the coefficients that need to be optimized for the targeting platform. Note that QCQP881

also needs to profile latency for different samples of each layer, like what we do to create the lookup882

table but will less samples, in order to optimize α, β and δ. It is also important to note that QCQP883

uses a linear model between the layer latency and FLOPs (the quadratic part) and memory. Therefore,884

QCQP fails to capture the latency staircase pattern (see Fig. 3a in the QCQP paper) which is the key885

to maximize GPU utilization (see latency surface in Fig. 1). As shown in Fig.3a in the QCQP paper,886

the quadratic modeling gives different latency estimations to layers with different number of input887

and output channels. However, these layers have the same real inference time. As a result, the larger888

the number of input and output channels, the larger the error in the estimation of QCQP.889
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Figure 12: The ResNet50 ImageNet pruning targeting INT8 inference
on NVIDIA Xavier.

We now focus on results when the target is INT8891

inference which is a common requirement for892

real-world applications. In particular, we use893

NVIDIA Xavier as the target platform as, in this894

platform, INT8 speedup is supported. We create895

a INT8 latency look-up table for INT8 inference.896

For comparison, we also create a FP32 latency897

look-up table on the same platform and use both898

look-up tables for pruning a ResNet50 model899

on ImageNet classification. After convergence,900

results are quantized into INT8 and the latency901
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and accuracy is measured directly on the Xavier platform. We measure latency with a batch size 128,902

using TensorRT (V8.2.0.1) to get INT8 speedup. Results for this experiment are shown in Fig. 12.903

As shown, even use a FP32 latency look-up table as the latency guidance, our method LASP904

outperforms the state-of-the-art method EagleEye [31]. These results are consistent with Sec. 4.2905

where we show the LASP acceleration on GPUs with TensorRT. Pruning results of using a INT8906

look-up table show that our method yields higher accuracy with lower latency on this platform. We907

obtain a 1.32× speedup while maintaining the original Top1 accuracy. Compared to EagleEye, LASP908

achieves up to 1.26× relative speedup and 0.15% higher accuracy.909

O Breakdown of the algorithm execution time910

We provide additional details of the algorithm process of different methods in this section. We911

estimate the time cost needed to get the pruned network structure for each method. The time of912

following finetuning is not taken into consideration. For a fair comparison, we set the number of913

pruning steps k for all iterative pruning methods to 30. All the values are approximated as all the914

methods are running on the same device (a NVIDIA V100 GPU) to get a pruned ResNet50. For915

AutoSlim [68], MetaPruning [35] and AMC [22], more GPU time is needed for additional training of916

the network.917

Table 13: The breakdown details of the execution process of different methods.
Method Evaluate Auxiliary net Sub-network selection Additional time cost Estimate

proposals? training? time (RN50)

NetAdapt Y N N candidates evaluation + finetune after each prune. Latency look-up table creation ∼ 195h GPURepeat k times

ThiNet Y N 1 or 2 train epochs after each pruning. Additional forward pass to get neuron importance ∼ 210h GPURepeat k times

EagleEye Y N 1000 candidates evaluation Monte Carlo sampling, prune to get 1000 candidates 30h GPU

AutoSlim Y Y Train slimmable model
k candidates evaluation

MetaPruning Y Y Train an auxiliary network
k candidates evaluation

AMC N Y Train an RL agent

LASP(Ours) N N 40 train iterations after each pruning. Augmented Knapsack solver (∼ 30min in total) 6.5h GPU
Repeat 30 times. (< 1 train epoch in total) Latency look-up table creation 0.5h CPU

P Difference with prior work918

KnapsackPruning (KP) [1] is one work that is mostly close to our method in the paper. While919

both works look at similar problems from the same combinatorial perspective, there are several key920

differences. First, KP focuses on constraining FLOPs and shows an instantiation on latency; in921

contrast, we directly optimize the latency, which is more practical. Second, we show the latency922

characterization on device and augment the original knapsack problem formulation accordingly,923

Eq. 7, to accommodate to the latency traits - the neuron latency is dependent on the order of neuron924

pruning in a layer, while KP uses a standard knapsack where the neuron FLOP cost is independent925

of each other. Please note here that the formulation in KP assumes the independence thus can not926

directly apply to the latency-targeted pruning, Third, we are the first ones to use the latency-aware927

grouping which assigns different grouping sizes to each layer according to the latency traits rather928

than predefined fixed values.929

For a fair comparison of pruning to the KP method, we use the PyTorch baseline as unpruned930

model and both without knowledge distillation during training. The results for ResNet50 pruning931

on ImageNet are show as Tab. 16. As shown, our method performs significantly better leading to932

pruned model with higher accuracy but less FLOPs. On the other side, as they are not considering the933

actual latency, the resultant network structure is not GPU friendly and would fail to maximize the934

GPU utilization.935

Q Detailed configuration of pruned models936

We provide the detailed configuration of our pruned models of Tab. 1. For each model, we list the937

number of neurons remaining in each convolution layer, starting from the input to the output. For938

24



Table 14: ResNet50 pruning results on ImageNet comparison with Knapsack Pruning [1].
Method FLOPs (G) Top1 (%) Acc Drop (%)

KP [1] 2.38 76.17 0.03
KP [1] 2.03 75.94 0.21

LASP (Ours) 2.01 76.46 −0.26

ResNets we use [·] to denote a residual block and (·) to denote the neuron number of the residual939

bypass layer.940

Note that for ResNets, the configuration is the “raw” configuration after the pruning. For each residual941

block [x1, x2, x3], because of the existing of bypass layer, we allow the entire layer pruning and it942

still leads to trainable networks. Whenever there is entire layer pruning (x1 == 0 or x2 == 0 or943

x3 == 0), all the other layers in the block can be removed and this branch can be replaced by a944

constant value. In such a case, the corresponding block in our final pruned model is cleaned to be945

[0, 0, 0]. We also provide the detailed structure plot of two pruned ResNet50 models in Fig. 13 for a946

better visualization.947

Table 15: The detailed configuration of the LASP pruned models.
ResNet50 - EagleEye [31] baseline

LASP-80% 64, [64, 32, 256](256), [32, 32, 256], [0, 32, 256], [128, 128, 512](512), [64, 96, 512], [64, 128, 512], [64, 128, 512], [256, 256, 1024](1024), [256, 160, 1024],
[256, 160, 1024], [256, 160, 1024], [256, 128, 1024], [256, 160, 1024], [512, 512, 2048](2048), [448, 416, 2048], [512, 512, 2048]

LASP-45% 64, [64, 32, 128](128), [32, 0, 128], [0, 32, 128], [64, 64, 384](384), [64, 96, 384], [32, 96, 384], [64, 128, 384], [256, 192, 1024](1024), [128, 96, 1024],
[256, 64, 1024], [256, 96, 1024], [128, 32, 1024], [256, 96, 1024], [512, 448, 2048](2048), [416, 288, 2048], [512, 352, 2048]

LASP-30% 64, [0, 0, 64](64), [0, 0, 64], [0, 32, 64], [64, 64, 256](256), [64, 64, 256], [64, 128, 256], [64, 96, 256], [256, 64, 896](896), [128, 64, 896], [0, 0, 896],
[128, 64, 896], [0, 0, 896], [0, 0, 896], [512, 320, 2048](2048), [320, 160, 2048], [480, 160, 2048]

ResNet101

LASP-60%

64, [64, 32, 192](192), [32, 32, 192], [64, 32, 192], [64, 128, 384](384), [64, 96, 384], [96, 96, 384], [128, 128, 384], [256, 256, 896](896), [256, 96, 896],
[256, 128, 896], [256, 96, 896], [256, 96, 896], [256, 128, 896], [256, 96, 896], [256, 96, 896], [256, 96, 896], [256, 96, 896], [256, 64, 896], [256, 64, 896],
[256, 96, 896], [256, 64, 896], [256, 64, 896], [256, 96, 896], [256, 64, 896], [256, 96, 896], [256, 96, 896], [256, 96, 896], [256, 64, 896], [256, 128, 896],
[256, 64, 896], [512, 512, 2048](2048), [512, 448, 2048], [512, 480, 2048]

LASP-50%

64, [64, 32, 128](128), [0, 32, 128], [64, 32, 128], [64, 128, 384](384), [32, 32, 384], [128, 96, 384], [128, 96, 384], [256, 256, 896](896), [256, 96, 896],
[256, 96, 896], [256, 96, 896], [256, 64, 896], [256, 96, 896], [256, 95, 896], [256, 96, 896], [256, 64, 896], [256, 64, 896], [0, 0, 896], [0, 0, 896], [256, 64, 896],
[0, 0, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896],
[512, 512, 2048](2048), [480, 416, 2048], [512, 416, 2048]

LASP-40%

64, [64, 32, 128](128), [0, 32, 128], [0, 0, 128], [64, 128, 384](384), [32, 64, 384], [64, 96, 384], [64, 128, 384], [256, 256, 896](896), [0, 64, 896], [128, 96, 896],
[0, 64, 896], [0, 64, 896], [128, 64, 896], [128, 64, 896], [0, 0, 896], [0, 0, 896], [128, 96, 896], [128, 64, 896], [256, 96, 896], [256, 64, 896], [256, 64, 896],
[128, 32, 896], [128, 64, 896], [0, 0, 896], [0, 0, 896], [256, 64, 896], [256, 64, 896], [256, 96, 896], [256, 64, 896], [256, 96, 896], [512, 512, 2048](2048),
[512, 352, 2048], [512, 352, 2048]

LASP-30%

64, [64, 32, 128](128), [0, 0, 128], [0, 0, 128], [64, 128, 256](256), [0, 96, 256], [64, 96, 256], [64, 128, 256], [256, 192, 768](768), [0, 64, 768], [128, 64, 768],
[0, 64, 768], [0, 64, 768], [128, 64, 768], [128, 64, 768], [0, 0, 768], [0, 0, 768], [128, 64, 768], [128, 96, 768], [256, 64, 768], [0, 0, 768], [0, 0, 768], [128, 32, 768],
[128, 64, 768], [128, 64, 768], [128, 64, 768], [0, 0, 768], [0, 0, 768], [256, 64, 768], [256, 0, 768], [256, 64, 768], [512, 512, 2048](2048), [480, 288, 2048],
[480, 256, 2048]

MobileNet-V1
LASP-60% 896, 14, 14, 32, 32, 64, 64, 64, 64, 192, 192, 192, 192, 384, 384, 320, 320, 384, 384, 384, 384, 384, 384, 448, 448, 960, 960

LASP-42% 832, 16, 16, 32, 32, 32, 32, 32, 32, 64, 64, 128, 128, 320, 320, 256, 256, 256, 256, 256, 256, 320, 320, 320, 320, 896, 896

MobileNet-V2

LASP-75% 16, 16, 16, 64, 64, 24, 64, 64, 24, 112, 112, 32, 128, 128, 32, 128, 128, 32, 192, 192, 64, 384, 384, 64, 352, 352, 64, 352, 352, 64, 384, 384, 96, 512, 512, 96,
512, 512, 96, 576, 576, 160, 960, 960, 160, 960, 960, 160, 960, 960, 320, 1280

LASP-60% 16, 16, 8, 32, 32, 16, 16, 16, 16, 64, 64, 32, 32, 32, 32, 64, 64, 32, 176, 176, 64, 288, 288, 64, 320, 320, 64, 320, 320, 64, 384, 384, 96, 448, 448, 96, 448, 448, 96,
576, 576, 160, 960, 960, 160, 960, 960, 160, 960, 960, 192, 1152

R Discussion on the augmented knapsack solver948

Our augmented knapsack solver in Algo. 1 is modified based on the standard dynamic programming949

solution for the 0-1 knapsack problem [3, 42, 43]. With the original 0-1 knapsack problem formulation,950

each neuron can be selected to be removed or kept independently. However, the fact is that 1). the951

layer always has the same latency with the same number of channels remaining no matter which952

neurons are selected; 2). the neurons with higher importance are favored to maximize the accuracy.953

So in this latency-aware pruning problem, we add an additional constraint, namely, each neuron can954

be selected only when all the more importance neurons in the same layer are already kept, leading to955

Eq. 7. The original solution is modified in lines 6-9 in Algo. 1 accordingly, and is converted into a956

greedy approximation selection to retain the same time complexity as the original problem. We’ll957

discuss the non-greedy solution later.958

In the augmented solver lines 6-9, every time when we decide whether to keep a neuron, we not only959

compare the total importance score can be reached under the constraint, but also check the inclusion960

of the “preceding” neurons. This is a greedy selection as it does not consider the potential importance961

value that the following neurons in the same layer would bring if the current neuron is kept. The962
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Figure 13: Visualization of the pruned ResNet50 structure.

overall time complexity of the solution is O(N × C) where N =
∑L

l=1 Nl is the total number of963

neuron groups in the network and C is the latency constraint. We also provide the non-greedy solution964

in Algo. 2. In this solution, for each neuron we add a process calculating and comparing the potential965

importance score that the layer would further bring if the current neuron is selected to be kept. This966

brings additional O(Nl) complexity for each neuron in layer l. As a result, the total time complexity967

of the solution increases to O(
∑L

l=1 N
2
l × C). We test both of the solutions and observe similar968

performance in the ImageNet experiments as shown in Tab. 16. We hypothesize that the efficacy of969

the greedy approach suffices from the already decreasingly ranked neurons feeding into the solver970

and the iterative nature during pruning. Thus, the greedy approximation solution Algo. 1 is applied in971

our method to have a better pruning efficiency.972

Table 16: ResNet50 pruning results on ImageNet with the greedy method Algo. 1 and non-greedy
method Algo 2

Method 1G model 2G model 3G model
Algo. 1 Algo. 2 Algo. 1 Algo. 2 Algo. 1 Algo. 2

Top1 (%) 77.45 77.51 76.56 76.51 74.45 74.51
FPS (img/s) 1203 1185 1672 1688 2597 2524
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Algorithm 2 Non-greedy solution for Eq. 7
Input: Importance score {Il ∈ RNl}Ll=1 where Il is sorted descendingly; Neuron latency contribution {cl ∈ RNl}Ll=1; Latency constraint C.

1: maxV ∈ R(C+1) , keep ∈ RL×(C+1) ▷ maxV[c]: max importance under constraint c; keep[l, c]: # neurons to keep in layer l to achieve maxI[c]
2: for l = 1, . . . , L do
3: for j = 1, . . . , Nl do
4: for c = 1, . . . , C do
5: vkeep = Ij

l
+ maxV[c− c

j
l
], vprune = maxV[c] ▷ total importance can achieve under constraint c with object n being kept or not

6: flag = False
7: for pl = j + 1, . . . , Nl do

8: vpotential =
∑pl

j′=j
Ij

′
l

+ maxV[c−
∑pl

j′=j
c
j′
l

] ▷ calculate the potential score this layer would bring if keep this neuron.

9: if vpotential > vprune and keep[l, c− c
j
l
] == j − 1 then ▷ check if leads to higher score and more important neurons in layer are kept

10: flag = True
11: break
12: end if
13: end for
14: if flag == True then
15: keep[l, c] = j, update_maxV[c] = vkeep
16: else
17: keep[l, c] = keep[l, c− 1], update_maxV[c] = vprune
18: end if
19: end for
20: maxV← update_maxV
21: end for
22: end for
23:
24: keep_n = to save the kept neurons in model
25: for l = L, . . . , 1 do ▷ retrieve the set of kept neurons
26: pl = keep[l, C]
27: keep_n← keep_n ∪ {pl top ranked neurons in layer l}
28: C ← C −

∑pl
j=1 c

j
l

29: end for
Output: Kept important neurons (keep_n).
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