
A Mathematical details for Section 2482

In Section A.1, we provide some elements of proof for Theorems 1 and 2. For the sake of clarity, we483

start by showing how the functions gi,j (appearing in the composition (2)) look like in the special484

case of fully connected ReLU networks.485

A.1 Elements of proof of Theorems 1 and 2486

The proof arguments were described in [5, 6]. We simply concentrate on justifying how the results487

described in these works apply to Definition 1 and point the relevant results leading to Theorems 1488

and 2.489

It can be inferred from Definition 1 that all elements in the definition of a ReLU network training490

problem are piecewise smooth, where each piece is an elementary log − exp function. We refer491

the reader to [26] for an introduction to piecewise smoothness and recent use of such notions in492

the context of algorithmic differentiation in [6]. Let us first argue that the results of [6] apply to493

Definition 1.494

• We start with an explicit selection representation of backprops ReLU. Fix any s ∈ R and495

consider the three functions f1 : x 7→ 0, f2 : x 7→ x and f3 7→ sx with the selection index496

t(x) = 1 if x < 0, 2 if x > 0 and 3 if x = 0. We have for all x497

ft(x) = ReLU(x)

Furthermore, differentiating the active selection as in [6, Definition 4] we have498

∇̂tf =


0 if x < 0

1 if x > 0

s if x = 0

and the right hand side is precisely the definition of backprops ReLU. This shows that we499

have a selection derivative as used in [6].500

• Given a ReLU network training problem as in Definition 1, we have the following property.501

– All elements in the ReLU network training problem are piecewise elementary log −502

exp.503

– Each piece can identified with an elementary log − exp.504

– The selection process describing the choice of active function can similarly be de-505

scribed by elementary log − exp functions with equalities and inequalities.506

Therefore, we meet the hypotheses of of [6] and all corresponding results apply to any ReLU net-507

work training problem as given in Definition 1. Fix T ≥ 1, getting back to problem (1), using508

[6, Definition 5] and the selection derivative described above, for each i = 1, . . . , N , there is a509

conservative field Di : RP ⇒ RP such that for any s ∈ [0, T ], and θ ∈ RP510

backpropsli(θ) ∈ Di(θ).

Using [5, Corollary 5] we have Di(θ) = {∇li(θ)} for all θ outside of a finite union of differentiable511

manifolds of dimension at most P−1. This leads to Theorem 1 for s ∈ [0, T ]. Theorem 2 is deduced512

from [6, Theorem 7] which shows that with probability 1, for all k ∈ N, for all n = 1, . . . , N and513

s ∈ [0, T ]514

backprops[`(f(xn, θk,s), yn)] = ∇θ`(f(xn, θk,s), yn)

since we have θ0,s = θ0 for all s, the generated sequences in (4) does not depend on s ∈ [0, T ]. This515

is Theorem 2 for s ∈ [0, T ], note that a similar probabilistic argument was developped in [4]. We516

may repeat the same arguments fixing T < 0, so that both results actually hold for all s ∈ [−T, T ].517

A.2 The special case of fully connected ReLU networks518

The functions gi,j in the composition (2) can be described explicitly for any given neural network519

architecture. For the sake of clarity, we detail below the well-known case of fully connected ReLU520

networks for multiclass classification. We denote by K ≥ 2 the total number of classes.521

14



Consider any fully connected ReLU network architecture of depth H , with the softmax function522

applied on the last layer. We denote by dh the size of each layer h = 1, . . . ,H , and by d0 the input523

dimension. In particular dH = K equals the number of classes. All the functions fθ : Rd0 → RdH524

represented by the network when varying the weight parameters θ ∈ RP are of the form:525

fθ(x) = f(x, θ) = softmax ◦AH ◦ σ ◦AH−1 ◦ · · ·σ ◦A1(x) ,

where each mapping Ah : Rdh−1 → Rdh is affine (i.e., of the form Ah(z) = Whz + bh), where526

σ(u) =
(
ReLU(ui)

)
i

applies the ReLU function component-wise to any vector u, and where527

softmax(z) =
(
ezi/

∑dH
k=1 e

zk
)
1≤i≤dH

for any z ∈ RdH . The weight parameters θ ∈ RP cor-528

respond to stacking all weight matrices Wh and biases bh in a single vector (in particular, we529

have here P =
∑H
h=1 dh(dh−1 + 1)). In the sequel, we set Ph =

∑H
j=h dj(dj−1 + 1) and write530

θh:H ∈ RPh for the vector of all parameters involved from layer h to the last layer H . We also write531

concatenate(x1, . . . , xr) to denote the vector obtained by concatenating any r vectors x1, . . . , xr.532

In particular, we have θh:H = concatenate(Wh, bh, θh+1:H).533

Note that the decomposition above took x as input, not θ. We now explain how to construct the gi,j534

in (2). For each i = 1, . . . , N , the function θ ∈ RP 7→ f(xi, θ) can be decomposed as535

f(xi, θ) = softmax ◦ gi,2H−1 ◦ . . . ◦ gi,2 ◦ gi,1(θ) , (6)

where, roughly speaking, the gi,2h−1 apply the affine mapping Ah to the output zh−1 ∈ Rdh−1 of536

layer h− 1 and pass forward all parameters θh+1:H ∈ RPh+1 to be used in the next layers, while the537

gi,2h apply the ReLU function to the first dh coordinates. More formally, gi,1 : RP → Rd1+P2 is538

given by539

gi,1(θ) = concatenate(W1xi + b1, θ2:H) ,

gi,2 : Rd1+P2 → Rd1+P2 maps any (z1, θ2:H) ∈ Rd1 × RP2 to540

gi,2(z1, θ2:H) = concatenate
(
σ(z1), θ2:H

)
and, for each layer h = 2, . . . ,H , the functions gi,2h−1 : Rdh−1+Ph → Rdh+Ph+1 and gi,2h :541

Rdh+Ph+1 → Rdh+Ph+1 are given by542

gi,2h−1(zh−1, θh:H) = concatenate(Whzh−1 + bh, θh+1:H)

and543

gi,2h(zh, θh+1:H) = concatenate
(
σ(zh), θh+1:H

)
(for h < H).

Consider now any loss function ` : ∆(K) × {1, . . . ,K} → R+ to compare any probability vector544

q ∈ ∆(K) of size K with any true label y ∈ {1, . . . ,K}. For instance, ` can be the cross-entropy545

loss function, which in our case is given by546

`(q, y) = − log q(y) .

Finally, using (6), the functions li : RP → R appearing in (1)-(2) can be decomposed as547

li(θ) = `
(
f(xi, θ), yi

)
=
(
q ∈ ∆(K) 7→ `(q, yi)

)
◦ softmax ◦ gi,2H−1 ◦ . . . ◦ gi,2 ◦ gi,1(θ) .

The last decomposition satisfies (2) with L = 2H + 1. When ` is the cross-entropy loss function,548

all L functions involved in this decomposition are either elementary log-exp or consist in applying549

ReLU to some coordinates of their input, and they are all locally Lipschitz, as required in Defini-550

tion 1.551

B First experiment in 64 bits precision552

We reproduce the same bifurcation experiment as in Section 3 under 64 bits arithmetic precision.553

The results are represented in Figure 6 which is to be compared with its 32 bits counterpart in554

Figure 1. As mentioned in the main text, the bifurcation does not occur anymore. Indeed the555

magnitude of the smallest activation before application of ReLU is of the same order, but this time it556

is well above machine precision which is around 10−16. When depicting the same neighborhood as557

in Figure 1, the effect of numerical error completely disappears, the bifurcation zone being reduced558

to a segment in the picture, which is coherent with Theorems 1 and 2.559

15



0 25 50 75 100
Iteration counter

0.050

0.025

0.000

0.025

0.050

W
ei

gh
t d

iff
er

en
ce

 6
4b

its

1 vs 0
0 vs 0

0 25 50 75 100
Iteration counter

10 8

10 7

10 6

M
in

im
al

 a
ct

iv
at

io
n 

64
bi

ts

5.0 2.5 0.0 2.5
1e 6

4

2

0

2

4
1e 6

10 9

10 8

10 7

10 6

Figure 6: Same experiment as Figure 1 in 64 bits precision. Left: Difference between network
parameters (L1 norm) 100 iterations within an epoch. “0 vs 0” indicates ‖θk,0 − θ̃k,0‖1 where θ̃k,0
is a second evaluation of the same quantity (sanity check), while and “0 vs 1” indicates ‖θk,0 −
θk,1‖1. Center: minimal absolute activation of the hidden layers within the k-th mini-batch, before
application of ReLU. At iteration 65, the jump on the left coincides with the drop in the center,
corresponding to an evaluation of ReLU′(0) exactly. Right: illustration of the bifurcation zone at
iteration k = 65 in a randomly generated network weight parameter plane (iteration 65 in the center).
The quantity represented is the absolute value of the neuron of the first hidden layer which is found
to be exactly zero within the mini-batch before application of ReLU (exact zeros are represented in
white).

C Volume estimations by Monte Carlo sampling560

present the empiric formulas used561

D Complements on experiments562

D.1 Benchmark datasets and architectures563

Overview of the datasets used in this work. These are image classification benchmarks, the corre-564

sponding references are respectively [20, 19, 21].565

Dataset Dimensionality Training set Test set
MNIST 28× 28 (grayscale) 60K 10K

CIFAR10 32× 32 (color) 60K 10K
SVHN 32× 32 (color) 600K 26K

566

Overview of the neural network architectures used in this work. The corresponding references are567

respectively [28, 27, 15].568

Name Type Layers Loss function
Fully connected fully connected 4 Cross-entropy

VGG11 convolutional 9 Cross-entropy
ResNet18 convolutional 18 Cross-entropy

569

Fully connected architecture: This architecture corresponds to the one used in [28]. We only570

trained this network on MNIST dataset, the resulting architecture has an input layer of size 784,571

three hidden layers of size 2048 and the ouput layer is of size 10.572

VGG11 architecture: We used the implementation proposed in the following repository https:573

//github.com/kuangliu/pytorch-cifar.git which adapts the VGG11 implementation of the574

module torchvision.models for training on CIFAR10 dataset. The only modification compared575

to the standard implementation is the fully connected last layers which only consists in a linear576

512 × 10 layer. When adding batch normalization layers, it takes place after each convolutional577

layer.578

ResNet18 architecture: We use PyTorch implementation for this architecture found in the module579

torchvision.models. We only modified the size of the output layer (10 vs 1000), the size of the580

16



kernel in the first convolutional layer (3 vs 7) and replaced batch normalization layers by the identity581

(when we did not use batch normalization).582

D.2 Additional Experiments with MNIST and fully connected networks583

We conducted the same experiments as in Section 4.2 with a fully connected 784-2048-2048-2048-584

10 network on MNIST dataset. The results are represented in Figure 7 which parallels the results585

in Figure 3 on VGG11 with CIFAR10 dataset. We observe the same qualitative behavior. The only586

difference is quantitative, the fully connected architecture is less sensitive to the magnitude chosen587

for ReLU′(0).

-50.0-10.0 -8.0 -6.0 -5.0 -4.0 -2.0 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 50.0
ReLU'(0)

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_lo
ss

ReLU'(0)
-10.0
0.0
0.5
1.0
10.0

0 20000 40000 60000
sample size

0.0

0.5

1.0
P(

S 0
1)

MNIST

Precision
32b
16b

0 20000 40000 60000
sample size

0.0

0.5

1.0

P(
S 0

1)

MNIST-Batchnorm

Precision
32b
16b

Figure 7: Top: Test error on MNIST with a fully connected 784-2048-2048-2048-10 network. The
boxplots and shaded areas represent variation over ten random initializations. We recover the bell
shaped curve, but the sensitivity to ReLU′(0) is less important. Bottom left: corresponding training
loss, higher magnitude of ReLU′(0) induces chaotic oscillation explaining the decrease in test ac-
curacy. Bottom center and left: relative volume estimation of the bifurcation zone with and without
batch normalization. Batch normalization increases the size of the bifurcation zone with 32 bits
arithmetic and decreases it under 16 bits arithmetic precision.

588

We investigated further the effect of combining different choices of ReLU′(0) with dropout [28].589

Dropout is another algorithmic way to regularize deep networks and it was natural to wonder if it590

could have a similar effect as batch normalization. Using the same network, we combined different591

choices of dropout probability with different choices of ReLU′(0). The results are represented in592

Figure 8 and shows that dropout has no conjoint effect.593

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dropout probability

0.983

0.984

0.985

0.986

0.987

0.988

te
st

_a
cc

ur
ac

y

relu
0.0
0.5
1.0

Figure 8: Experiment on combination of the choice of ReLU′(0) with dropout on MNIST with a
fully connected 784-2048-2048-2048-10 network. The boxplots represent 10 random initializations.

D.3 Additional experiments with VGG11594

As suggested by the experiment shown in Section 4.2, batch normalization stabilizes the choice of595

ReLU′(0), leading to higher test performances. We display in Figure 9 the decrease of training loss596

on CIFAR 10 and SVHN, for VGG11 with batch normalization. We see that the choice of ReLU′(0)597

has no impact and that the chaotic oscilations induced by this choice have completely disapeared.598

17



0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
-1.0
-0.5
0.0
0.5
1.0

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
0.0
0.5
1.0

Figure 9: Training loss on CIFAR10 with VGG11 (left) and SVHN with VGG11 (right). The
instability induced by the choice of ReLU′(0) completely disappears.

The training curves corresponding to Figure 4 are shown in Figure 10. They suggest that the Adam599

optimizer shows much less sensitivity to the choice of ReLU′(0). This is seen with a relatively600

efficient buffering effect on the induced oscillatory behavior on training loss decrease.601

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
0.0
2.0
5.0
10.0

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
0.0
0.5
1.0
10.0

Figure 10: Training losses on CIFAR10 (left) and SVHN (right) on VGG network trained with
Adam optimizer. The filled area represent standard deviation over ten random initializations.

D.4 Additional experiments with ResNet18602

We performed the same experiments as the ones described in Section 4 using ResNet18 architecture603

trained on CIFAR 10. The test error, training loss evolution with or without batch normalization are604

represented in Figure 11. We have similar qualitative observations as with VGG11. We note that605

ResNet18 architecture is much more sensitive to the choice of ReLU′(0):606

• Test performance degrade very fast, actually, beyond a magnitude of 0.2, we could not607

manage to train the network without using batch normalization.608

• Even when using batch normalization, the choice of ReLU′(0) has an effect for relatively609

small variations. This is qualitatively different from what we observed with VGG11 and610

fully connected architectures.611

Similar Monte Carlo relative volume experimentation were carried out for this network architecture,612

the results are presented in Figure 12. The results are qualitatively similar to what we observed for613

VGG11 architecture: the bifurcation zone is met very often for 16 bits precision, and the addition614

of batch normalization increases this frequency in 32 bits precision. Note that we did not observe a615

significative variation in 16 bits precision.616

E Complimentary information total amount of compute and resources used617

All the experiments were run on a 2080ti GPU. The code corresponding to the experiments and618

experiments results are available at https://github.com/AnonymousReLU/ReLU_prime Details619

about each test accuracy experiments are reported on Table 2.620

18



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ReLU'(0)

0.86

0.88

0.90

0.92

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
0.0
0.1
0.2

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
n 

lo
ss

ReLU'(0)
0.0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9
1.0

Figure 11: Training experiment on CIFAR10 with Resnet18 and SGD optimizer. Top Left: test
accuracy with and without batch normalization. Top right: training loss during training without
batch normalization. Bottom: training loss during training with batch normalization.

0 10000 20000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-ResNet18-Batchnorm

Precision
32b
16b

0 10000 20000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-ResNet18

Precision
32b
16b

Figure 12: Relative volume Monte Carlo estimtion on CIFAR10 with Resnet18 with and without
batch normalization under 16 bits or 32 bits precision.

Dataset Network Optimizer Batch size Epochs Time by epoch Repetitions
CIFAR10 VGG11 SGD 128 200 9 seconds 10 times
CIFAR10 VGG11 Adam 128 200 10 seconds 10 times
CIFAR10 ResNet18 SGD 128 200 13 seconds 10 times
SVHN VGG11 Adam 128 64 85 seconds 10 times
MNIST MLP SGD 128 200 2 seconds 10 times

Table 2: Experimental setup

19


