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Abstract

What sorts of structure might enable a learner to discover classes from unla-1

beled data? Traditional approaches rely on feature-space similarity and heroic2

assumptions on the data. In this paper, we introduce unsupervised learning un-3

der Latent Label Shift (LLS), where the label marginals pdpyq shift but the class4

conditionals ppx|yq do not. This work instantiates a new principle for identifying5

classes: elements that shift together group together. For finite input spaces, we es-6

tablish an isomorphism between LLS and topic modeling: inputs correspond to7

words, domains to documents, and labels to topics. Addressing continuous data,8

we prove that when each label’s support contains a separable region, analogous to9

an anchor word, oracle access to ppd|xq suffices to identify pdpyq and pdpy|xq up10

to permutation. Thus motivated, we introduce a practical algorithm that leverages11

domain-discriminative models as follows: (i) push examples through domain dis-12

criminator ppd|xq; (ii) discretize the data by clustering examples in ppd|xq space;13

(iii) perform non-negative matrix factorization on the discrete data; (iv) combine14

the recovered ppy|dq with the discriminator outputs ppd|xq to compute pdpy|xq @d.15

With semi-synthetic experiments, we show that our algorithm can leverage domain16

information to improve state of the art unsupervised classification methods. We17

reveal a failure mode of standard unsupervised classification methods when data-18

space similarity does not indicate true groupings, and show empirically that our19

method better handles this case. Our results establish a deep connection between20

distribution shift and topic modeling, opening promising lines for future work.21

1 Introduction22

Discovering systems of categories from unlabeled data is a fundamental but ill-posed challenge in23

machine learning. Typical unsupervised learning methods group instances together based on feature-24

space similarity. Accordingly, given a collection of photographs of animals, a practitioner might hope25

that, in some appropriate feature space, images of animals of the same species should be somehow26

similar to each other. But why should we expect a clustering algorithm to recognize that dogs viewed27

in sunlight and dogs viewed at night belong to the same category? Why should we expect that28

butterflies and caterpillars should lie close together in feature space?29

In this paper, we offer an alternative principle according to which we might identify a set of classes:30

we exploit distribution shift across times and locations to reveal otherwise unrecognizable groupings31

among examples. For example, if we noticed that whenever we found ourselves in a location where32

butterflies are abundant, caterpillars were similarly abundant, and that whenever butterflies were33

scarce, caterpillars had a similar drop in prevalence, we might conclude that the two were tied to the34

same underlying concept, no matter how different they appear in feature space. In short, our principle35

suggests that latent classes might be uncovered whenever instances that shift together group together.36

Formalizing this intuition, we introduce the problem of unsupervised learning under Latent Label37

Shift (LLS). Here, we assume access to a collection of domains d P t1, . . . , ru, where the mixture38
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Figure 1: Schematic of our DDFA algorithm. After training a domain discriminator, we (i) push
all data through the discriminator; (ii) cluster the data based on discriminator outputs; (iii) solve the
resulting discrete topic modeling problem and then combine pqpd|xq and pqpy, dq to estimate ppdpy|xq.

proportions pdpyq vary across domains but the class conditional distribution ppx|yq is domain-39

invariant. Our goals are to recover the underlying classes up to permutation, and thus to identify40

both the per-domain mixture proportions pdpyq and optimally adapted per-domain classifiers pdpy|xq.41

The essential feature of our setup is that only the true y’s, as characterized by their class-conditional42

distributions ppx|yq, could account for the observed shifts in pdpxq. We prove that under mild43

assumptions, knowledge of this underlying structure is sufficient for inducing the full set of categories.44

First, we focus on the tabular setting, demonstrating that when the input space is discrete and finite,45

LLS is isomorphic to topic modeling [8]. Here, each distinct input x maps to a word each latent46

label y maps to a topic and each domain d maps to a document. In this case, we can apply standard47

identification results for topic modeling [20, 4, 27, 32, 12] that rely only on the existence of anchor48

words within each topic (for each label yi there is at least one x in the support of yi, that is not in49

the support of any yj ‰ yi). Here, standard methods based on Non-negative Matrix Factorization50

(NMF) can recover each domain’s underlying mixture proportion pdpyq and optimal predictor pdpy|xq.51

[20, 32, 27]. However, the restriction to discrete inputs, while appropriate for topic modeling, proves52

restrictive when our interests extend to high-dimensional continuous input spaces.53

Then, to handle high-dimensional inputs, we propose Discriminate-Discretize-Factorize-Adjust54

(DDFA), a general framework that proceeds in the following steps: (i) pool data from all domains to55

produce a mixture distribution qpx, dq; (ii) train a domain discriminative model f to predict qpd|xq;56

(iii) push all data through f , cluster examples in the pushforward distribution, and tabularize the57

data based on cluster membership; (iv) solve the resulting discrete topic modeling problem (e.g., via58

NMF), estimating qpy, dq up to permutation of the latent labels; (v) combine the predicted qpd|xq59

and qpy, dq to to estimate pdpyq and pdpy|xq. In developing this approach, we draw inspiration from60

recent works on distribution shift and learning from positive and unlabeled data that (i) leverage61

black box predictors to perform dimensionality reduction [38, 23, 24]; and (ii) work with anchor sets,62

separable subsets of continuous input spaces that belong to only one class’s support [50, 39, 21, 6, 24].63

Our main theoretical result shows that domain discrimination provides a sufficient representation64

for identifying all parameters of interest. Given oracle access to qpd|xq (which is identified without65

labels), our procedure is asymptotically consistent. Our analysis reveals that the true qpd|xq maps all66

points in the same anchor set to a single point mass in the push-forward distribution. This motivates67

our practical approach of discretizing data by hunting for tight clusters in pqpd|xq space.68

In semi-synthetic experiments, we adapt existing image classification benchmarks to the LLS setting,69

sampling without replacement to construct collections of label-shifted domains. We note that training70

a domain discriminative classifier is a difficult task, and find that warm starting the initial layers of our71

model with pretrained weights from unsupervised approaches can significantly boost performance. We72

show that warm-started DDFA outperforms state-of-the-art (SOTA) unsupervised approaches when73

domain marginals pdpyq are sufficiently sparse. In particular, we observe improvements of as much74

as 30% accuracy over unsupervised SOTA on CIFAR-20. Further, on subsets of FieldGuide dataset,75

where similarity between species and diversity within a species leads to failure of unsupervised76

learning, we show that DDFA recovers the true distinctions. To be clear, these are not apples-to-77

apples comparisons: our methods are specifically tailored to the LLS setting. The takeaway is that the78

structure of the LLS setting can be exploited to outperform the best unsupervised learning heuristics.79
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2 Related Work80

Unsupervised Learning Standard unsupervised learning approaches for discovering labels often rely81

on similarity in the original data space [40, 48]. While distances in feature space become meaningless82

for high-dimensional data, deep learning researchers have turned to similarity in a representations83

space learned via self-supervised contrastive tasks [42, 19, 26, 11], or similarity in a feature space84

learned end-to-end for a clustering task [9, 10, 45, 55]. Our problem setup closely resembles85

independent component analysis (ICA), where one seeks to identify statistically independent signal86

components from mixtures [33]. However, ICA’s assumption of statistical independence among87

the components does not obtain in our setup. In topic modeling [8, 4, 32, 12, 44], documents are88

modeled as mixtures of topics, and topics as categorical distributions over a finite vocabulary. Topic89

models were pioneered by Latent Dirichlet Allocation (LDA) [8] and closely followed by papers90

that relaxed assumptions on the distribution of topic mixing coefficients (pLSI) [31, 44]. The topic91

modeling literature often draws on non-negative Matrix Factorization (NMF) methods [43, 51], which92

decompose a given matrix into a product of two matrices with non-negative elements [18, 16, 25, 28].93

In both Topic Modeling and NMF, a fundamental problem has been to characterize the precise94

conditions under which the system is uniquely identifiable [20, 4, 32, 12]. The anchor condition (also95

referred to as separability) is known to be instrumental for identifying topic models [4, 12, 32, 20].96

In this work, we extend these ideas, leveraging separable subsets of each label’s support (the anchor97

sets) to produce anchor words in the discretized problem. Existing methods have attempted to extend98

latent variable modeling to continuous input domains by making assumptions about the functional99

forms of the class-conditional densities, e.g., restricting to Gaussian mixtures [48, 47]. A second line100

of approach involves finding an appropriate discretization of the continuous space [54].101

Distribution Shift under the Label Shift Assumption The label shift assumption, where pdpyq102

can vary but ppx|yq cannot, has been extensively studied in the domain adaptation literature [49, 52,103

57, 38, 23] and also obtains in the problem of learning from positive and unlabeled data [22, 7, 24].104

For both problems, many classical approaches suffer from the curse of dimensionality, failing in105

the settings where deep learning prevails. Our solution strategy draws inspiration from recent work106

on label shift [38, 1, 5, 23] and PU learning [7, 39, 50, 24] that leverage black-box predictors to107

produce sufficient low-dimensional representations for identifying target distributions of interest108

(other works leverage black box predictors heuristically [34]). Key differences: While PU learning109

requires identifying one new class for which we lack labeled examples provided that the positive110

class contains an anchor set [24], LLS can identify an arbitrary number of classes (up to permutation)111

from completely unlabeled data, provided a sufficient number of domains.112

Domain Generalization The related problem of Domain Generalization (DG) also addresses113

learning with data drawn from multiple distributions and where the domain identifiers play a key114

role [41, 2]. However in DG, we are given labeled data from multiple domains, and our goal is to115

learn a classifier that can generalize to new domains. By contrast, in LLS, we work with unlabeled116

data only, leveraging the problem structure to identify the underlying labels.117

3 Unsupervised Learning under Latent Label Shift118

Notation For a vector v P Rp, we use vj to denote its jth entry, and for an eventE, we let I rEs denote119

the binary indicator of the event. By |A|, we denote the cardinality of set A. With rns, we denote the120

set t1, 2, . . . , nu. We use rAsi,j to access the element at pi, jq in A. Let X be the input space and121

Y “ t1, 2, . . . , ku the output space for multiclass classification. Throughout this paper, we use capital122

letters to denote random variables and small case letters to denote the corresponding values they take.123

For example, by X we denote the input random variable and by x, we denote a value that X may take.124

We now formally introduce the problem of unsupervised learning under LLS. In LLS, we assume125

that we observe unlabeled data from r domains. Let R “ t1, 2, . . . , ru be the set of domains. By pd,126

we denote the probability density (or mass) function for each domain d P R.127

Definition 1 (Latent label shift). We observe data from r domains. While the label distribution among128

these domains can change, for all d, d1 P R and for all px, yq P X ˆ Y , we have pdpx|yq “ pd1 px|yq.129

Simply put, Definition 1 states that the conditional distribution pdpx|yq remains invariant across130

domains, i.e., they satisfy the label shift assumption. Thus, we can drop the subscript on this factor,131

denoting all pdpx|yq by ppx|yq. Crucially, under LLS, pdpyq can vary across different domains.132
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Figure 2: Relationship under Q between observed D, observed X , and latent Y .

Under LLS, we observe unlabeled data with domain label tpx1, d1q, px2, d2q, . . . , pxn, dnqu. Our133

goal breaks down into two tasks. Upto permutation of labels, we aim to (i) estimate the label marginal134

in each domain pdpyq; and (ii) estimate the optimal per-domain predictor pdpy|xq.135

Mixing distribution Q A key step in our algorithm will be to train a domain discriminative model.136

Towards this end we defineQ, a distribution over X ˆYˆR, constructed by taking a uniform mixture137

over all domains. By q, we denote the probability density (or mass) function of Q. Define Q such138

that qpx, y|D “ dq “ pdpx, yq, i.e., when we condition on D “ d we recover the joint distribution139

over X ˆY specific to that domain d. For all d P R, we define γd “ qpdq, i.e., the prevalence of each140

domain in our distribution Q. Notice that qpx, yq is a mixture over the distributions tpdpx, yqudPR,141

with tγdudPR as the corresponding mixture coefficients. Under LLS (Definition 1), X does not142

depend on D when conditioned on Y (Fig. 2).143

Additional notation for the discrete case To begin, we setup notation for discrete input spaces with144

|X | “ m. Without loss of generality, we assume that X “ t1, 2, . . . ,mu. The label shift assumption145

allows us to formulate the label marginal estimation problem in matrix form. Let QX|D be an mˆ r146

matrix such that rQX|Dsi,d “ pdpX “ iq, i.e., the d-th column of QX|D is pdpxq. Let QX|Y be an147

mˆk matrix such that rQX|Y si,j “ ppX “ i|Y “ jq, the j-th column is a distribution over X given148

Y “ j. Similarly, define QY |D as a k ˆ r matrix whose d-th column is the domain marginal pdpyq.149

Now with Definition 1, we have pdpxq “
ř

y pdpx, yq “
ř

y pdpx|yqpdpyq “
ř

y ppx|yqpdpyq.150

Since this is true @d P R, we can express this in a matrix form as QX|D “ QX|Y QY |D.151

Additional assumptions Before we present identifiability results for the LLS problem, we introduce152

four additional assumptions required throughout the paper:153

A.1 There are at least as many domains as classes, i.e., |R| ě |Y|.154

A.2 The matrix formed by label marginals (as columns) across different domains is full-rank,155

i.e., rankpQY |Dq “ k.156

A.3 Equal representation of domains, i.e., for all d P R, γd “ 1{r.157

A.4 Fix ϵ ą 0. For all y P Y , there exists a subdomain Ay Ď X , such that qpAyq ě ϵ with158

qpAy|yq ą 0 and for all y1 P Yztyu, qpAy|y1q “ 0. We refer to this assumption as ϵ-anchor159

sub-domain condition.160

We now comment on the assumptions. A.1–A.2 are benign, these assumptions just imply that the161

matrix QY |D is full row rank. Without loss of generality, A.3 can be assumed when dealing with162

data from a collection of domains. When this condition is not satisfied, one could just re-sample data163

points uniformly at random from each domain d. Intuitively, A.4 states that for each label y P Y , we164

have some subset of inputs that only belong to that class y. To avoid vanishing probability of this165

subset, we ensure at least ϵ probability mass in our mixing distribution Q. The anchor word condition166

is related to the positive sub-domain in PU learning, which requires that there exists a subset of X in167

which all examples only belong to the positive class [50, 39, 21, 6].168

4 Theoretical Analysis169

In this section, we establish identifiability of LLS problem. We begin by considering the case where170

the input space is discrete and formalize the isomorphism to topic modeling. Then we establish171

the identifiability of the system in this discrete setting by appealing to existing results in topic172

modeling [32]. Finally, extending results from discrete case, we provide novel analysis to establish173

our identifiability result for the continuous setting.174

Isomorphism to topic modeling Recall that for the discrete input setting, we have the matrix175

formulation: QX|D “ QX|Y QY |D. Consider a corpus of r documents, consisting of terms from a176

vocabulary of size m. Let D be an Rmˆr matrix representing the underlying corpus. Each column of177
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D represents a document, and each row represents a term in the vocabulary. Each element rDsi,j178

represents the frequency of term i in document j. Topic modeling [8, 31, 32, 4] considers each179

document to be composed as a mixture of k topics. Each topic prescribes a frequency with which the180

terms in the vocabulary occur given that topic. Further, the proportion of each topic varies across181

documents with the frequency of terms given topic remaining invariant.182

We can state the topic modelling problem as: D “ CW, where C is an Rmˆk matrix, rCsi,j183

represents the frequency of term i given topic j, and W is an Rkˆr matrix, where rWsi,j represents184

the proportion of topic i in document j. Note that all three matrices are column normalized. The185

isomorphism is then between document and domain, topic and label, term and input sample, i.e.,186

D “ CW ” QX|D “ QX|Y QY |D. In both the cases, we are interested in decomposing a187

known matrix into two unknown matrices. This formulation is examined as a non-negative matrix188

factorization problem with an added simplicial constraint on the columns (columns sum to 1) [3, 27].189

Identifiability of the topic modeling problem is well-established [20, 4, 27, 32, 12]. We leverage190

the isomorphism to topic modeling to extend this identifiability condition to our LLS setting. We191

formalize the adaption here:192

Theorem 1. (adapted from Proposition 1 in Huang et al. [32]) Assume A.1, A.2 and A.4 hold193

(A.4 in the discrete setting is referred to as the anchor word condition). Then the solution to194

QX|D “ QX|Y QY |D is uniquely identified.195

We refer readers to Huang et al. [32] for a proof of this theorem. Intuitively, Theorem 1 states that if196

each label y has at least one token in the input space that has support only in y, and A.1, A.2 hold,197

then the solution to QX|Y , QY |D is unique. Furthermore, under this condition, there exist algorithms198

that can recover QX|Y , QY |D within some permutation [32, 27, 3, 4].199

Extensions to the continuous case We will prove identifiability in the continuous setting, when200

X “ Rp for some p ě 1. In addition to A.1–A.4, we make an additional assumption that we have201

oracle access to qpd|xq, i.e., the true domain discriminator for mixture distribution Q. This is implied202

by assuming access to the marginal qpx, dq from which we observe our samples. Formally, we define203

a push forward function f such that rfpxqsd “ qpd|xq, then push the data forward through f to obtain204

outputs in ∆r´1. In the proof of Theorem 2, we will show that these outputs can be discretized in a205

fashion that maps anchor subdomains to anchor words in a tabular, discrete setting. We separately206

remark that the anchor word outputs are in fact extreme corners of the convex polytope in ∆r´1 which207

encloses all fpxq mass; we discuss this geometry further in App. F. After constructing the anchor208

word discretization, we appeal to Theorem 1 to recover QY |D. Given QY |D, we show that we can209

use Bayes’ rule and the LLS condition (Definition 1) to identify the distribution qpy|x, dq “ pdpy|xq210

over latent variable y. We formalize this in the following theorem:211

Theorem 2. Let the distribution Q over random variables X,Y,D satisfy Assumptions A.1–A.4.212

Assuming access to the joint distribution qpx, dq, we show that the following quantities are identifiable:213

(i) QY |D, (ii) qpy|X “ xq , for all x P X that lies in the support (i.e. qpxq ą 0); and (iii)214

qpy|X “ x,D “ dq , for all x P X and d P R such that qpx, dq ą 0.215

Before presenting a proof sketch for Theorem 2, we first present key lemmas (we include their proofs216

in App. B).217

Lemma 1. Under the same assumptions as Theorem 2, the matrix QY |D and fpxq “ qpd|xq uniquely218

determine qpy|xq for all y P Y and x P X such that qpxq ą 0.219

Lemma 1 states that given matrix QY |D and oracle domain discriminator, we can uniquely identify220

qpy|xq. In particular, we show that for any x P X , qpd|xq can be expressed as a convex combination221

of the k columns of QD|Y (which is computed from QY |D and is column rank k) and the coefficients222

of the combination are qpy|xq. Combining this with the linear independence of the columns of QD|Y ,223

we show that these coefficients are unique. In the following lemma, we show how the identified224

qpy|xq can then be used to identify qpy|x, dq:225

Lemma 2. Under the same assumptions as Theorem 2, for all y P Y , and x P X such that qpx, dq ą 0.226

the matrix QY |D and qpy|xq uniquely determine qpy|x, dq.227

To prove Lemma 2, we show that we can combine the conditional distribution over the labels given228

a sample x P X with the prior distribution of the labels in each domain to determine the posterior229
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distribution over labels given the sample x and the domain of interest. Next, we introduce a key230

property of the domain discriminator classifier f :231

Lemma 3. Under the same assumptions as Theorem 2, for all x, x1 in anchor sub-domain, i.e.,232

x, x1 P Ay for a given label y P Y , we have fpxq “ fpx1q. Further, for any y P Y , if x P Ay, x
1 R Ay ,233

then fpxq ‰ fpx1q.234

Lemma 3 implies that the oracle domain discriminator f maps all points in an anchor subdomain,235

and only those points in that anchor subdomain to the same point in fpxq “ qpd|xq space. We can236

now present a proof sketch for Theorem 2 (full proof in App. B):237

Proof sketch of Theorem 2. The key idea of the proof lies in proposing a discretization such that some238

subset of anchor subdomains for each label y in the continuous space map to distinct anchor words in239

discrete space. In particular, if there exists a discretization of the continuous space X that for any240

y P Y , maps all x P Ay to the same point in the discrete space, but no x R Ay maps to this point, then241

this point serves as an anchor word. From Lemma 3, we know that all the x P Ay and only the x P Ay242

get mapped to specific points in the fpxq space. Pushing all the x P X through f , we know from A.4243

that there exists k point masses of size ϵ, one for each fpAyq in the fpxq “ qpd|xq space. We can now244

inspect this space for point masses of size at least ϵ to find at most Op1{ϵq such point masses among245

which are contained the k point masses corresponding to the anchor subdomains. Discretizing this246

space by assigning each point mass to a group (and non-point masses to a single additional group),247

we have k groups that have support only in one y each. Thus, we have achieved a discretization248

with anchor words. Further, since the discrete space arises from a pushforward of the continuous249

space through f , the discrete space also satisfies the latent label shift assumption A.1. We now use250

Theorem 1 to claim identifiability of QY |D. We then use Lemmas 1 and 2 to prove parts (ii) and (iii).251

5 DDFA Framework252

Motivated by our identifiability analysis, in this section, we present an algorithm to estimate253

QY |D, qpy|xq, and qpy|x, dq when X is continuous by exploiting domain structure and approximat-254

ing the true domain discriminator f . Intuitively, qpy|x, dq is the domain specific classifier pdpy|xq255

and qpy|xq is the classifier for data from aggregated domains. QY |D captures label marginal for indi-256

vidual domains. A naive approach would be to aggregate data from different domains and exploit257

recent advancements in unsupervised learning [55, 45, 9, 10]. However, aggregating data from multi-258

ple domains loses the domain structure that we hope to leverage. We highlight this failure mode of259

the unsupervised clustering method in Sec. 6.260

Discriminate We begin Algorithm 1 by creating a split of the unlabeled samples into the training261

and validation sets. Using the unlabeled data samples and the domain that each sample originated262

from, we first train a domain discriminative classifier pf . The domain discriminative classifier outputs263

a distribution over domains for a given input. This classifier is trained with cross-entropy loss to264

predict the domain label of each sample on the training set. With unlimited data, the minimizer of265

this loss is the true f , as we prove in App. C. To avoid overfitting, we stop training pf when the cross-266

entropy loss on the validation set stops decreasing. Note that here the validation set also only contains267

domain labels (and no information about true labels).268

Discretize We now push forward all the samples from the training and validation sets through the269

domain discriminator to get vector pfpxiq for each sample xi. In the proof of Theorem 2, we argue270

that when working with true f , and the entire marginal qpxq, we can choose a discretization satisfying271

the anchor word assumption by identifying point masses in the distribution of fpxq and filtering to272

include those of at least ϵ size. In the practical setting, because we have only a finite set of data points273

and a noisy pf , we use clustering to approximately find point masses. We choose m ě k and recover274

m clusters with any standard clustering procedure (e.g. K-means). If the noise in pf is sufficiently275

small and the clustering sufficiently granular, we intuit that our m discovered clusters include k pure276

clusters, each of which only contains data points from a different anchor subdomain which are tightly277

arranged around the true fpAyq for the corresponding label y. This clustering is superior to a naive278

clustering on the input space because close proximity in this space indicates similarity in qpd|xq.279

Let us denote the learned clustering function as c, where cpxq is the cluster assigned to a datapoint280

x. We now leverage the cluster id cpxiq of each sample xi to discretize sample into a finite discrete281
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Algorithm 1 DDFA Training
input k ě 1, r ě k, tpxi, diquiPrns „ qpx, dq, A class of functions F from Rp Ñ Rr

1: Split into train set T and validation set V
2: Train pf P F to minimize cross entropy loss for predicting d|x on T with early stopping on V
3: Push all txiuiPrns through pf

4: Train clustering algorithm on the n points t pfpxiquiPrns, obtain m clusters.
5: cpxiq Ð Cluster id of pfpxiq

6: pqpcpXq “ a|D “ bq Ð

ř

iPrns Ircpxiq“a, di“bs
ř

jPrns Irdj“bs

7: Populate pQcpXq|D as r pQcpXq|Dsa,b Ð pqpcpXq “ a|D “ bq

8: pQcpXq|D, pQY |D Ð NMF p pQcpXq|Dq

output pQY |D, pf

Algorithm 2 DDFA Prediction

input pQY |D, pf, px1, d1q „ qpx, dq

1: Populate pQD|Y as r pQD|Y sd,y Ð
r pQY |Dsy,d

řd2“r
d2“1

r pQY |Dsy,d2

2: Assign pqpy|X “ x1q Ð

„

´

pQD|Y

¯:
pfpx1q

ȷ

y

3: Assign pqpy|X “ x1, D “ d1q Ð
r pQD|Y sd1,ypqpy|X “ x1q

ř

y2Prks

r pQD|Y sd1,y2
pqpy2|X “ x1q

4: ypred Ð argmaxyPrks pqpy|X “ x1, D “ d1q

output : pqpy|X “ x1, D “ d1q “ ppd1 py|x1q, pqpy|X “ x1q, ypred

space rms. Combining cluster id with the domain source di for each sample, we estimate pQcpXq|D282

by simply computing, for each domain, the fraction of its samples assigned to each cluster.283

Factorize We apply an NMF algorithm to pQcpXq|D to obtain our estimates of pQcpXq|Y and pQY |D.284

Adjust We begin Algorithm 2 by considering a test point px1, d1q. To make a prediction, if we had285

access to oracle f and true QY |D, we could precisely compute qpy|x1q (Lemma 1). However, in place286

of these true quantities, we plug in the estimates pf and pQY |D. Since our estimates contain noise, the287

estimate pqpy|x1q is found by left-multiplying pfpx1q with the pseudo-inverse of pQD|Y , as opposed288

to solving a sufficient system of equations. As our estimates pf and pQD|Y approach the true values,289

the projection of pfpx1q into the column space of pQD|Y tends to pfpx1q itself, so the pseudo-inverse290

approaches the true solution. Now we can use the constructive procedure introduced in the proof of291

Lemma 2 to compute the plug-in estimate pqpy|x1, d1q “ ppd1 py|x1q.292

6 Experiments293

Baselines We select the unsupervised classification method SCAN as a state-of-the-art baseline [55].294

SCAN pretrains a ResNet [29] backbone using SimCLR [11] and MoCo [30] setups (pretext tasks).295

SCAN then trains a clustering head to minimize the SCAN loss (refer [55] for more details) 1. We296

make sure to evaluate SCAN on the same potentially class-imbalanced test subset we create for each297

experiment. Since SCAN is fit on a superset of the data DDFA sees, we believe this gives a slight298

data advantage to the SCAN baseline (although we acknowledge that the class balance for SCAN299

training is also potentially different from its evaluation class balance). To evaluate SCAN, we use300

the public pretrained weights available for CIFAR-10, CIFAR-20, and ImageNet-50. We also train301

SCAN ourselves on the train and validation portions of the FieldGuide2 and FieldGuide28 datasets302

with a ResNet18 backbone and SimCLR pretext task. We replicate the hyperparameters used for303

CIFAR training.304

1SCAN code: https://github.com/wvangansbeke/Unsupervised-Classification
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Datasets First we examine standard multiclass image datasets CIFAR-10, CIFAR-20 [36], and305

ImageNet-50 [17] containing images from 10, 20, and 50 classes respectively. Images in these datasets306

typically focus on a single large object which dominates the center of the frame, so unsupervised307

classification methods which respond strongly to similarity in visual space are well-suited to recover308

true classes up to permutation. These datasets are often believed to be separable (i.e., single true label309

applies to each image), so every example falls in an anchor subdomain (satisfying A.4).310

Motivated by the application of LLS problem, we consider the FieldGuide dataset 2, which contains311

images of moths and butterflies. The true classes in this dataset are species, but each class contains312

images taken in immature (caterpillar) and adult stages of life. Based on the intuition that butterflies313

from a given species look more like butterflies from other species than caterpillars from their own314

species, we hypothesize that unsupervised classification will learn incorrect class boundaries which315

distinguish caterpillars from butterflies, as opposed to recovering the true class boundaries. Due316

to high visual similarity between members of different classes, this dataset may indeed have slight317

overlap between classes. However, we hypothesize that anchor subdomain still holds, i.e., there318

exist some images from each class that could only come from that class. Additionally, if we have319

access to data from multiple domains, it is natural to assume that within each domain the relative320

distribution of caterpillar to adult stages of each species stay relatively constant as compared to321

prevalence of different species. We create two subsets of this dataset: FieldGuide2, with two species,322

and FieldGuide28, with 28 species.323

LLS Setup The full sampling procedure for semisynthetic experiments is described in App. D.324

Roughly, we sample pdpyq from a symmetric Dirichlet distribution with concentration α{k, and325

enforce maximum condition number κ on QY|D. Small α and small κ encourages sparsity in QY|D,326

so each label tends to only appear in a few domains. Larger parameters encourages pdpyq to tend327

toward uniform. We draw from test, train, and valid datasets without replacement to match these328

distributions, but discard some examples due to class imbalance.329

Training and Evaluation The algorithm uses train and validation data consisting of pairs of images330

and domain indices. We train ResNet50 [29] (with added dropout) on images xi with domain indices331

di as the label, choose best iteration by valid loss, pass all training and validation data through pf , and332

cluster pushforward predictions pfpxiq into m ě k clusters with Faiss K-Means [35]. We compute the333

pQcpXq|D matrix and run NMF to obtain pQcpXq|Y , pQY |D. To make columns sum to 1, we normalize334

columns of pQcpXq|Y , multiply each column’s normalization coefficient over the corresponding row of335

pQY |D (to preserve correctness of the decomposition), and then normalize columns of pQY |D. Some336

NMF algorithms only output solutions satisfying the anchor word property [3, 37, 27]. We found the337

strict requirement of an exact anchor word solution to lead to low noise tolerance. We therefore use338

the Sklearn implementation of standard NMF [13, 53, 46].339

We instantiate the domain discriminator as ResNet18, and preseed its backbone with SCAN [55]340

pre-trained weights or [55] contrastive pre-text weights. We denote these models DDFA (SI) and341

DDFA (SPI) respectively. We predict class labels with Algorithm 2. With the Hungarian algorithm,342

implemented in [14, 56], we compute the highest true accuracy among any permutation of these labels343

(denoted “Test acc”). With the same permutation, we reorder rows of pPY |D, then compute the average344

absolute difference between corresponding entries of pQY |D and QY |D (denoted “QY |D err”).345

Results On CIFAR-10, we observe that DDFA alone is incapable of matching highly competitive346

state-of-the-art baseline SCAN performance—however, in suitably sparse problem settings (small347

α), it comes substantially close, indicating good recovery of true classes. Due to space constraints,348

we include CIFAR-10 results in App. E. DDFA (SI) combines SCAN’s strong pretrain with domain349

discrimination fine-tuning to outperform SCAN in the easiest, sparsest setting and certain denser350

settings. On CIFAR-20, baseline SCAN is much less competitive, so our DDFA(SI) dominates351

baseline SCAN in all settings except the densest (Table 1). These results demonstrate how adding352

domain information can dramatically boost unsupervised baselines.353

On FieldGuide-2, DDFA (SPI) outperforms SCAN baselines across all problem settings and domain354

counts (Table 2); in sparser settings, the accuracy gap is 20-30%. In this dataset, SCAN performs only355

slightly above chance, reflecting perhaps a total misalignment of learned class distinctions with true356

species boundaries. We do not believe that SCAN is too weak to effectively detect image groupings357

2FieldGuide: https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
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Table 1: Results on CIFAR-20. With DDFA (RI) we refer to DDFA with randomly initialized backbone.
With DDFA (SI) we refer to DDFA’s backbone initialized with SCAN. Note that in DDFA (SI), we
do not leverage SCAN for clustering. α is the Dirichlet parameter used for generating label marginals
in each domain, κ is the maximum allowed condition number of the generated QY |D matrix.

r Approaches α : 0.5, κ : 8 α : 3, κ : 12 α : 10, κ : 20

Test acc QY |D err Test acc QY |D err Test acc QY |D err

20 SCAN 0.4241 - 0.4313 - 0.4362 -
DDFA (RI) 0.4872 0.0452 0.3047 0.043 0.1036 0.0727
DDFA (SI) 0.7507 0.0248 0.503 0.0284 0.3252 0.0348

25 SCAN 0.437 - 0.4631 - 0.4434 -
DDFA (RI) 0.4678 0.0505 0.3157 0.0483 0.0788 0.0802
DDFA (SI) 0.8364 0.0201 0.7403 0.0195 0.4819 0.0322

30 SCAN 0.4387 - 0.4514 - 0.4214 -
DDFA (RI) 0.5406 0.0453 0.287 0.05 0.091 0.0789
DDFA (SI) 0.8158 0.0219 0.7247 0.0222 0.5473 0.0258

Table 2: Results on FieldGuide. With DDFA (SPI) we refer to DDFA’s backbone initialized with
pretext training done adopted by SCAN. Note that only the backbone of DDFA is initialized with
SCAN-pretext weights and not the final layers. α is the Dirichlet parameter used for generating label
marginals in each domain, κ is the maximum allowed condition number of the generated QY |D matrix.

FieldGuide-2 FieldGuide-28

Approaches r α : 3, κ : 5 r α : 0.5, κ : 12 α : 3, κ : 20

Test acc QY |D err Test acc QY |D err Test acc QY |D err

SCAN 2 0.6000 - 28 0.3634 - 0.3042 -
DDFA (SPI) 0.8576 0.1211 0.6002 0.0309 0.3062 0.0268

SCAN 3 0.6123 - 37 0.3253 - 0.2709 -
DDFA (SPI) 0.8478 0.0351 0.7337 0.0263 0.4987 0.0327

SCAN 5 0.5892 - 42 0.358 - 0.2956 -
DDFA (SPI) 0.6827 0.3395 0.6068 0.0377 0.4407 0.0341

SCAN 10 0.5865 - 47 0.3897 - 0.3187 -
DDFA (SPI) 0.8094 0.2799 0.5624 0.0414 0.4573 0.0341

on this data; instead we acknowledge that the domain information available to DDFA (SPI) (and358

not to SCAN) is informative for ensuring recovery of the true class distinction between species as359

opposed to the visually striking distinction between adult and immature life stages. Results from360

more domains are available in App. E. We also show the results on FieldGuide-28 over a range of361

domains in (Table 2). Our method outperforms SCAN on all settings with the highest observed362

accuracy difference ranging up to 30%.363

7 Conclusion364

Our theoretical results demonstrate that under LLS, we can leverage shifts among previously seen365

domains to recover labels in a purely unsupervised manner, and our practical instantiation of the366

DDFA framework demonstrates both (i) the practical efficacy of our approach; and (ii) that generic367

unsupervised methods can play a key role both in clustering discriminator outputs, and providing368

weights for initializing the discriminator. We believe that this work is just the first step in a new369

direction for leveraging structural assumptions together with distribution shift to perform unsupervised370

learning. Within the LLS setup, several components of the DDFA framework warrant further371

investigation: (i) the deep domain discriminator can be enhanced in myriad ways; (ii) for clustering372

discriminator outputs, we might develop methods specially tailored to our setting; (iii) clustering373

might be replaced altogether with geometrically informed methods that directly identify the corners374

of the polytope; (iv) the theory of LLS can be extended beyond identification to provide statistical375

results that might hold when qpd|yq can only be noisily estimated, and when only finite samples are376

available for the induced topic modeling problem.377
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(a) If your work uses existing assets, did you cite the creators? [Yes] Refer to experimental567

setup in App. D.568

(b) Did you mention the license of the assets? [Yes] Refer to experimental setup in App. D.569

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]570

Refer to experimental setup in App. D.571

(d) Did you discuss whether and how consent was obtained from people whose data you’re572

using/curating? [N/A]573

(e) Did you discuss whether the data you are using/curating contains personally identifiable574

information or offensive content? [N/A]575

5. If you used crowdsourcing or conducted research with human subjects...576

(a) Did you include the full text of instructions given to participants and screenshots, if577

applicable? [N/A]578

(b) Did you describe any potential participant risks, with links to Institutional Review579

Board (IRB) approvals, if applicable? [N/A]580

(c) Did you include the estimated hourly wage paid to participants and the total amount581

spent on participant compensation? [N/A]582
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A Proofs of Lemmas583

In this section, we present several new lemmas which are required to prove Theorem 2, and provide584

proofs. We also provide proofs for Lemmas 1, 2, and 3, all presented in Section 4.585

Fix y P Y . Whenever assumption A.4 is satisfied, we define a “maximal” Ay as the union of every586

A1
y which is an ϵ-anchor sub-domain for label y. This maximal Ay, an ϵ-anchor sub-domain for587

label y in itself, must contain every point x P X such that qpxq ą 0, qpx|yq ą 0, and for all588

y2 P Yztyu, qpx|y2q “ 0. We assume throughout this section, without restatement, that Ay refers to589

this maximal Ay .590

Lemma 4. Let distribution Q over random variables X,Y,D satisfy A.1–A.4. Then for all y P Y ,591

qpyq ą 0. That is, all labels have nonzero probability under Q.592

Proof of Lemma 4. Proof by contradiction. Let y P Y . Assume qpyq “ 0.593

We can write qpyq “
ř

dPR
qpdqqpy|D “ dq.594

Then qpyq “
ř

dPR
γyqpy|D “ dq “

ř

dPR

1
r qpy|D “ dq595

Then qpyq “ 1
r

ř

dPR
qpy|D “ dq596

Since qpy|D “ dq ě 0 for all d P R, we see that qpyq “ 0 ùñ qpy|D “ dq “ 0 for all d P R.597

Then rQY |Dsy,d “ 0 for all d P R. Then there is a row (row d) in the matrix QY |D in which every598

entry is 0, so QY |D cannot be rank k. This violates assumption A.2.599

Then by contradiction we have shown qpyq ą 0.600

Lemma 5. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1–A.4.601

Let x P X such that qpxq ą 0.602

Then if x P Ay for some y P Y , we have that qpy|X “ xq “ 1, and for all y1 P Yztyu, qpy1|X “603

xq “ 0.604

The converse is also true: if qpy|X “ xq “ 1 for some y P Y and qpy1|X “ xq “ 0 @y1 P Yztyu,605

then we know that x P Ay .606

Proof of Lemma 5. We prove directions one at a time.607

• Forward direction.608

We seek to show that:609

x P Ay ùñ rqpy|X “ xq “ 1, @y1 P Yztyu, qpy1|X “ xq “ 0s.610

Assume x P Ay . We recall that we earlier assumed qpxq ą 0.611

qpxq “
ř

y2PY
qpy2qqpx|Y “ y2q “ qpyqqpx|Y “ yq `

ř

y1PYztyu

qpy1qqpx|Y “ y1q612

Now qpxq “ qpyqqpx|Y “ yq `
ř

y1PYztyu

qpy1q p0q “ qpyqqpx|Y “ yq613

Because qpx|yq ą 0 (by A.4) and qpyq ą 0 (by Lemma 4), we know that qpxq “614

qpyqqpx|Y “ yq ą 0.615

Then qpy|X “ xq “
qpyqqpx|Y “ yq

qpxq
“
qpxq

qpxq
“ 1 (Bayes’ rule).616

By the properties of a probability distribution, 1 “ qpy|X “ xq `
ř

y1PYztyu

qpy1|X “ xq.617

Then because qpy|X “ xq “ 1, we know that:618

1 “ 1 `
ř

y1PYztyu

qpy1|X “ xq619

15



Then for all y1 P Yztyu, it must be that qpy1|X “ xq “ 0620

Then we have shown qpy|X “ xq “ 1, and for all y1 P Yztyu, qpy1|X “ xq “ 0.621

• Converse.622

We seek to show that:623

rqpy|X “ xq “ 1, @y1 P Yztyu, qpy1|X “ xq “ 0s ùñ x P Ay .624

Assume qpy|X “ xq “ 1 and for all y1 P Yztyu, qpy1|X “ xq “ 0. We recall that we625

earlier assumed qpxq ą 0.626

qpyq ą 0 by Lemma 4.627

Then qpx|Y “ yq “
qpy|X “ xqqpxq

qpyq
“

p1qqpxq

qpyq
ą 0.628

Let y1 P Yztyu. Then qpx|Y “ y1q “
qpy1|X “ xqqpxq

qpy1q
“

p0qqpxq

qpy1q
“ 0.629

Then because qpx|Y “ yq ą 0 and @y1 P Yztyu, qpx|Y “ yq “ 0, we see that x P Ay .630

631

Lemma 6. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4.632

Then, the matrix QD|Y defined as an r ˆ k matrix whose elements rQD|Y si,j “ QpD “ i|Y “633

jq, and each column is a conditional distribution over the domains given a label , has linearly inde-634

pendent columns.635

Furthemore, QD|Y can be computed directly from only QY |D.636

Proof of Lemma 6. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4.637

Each rQD|Y sd,y “ qpd|Y “ yq “
qpy|D “ dqqpdq

qpyq
“
qpy|D “ dqγd

qpyq
“
qpy|D “ dq

rqpyq
.638

Since each column of QD|Y is a probability distribution that sums to 1, and rqpyq is constant639

down each column y, we can obtain QD|Y by simply taking QJ
Y |D, in which each rQJ

Y |Dsd,y “640

rQY |Dsy,d “ qpy|D “ dq, and normalizing the columns so they sum to 1.641

The matrix QY |D has linearly independent rows by Assumption A.2. Then QJ
Y |D has linearly642

independent columns. Scaling these columns by a nonzero value does not change their linear643

independence, so the columns of QD|Y are also linearly independent.644

Then matrix QD|Y has linearly independent columns, and can be computed by taking QJ
Y |D and645

normalizing its columns.646

647

Lemma 7. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4.648

Let d P R, x P X , y P Y .649

Then qpd|X “ x, Y “ yq “ qpd|Y “ yq.650

Proof of Lemma 7. qpd|X “ x, Y “ yq “
qpx|D “ d, Y “ yqqpD “ d|Y “ yq

qpx|Y “ yq
651

“
pdpx|Y “ yqqpd|Y “ yq

qpx|Y “ yq
652

“
ppx|Y “ yqqpd|Y “ yq

qpx|Y “ yq
653
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“
qpx|Y “ yqqpd|Y “ yq

qpx|Y “ yq
654

“ qpd|Y “ yq655

656

Proof of Lemma 1. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.657

Let x P X with qpxq ą 0, and y P Y .658

Assume we know QY |D and rfpxqsd “ qpd|X “ xq.659

With QY |D, we know qpy|D “ dq@y, d.660

Also, with the oracle f , we are able to obtain qpd|X “ xq@x, d.661

For all d P R, we can write that qpd|X “ xq “
ř

y1PY
qpd|X “ x, Y “ y1qqpy1|X “ xq “662

ř

y1PY
qpd|Y “ y1qqpy1|X “ xq, using Lemma 7.663

Define the vector-valued function g : X Ñ Rk such that rgpxqsy “ qpy|X “ xq for all x P supppXq.664

QD|Y is a matrix of shape r ˆ k, with rQD|Y si,j “ QpD “ i|Y “ jq. It can be computed from665

QY |D and has linearly independent columns—both facts shown in Lemma 6.666

Then rfpxqsd “ qpd|X “ xq “ QD|Y rd, :sgpxq, a product between the dth row vector of QD|Y and667

the column vector gpxq.668

Then fpxq “ QD|Y gpxq.669

This system is a linear system with r ě k equations. Recalling that QD|Y has k linearly independent670

columns, we can select any k linearly independent rows of QD|Y to solve the equation for the true,671

unique solution for the unknown vector gpxq.672

Another way to describe this is with the pseudo-inverse: gpxq “ pQD|Y q:fpxq.673

Then we have rgpxqsy “ qpy|X “ xq for all y P Y .674

675

Proof of Lemma 2. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.676

Let x P X , d P R with qpx, dq ą 0, and y P Y .677

Assume we know matrix QY |D and qpy1|X “ xq, @y1 P Y .678

We can compute QD|Y from QY |D via Lemma 6.679

qpy|X “ x,D “ dq “
qpy, x, dq

qpx, dq
“
qpd|X “ x, Y “ yqqpy|X “ xqqpxq

qpd|X “ xqqpxq
680

Using Lemma 7, qpd|X “ x, Y “ yq “ qpd|Y “ yq.681

Then qpy|X “ x,D “ dq “
qpd|Y “ yqqpy|X “ xqqpxq

qpd|X “ xqqpxq
“
qpd|Y “ yqqpy|X “ xq

qpd|X “ xq
682

The denominator qpd|X “ xq is constant across all values of y, so we can write that qpy|X “ x,D “683

dq 9 qpd|Y “ yqqpy|X “ xq and normalize to find the probability:684

qpy|X “ x,D “ dq “
qpd|Y “ yqqpy|X “ xq

ř

y1PY
qpd|Y “ y1qqpy1|X “ xq

685

We know qpd|Y “ yq as rQD|Y sd,y , and every qpd|Y “ y1q, where y1 P Y , as rQD|Y sd,y1 .686

We also know qpy|X “ xq and every qpy1|X “ xq where y1 P Y , by the lemma assumptions.687

Then we can compute qpy|X “ x,D “ dq.688
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689

Proof of Lemma 3. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.690

Recall f : Rp Ñ Rr is a vector-valued oracle function such that rfpxqsd “ qpd|X “ xq for all691

x P suppQpXq.692

Also let us recall that QD|Y is defined as an r ˆ k matrix whose elements rQD|Y si,j “ QpD “693

i|Y “ jq, and each column is a conditional distribution over the domains given a label . It has lin-694

early independent columns by Lemma 6.695

First recognize that @d P R, x P X : qpxq ą 0, rfpxqsd “ qpd|X “ xq “
ř

y2PY
qpd, y2|X “ xq696

“
ř

y2PY
qpd|Y “ y2, X “ xqqpy2|X “ xq “

ř

y2PY
qpd|Y “ y2qqpy2|X “ xq, by Lemma 7.697

Then recognize that we can write fpxq “
ř

y2PY
qpy2|X “ xqQD|Y r:, y2s, where QD|Y r:, y2s is the698

y2th column of QD|Y .699

Now we could also rewrite fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J

700

We now begin the bulk of the proof.701

Let y P Y .702

Let x P Ay : qpxq ą 0.703

• Points in same anchor sub-domain map together.704

Let x1 P Ay such that qpx1q ą 0. We now seek to show that fpxq “ fpx1q.705

Recall that x, x1 P Ay. By Lemma 5, qpy|X “ xq “ qpy|X “ x1q “ 1. Also, @y2 P706

Yztyu, qpy2|X “ xq “ qpy2|X “ x1q “ 0.707

Then for all y2 P Y , qpy2|X “ xq “ qpy2|X “ x1q.708

Therefore, @d P R, rfpxqsd “ qpd|X “ xq “
ř

y2PY
qpd|Y “ y2qqpy2|X “ xq “709

ř

y2PY
qpd|Y “ y2qqpy2|X “ x1q “ qpd|X “ x1q “ rfpx1qsd.710

Then fpxq “ fpx1q.711

• Point outside of the anchor sub-domain does not map with points in the anchor sub-712

domain.713

Let x0 R Ay such that qpx0q ą 0. We now seek to show that fpxq ‰ fpx0q.714

Because x0 R Ay with qpx0q ą 0, and because Ay is maximal, then by Lemma 5, it must715

be that one of the following cases is true:716

– Case 1: qpy|X “ x0q ‰ 1717

– Case 2: qpy1|X “ x0q ą 0 for some y1 P Yztyu.718

In all circumstances, Dy2 P Y : qpy2|x0q ‰ QpY “ y2|xq.719

rQpY “ 1|X “ xq...QpY “ k|X “ xqs
J

‰ rQpY “ 1|X “ x0q...QpY “ k|X “ x0qs
J.720

Because QD|Y has linearly independent columns (shown in Lemma 6), we now know that721

fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J

722

‰ QD|Y rQpY “ 1|X “ x0q ... QpY “ k|X “ x0qs
J

“ fpx0q.723

So fpxq ‰ fpx0q.724

725
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B Proof of Theorem 2726

Fix y P Y . Whenever assumption A.4 is satisfied, we define a “maximal” Ay as the union of every727

A1
y which is an ϵ-anchor sub-domain for label y. This maximal Ay, an ϵ-anchor sub-domain for728

label y in itself, must contain every point x P X such that qpxq ą 0, qpx|yq ą 0, and for all729

y2 P Yztyu, qpx|y2q “ 0. We assume throughout this section that Ay refers to this maximal Ay .730

Proof of Theorem 2. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.731

Recall f : X Ñ Rr is a vector-valued oracle function such that rfpxqsd “ qpd|X “ xq@x P732

suppQpXq. It is known because we know the marginal qpx, dq.733

Let y P Y .734

Then by Lemma 3, f sends every x P Ay (and no other x R Ay) to the same value. We overload735

notation to denote this as fpAyq.736

Then QpfpXq “ fpAyqq “ QpX P Ayq ě ϵ.737

Then in the marginal distribution of fpXq with respect to distribution Q, there is a distinct point mass738

on each fpAyq, with mass at least ϵ.739

Because we know the marginal qpx, dq, we know the marginal qpxq, so we can obtain the distribution740

of fpXq with respect to distribution Q.741

If we analyze the marginal distribution of fpXq with respect to distribution Q, and recover all point742

masses with mass at least ϵ, we can recover no more than O p1{ϵq such points. We set m P Z` so that743

the number of points we recovered is m´ 1.744

We denote a mapping ψ : Rr Ñ rms. This mapping sends each value of fpxq corresponding to a745

point mass with mass at least ϵ to a unique index in t1, ...,m´ 1u. It sends any other value in Rp to746

m. We note that the ordering of the point masses might have pm´ 1q! permutations.747

Notice that the point mass on each fpAyq must be recovered among these m´ 1 masses.748

Recall that @y P Y , rfpxq “ fpAyq ðñ x P Ays.749

Then for each y P Y , rψpfpXqq “ ψpfpAyqq ðñ X P Ays, because ψ does not send any other750

value in Rr besides fpAyq to ψpfpAyqq.751

For convenience, we now define a mapping c : X Ñ rms such that c “ ψ ˝ f .752

We will also abuse notation here to denote cpAyq “ ψpfpAyqq “ ψpfpxqq, @x P Ay753

Then cpXq is a discrete, finite random variable that takes values in rms. As c is a pushforward754

function on X , cpXq satisfies the label shift assumption because X does.755

We might now define a matrix QcpXq|D in which each entry rQcpXq|Dsi,d “ QpcpXq “ i|D “ dq.756

Because cpXq satisfies label shift, we know that we can decompose QcpXq|D “ QcpXq|Y QY |D.757

Qpcpxq “ cpAyq|Y “ yq “ QpX P Ay|Y “ yq ą 0.758

Qpcpxq “ cpAyq|Y ‰ yq “ QpX “ Ay|Y ‰ yq “ 0.759

Then for each y P Y , the row with row index cpAyq is positive in the yth column, and zero everywhere760

else.761

Restated, for each y P Y , there is some row with positive entry exactly in yth column. This is762

precisely the anchor word assumption for a discrete, finite random variable.763

We already know that QY |D is full row-rank, so because QcpXq|Y satisfies the anchor word assump-764

tion, we can identify QY |D up to permutation of rows by Theorem 1.765

766
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C Minimizing Cross-Entropy Loss yields Domain Discriminator767

Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.768

We here examine the behavior of the cross-entropy loss, in the infinite data case (when we can work769

with expectations over the entire distribution instead of empirical expectations over a finite set of770

datapoints).771

Define the vector-valued function z : R Ñ Rr such that zpdq is a one-hot vector of length r, such772

that rzpdqsi “ 1, iff d “ i.773

Then we write the cross-entropy loss with targets as true domains as774

LCE “ EpX,Dq„Qr´
ři“r

i“1rzpDqsi logprfpXqsiqs775

LCE “ EXED|X r´
ři“r

i“1rzpDqsi logprfpXqsiqs776

LCE “ EX r´
ři“r

i“1 ED|X rrzpDqsi logprfpXqsiqss777

LCE “ EX r´
ři“r

i“1 logprfpXqsiqED|X rrzpDqsiss778

LCE “ EX r´
ři“r

i“1 logprfpXqsiqp1 ˆQpD “ i|Xq ` 0 ˆ p1 ´QpD “ i|Xqqqs779

LCE “ EX r´
ři“r

i“1 logprfpXqsiqQpD “ i|Xqs780

In order to find the minimizer of the cross entropy loss over the class of all functions from Rp Ñ781

r0, 1sr, we formulate the following objective with the Lagrange constraint:782

J “ minrfpXqs1...rfpXqsr EX r´
ři“r

i“1 logprfpXqsiqQpD “ i|Xqs ` λp
ři“r

i“1rfpXqsi ´ 1q783

Setting partial derivative with respect to rfpXqsr to 0784

´
QpD“i|Xq

rf‹pXqsi
` λ “ 0785

rf‹pXqsi “ 1
λQpD “ i|Xq786

From KKT condition, the optimal solution lies on constraint surface, giving:787

ři“r
i“1rf‹pXqsi “ 1788

ři“r
i“1

1
λQpD “ i|Xq “ 1789

1
λ

ři“r
i“1QpD “ i|Xq “ 1790

1
λ “ 1791

λ “ 1792

Finally, we get rf‹pXqsi “ QpD “ i|Xq, so the optimal f˚ by the cross entropy loss as defined will793

in fact recover the oracle domain discriminator.794
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D Additional Experimental Details795

Our code is available at796

https://github.com/latentlabelshift-anonymous/latentlabelshift797

Here we present the full generation procedure for semisynthetic example problems, and discuss the798

parameters.799

1. Choose a Dirichlet concentration parameter α ą 0, maximum condition number κ ě 1800

(with respect to 2-norm), and domain count r ě k.801

2. For each y P rks, sample pdpyq „ Dirpα
k 1kq.802

3. Populate the matrix QY |D with the computed pdpyqs. If condpQD|Y q ě k, return to step 2803

and re-sample.804

4. Distribute examples across domains according to QY |D, for each of train, test, and valid805

sets. This procedure entails creating a quota number of examples for each (class, domain)806

pair, and drawing datapoints without replacement to fill each quota. We must discard excess807

examples from some classes in the dataset due to class imbalance in the QD|Y matrix. Due808

to integral rounding, domains may be slightly imbalanced.809

5. Conceal true class information and return pxi, diq pairs.810

It is important to note the role of κ and α in the above formulation. Although they are unknown811

parameters to the classification algorithm, they affect the sparsity of the QY |D and difficulty of the812

problem. Small α encourages high sparsity in pdpyq, and large α causes pdpyq to tend towards a813

uniform distribution. κ has a strong effect on the difficulty of the problem. Consider the case when814

k “ 2. When κ “ 1, the only potential PY |D matrices are I2 up to row permutation (which means815

that domains and classes are exactly correlated, so the domain indicates the class and the problem816

is supervised). In the other limit, if κ Ñ `8, we may generate PY |D matrices that are singular,817

breaking needed assumptions for domain discriminator output to uniquely identify true class of818

anchor subdomains. κ also helps control the class imbalance (if a row of QY |D is small, indicating819

that the class is heavily under-represented across all domains, the condition number will increase).820

D.1 FieldGuide-2 and FieldGuide-28 Datasets821

The dataset and description is available at https://sites.google.com/view/fgvc6/822

competitions/butterflies-moths-2019. For the purpose of our experiments. From this data823

we create two datasets FieldGuide-2 and FieldGuide-28. For FieldGuide-28 we select the 28 classes824

which have 1000 datapoints in the training file. Since the test set provided in the website does not have825

annotations, we manually create a test set by sampling 200 datapoints from each of the 28 classes. The826

FieldGuide-2 dataset is created by considering two classes from the created FieldGuide-28 dataset.827

D.2 Hyperparameters and Implementation Details: SCAN baseline828

In all cases, we initialize the SCAN [55] network with the clustering head attached, sample data829

according to the QD|Y matrix, and predict classes.830

With the Hungarian algorithm, implemented in [14, 56], we compute the highest true accuracy among831

any permutation of these labels (denoted “Test acc”).832

• CIFAR-10 and CIFAR-20 Datasets [36]833

We use ResNet-18 [29] backbone with weights trained by SCAN-loss and obtained from the834

SCAN repo https://github.com/wvangansbeke/Unsupervised-Classification.835

We use the same transforms present in the repo for test data.836

• ImageNet-50 Dataset [17]837

We use ResNet-50 backbone with weights trained by SCAN-loss and obtained from the838

SCAN repo.839

We use the same transforms present in the repo for test data.840
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• FieldGuide-2 and FieldGuide-28 Datasets841

For each of the two datasets, we pretrain a different SCAN baseline network (including842

pretext and SCAN-loss steps) on all available data from the dataset. The backbone for each843

is ResNet-18.844

For training the pretext task, we use the same transform strategy used in the repo for CIFAR-845

10 data (with mean and std values as computed on the Fieldguide-28 dataset, and crop size846

224). For training SCAN, we resize the smallest image dimension to 256, perform a random847

horizontal flip and random crop to size 224. We also normalize. For validation we resize848

smallest image dimension to 256, center crop to 224, and normalize.849

D.3 Hyperparameters and Implementation Details: DDFA (RI)850

This is the DDFA procedure with random initialization.851

The bulk of this procedure is described in Section 6, but for completeness we reiterate here.852

We train ResNet50 [29] (with random initialization and added dropout) based on the implementation853

from https://github.com/kuangliu/pytorch-cifar on images xi with domain indices di as854

the label, choose best iteration by valid loss, pass all training and validation data through pf , and855

cluster pushforward predictions pfpxiq into m ě k clusters with Faiss K-Means [35]. We compute the856

pQcpXq|D matrix and run NMF to obtain pQcpXq|Y , pQY |D. To make columns sum to 1, we normalize857

columns of pQcpXq|Y , multiply each column’s normalization coefficient over the corresponding row858

of pQY |D (to preserve correctness of the decomposition), and then normalize columns of pQY |D.859

Some NMF algorithms only output solutions satisfying the anchor word property [3, 37, 27]. We860

found the strict requirement of an exact anchor word solution to lead to low noise tolerance. We861

therefore use the Sklearn implementation of standard NMF [13, 53, 46].862

We predict class labels with Algorithm 2. With the Hungarian algorithm, implemented in [14, 56],863

we compute the highest true accuracy among any permutation of these labels (denoted “Test acc”).864

With the same permutation, we reorder rows of pPY |D, then compute the average absolute difference865

between corresponding entries of pQY |D and QY |D (denoted “QY |D err”).866

Hyperparameters were tuned by repeatedly consulting validation domain discrimination loss and final867

classification task accuracy (valid and test) on CIFAR-10 and CINIC-10 (similar to an extension of868

CIFAR-10) [15]. For this reason, we acknowledge that the hyperparameters may be overfit to CIFAR-869

10 in particular. Final evaluation runs used the following fixed hyperparameters:870

Common Hyperparameters871

Architecture: ResNet-50 with added dropout872

Faiss KMeans number of iterations (niter): 100873

Faiss Kmeans number of clustering redos (nredo): 5874

Learning Rate: 0.001875

Learning Rate Decay: Exponential, parameter 0.97876

SKlearn NMF initialization: random877

Dataset-Specific Hyperparameters878

• CIFAR-10 Dataset879

Training Epochs: 100880

Number of Clusters (m): 30881

• CIFAR-20 Dataset882

Training Epochs: 100883

Number of Clusters (m): 60884

• ImageNet-50 Dataset885

Not evaluated.886
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• FieldGuide-2 and FieldGuide-28 Datasets887

Not evaluated.888

D.4 Hyperparameters and Implementation Details: DDFA (SI) and DDFA (SPI)889

This is the DDFA procedure with SCAN initialization.890

The procedure is identical to the standard DDFA procedure, except that SCAN [55] pre-trained891

weights or SCAN [55] contrastive pre-text weights are used to initialize the domain discriminator892

before it is fine-tuned on the domain discrimination task. Hyperparameters used also differ.893

When SCAN pretrained weights are available, we use those. When they are not, we train SCAN894

ourselves.895

Hyperparameters were tuned by repeatedly consulting validation domain discrimination loss and final896

classification task accuracy (valid and test) on CIFAR-10—as well as validation domain discrimination897

loss alone on CIFAR-20. For this reason, we acknowledge that the hyperparameters may be overfit898

to CIFAR-10 in particular (and to a lesser extent, to CIFAR-20). Final evaluation runs used the899

following fixed hyperparameters:900

Common Hyperparameters901

Faiss KMeans number of iterations (niter): 100902

Faiss Kmeans number of clustering redos (nredo): 5903

Learning Rate: 0.00001904

Learning Rate Decay: Exponential, parameter 0.97905

SKlearn NMF initialization: random906

Dataset-Specific Hyperparameters907

• CIFAR-10 Dataset908

Architecture: ResNet-18909

Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of CIFAR-10910

(from SCAN repo).911

Training Epochs: 25912

Number of Clusters (m): 10913

Transforms used: Same as SCAN repo.914

• CIFAR-20 Dataset915

Architecture: ResNet-18916

Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of CIFAR-20917

(from SCAN repo).918

Training Epochs: 25919

Number of Clusters (m): 20920

Transforms used: Same as SCAN repo.921

• ImageNet-50 Dataset922

Architecture: ResNet-50923

Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of ImageNet-50924

(from SCAN repo).925

Training Epochs: 25926

Number of Clusters (m): 50927

Transforms used: Same as SCAN repo.928

• FieldGuide-2 Dataset929

Architecture: ResNet-18930

Pre-seed: Weights trained with SCAN pretext on entirety of FieldGuide-2 (trained by us).931

Training Epochs: 30932

Number of Clusters (m): 2933
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Transforms used for pretext: Same strategy as CIFAR-10 in SCAN repo with appropriate934

mean, std, and crop size 224.935

Transform used for SCAN: Resize to 256, Random horizontal flip, Random crop to 224,936

normalize937

Learning rate used for SCAN: 0.001 (other hyperparameters were same as in SCAN repo938

for CIFAR-10)939

Note: During one of the random seeds of training, test data transforms were mismatched with940

train transforms (specifically, missing the Resize(256) transform on test only). We consider941

this to disadvantage our approach for that random seed as compared to the SCAN baseline,942

which uses the proper transforms in all seeds. We report these results regardless due to the943

fact that our approach still competes effectively even despite the transform disadvantage.944

This random seed is the one displayed in Section 6 of the main paper. The results shown945

in App. E are different results, with the Resize(256) included (and are therefore the best,946

fair-footing evaluation comparison between our method and baseline).947

• FieldGuide-28 Dataset948

Architecture: ResNet-18949

Pre-seed: Weights trained with SCAN pretext on entirety of FieldGuide-28 (trained by us).950

Training Epochs: 60951

Number of Clusters (m): 28952

Transforms used for pretext: Same strategy as CIFAR-10 in SCAN repo with appropriate953

mean, std, and crop size 224.954

Transform used for SCAN: Resize to 256, Random horizontal flip, Random crop to 224,955

normalize956

Learning rate used for SCAN: 0.01 (other hyperparameters were same as in SCAN repo for957

CIFAR-10)958

Note: During one of the random seeds of training, test data transforms were mismatched with959

train transforms (specifically, missing the Resize(256) transform on test only). We consider960

this to disadvantage our approach for that random seed as compared to the SCAN baseline,961

which uses the proper transforms in all seeds. We report these results regardless due to the962

fact that our approach still competes effectively even despite the transform disadvantage.963

This random seed is the one displayed in Section 6 of the main paper. The results shown964

in App. E are different results, with the Resize(256) included (and are therefore the best,965

fair-footing evaluation comparison between our method and baseline).966
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E Additional Experimental Results967

Table 3: Results on CIFAR-10. Each entry is produced with the averaged result of 3 different random
seeds. With DDFA (RI) we refer to DDFA with randomly initialized backbone. With DDFA (SI) we
refer to DDFA’s backbone initialized with SCAN. Note that in DDFA (SI), we do not leverage SCAN
for clustering. α is the Dirichlet parameter used for generating label marginals in each domain, κ is
the maximum allowed condition number of the generated QY |D matrix, r is number of domains.

r Approaches α : 0.5, κ : 4 α : 3, κ : 4 α : 10, κ : 8

Test acc QY |D err Test acc QY |D err Test acc QY |D err

10 SCAN 0.8205 - 0.8222 - 0.8025 -
DDFA (RI) 0.7361 0.0354 0.5393 0.0481 0.3135 0.0736
DDFA (SI) 0.8987 0.0233 0.7566 0.0401 0.5359 0.0542

15 SCAN 0.8245 - 0.8172 - 0.8107 -
DDFA (RI) 0.7732 0.0326 0.5319 0.0464 0.275 0.0739
DDFA (SI) 0.9605 0.0163 0.8443 0.0256 0.7327 0.0376

20 SCAN 0.8048 - 0.8109 - 0.8164 -
DDFA (RI) 0.6883 0.0471 0.5651 0.0461 0.2704 0.0705
DDFA (SI) 0.9656 0.0158 0.904 0.0193 0.7979 0.0298

25 SCAN 0.7974 - 0.8131 - 0.8094 -
DDFA (RI) 0.7235 0.0389 0.5616 0.0444 0.2802 0.0863
DDFA (SI) 0.9701 0.0132 0.9173 0.0166 0.8204 0.027

Table 4: Extended Results on CIFAR-20. Each entry is produced with the averaged result of 3 different
random seeds (including the 1 seed shown in main paper results). With DDFA (RI) we refer to DDFA
with randomly initialized backbone. With DDFA (SI) we refer to DDFA’s backbone initialized with
SCAN. Note that in DDFA (SI), we do not leverage SCAN for clustering. α is the Dirichlet parameter
used for generating label marginals in each domain, κ is the maximum allowed condition number of
the generated QY |D matrix, r is number of domains.

r Approaches α : 0.5, κ : 8 α : 3, κ : 12 α : 10, κ : 20

Test acc QY |D err Test acc QY |D err Test acc QY |D err

20 SCAN 0.4416 - 0.4447 - 0.433 -
DDFA (RI) 0.517 0.0423 0.3355 0.0451 0.1632 0.0568
DDFA (SI) 0.7838 0.0225 0.5926 0.0271 0.3904 0.0344

25 SCAN 0.4403 - 0.4439 - 0.4398 -
DDFA (RI) 0.4886 0.0487 0.292 0.0485 0.0753 0.0806
DDFA (SI) 0.8372 0.0204 0.6685 0.0253 0.4869 0.0299

30 SCAN 0.4317 - 0.4611 - 0.4327 -
DDFA (RI) 0.5121 0.0462 0.2992 0.0477 0.0869 0.0765
DDFA (SI) 0.8197 0.0219 0.7425 0.0207 0.5434 0.0283
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Table 5: Results on ImageNet-50. Each entry is produced with the averaged result of 3 different
random seeds. With DDFA (SI) we refer to DDFA’s backbone initialized with SCAN. Note that in
DDFA (SI), we do not leverage SCAN for clustering. α is the Dirichlet parameter used for generating
label marginals in each domain, κ is the maximum allowed condition number of the generated QY |D

matrix, r is number of domains.

r Approaches α : 0.5, κ : 200 α : 3, κ : 205 α : 10, κ : 210

Test acc PY |D err Test acc PY |D err Test acc PY |D err

50 SCAN 0.7366 - 0.754 - 0.7372 -
DDFA (SI) 0.7204 0.0132 0.6322 0.0149 0.3431 0.0217

60 SCAN 0.757 - 0.7344 - 0.7315 -
DDFA (SI) 0.8179 0.0101 0.7434 0.0124 0.5784 0.0175

Table 6: Extended Results on FieldGuide-2. Each entry is produced with the averaged result of 3
different random seeds (this does not include the 1 seed shown in main paper results, due to different
transforms—see App. D for more information). With DDFA (SI) we refer to DDFA’s backbone
initialized with SCAN. Note that in DDFA (SI), we do not leverage SCAN for clustering. α is the
Dirichlet parameter used for generating label marginals in each domain, κ is the maximum allowed
condition number of the generated QY |D matrix, r is number of domains.

r Approaches α : 0.5, κ : 3 α : 3, κ : 5 α : 10, κ : 7

Test acc PY |D err Test acc PY |D err Test acc PY |D err

2 SCAN 0.5784 - 0.5635 - 0.5731 -
DDFA (SPI) 0.7757 0.2411 0.7729 0.1497 0.6578 0.264

3 SCAN 0.598 - 0.5889 - 0.5935 -
DDFA (SPI) 0.9599 0.0545 0.8304 0.1478 0.6933 0.2238

5 SCAN 0.6004 - 0.5767 - 0.5792 -
DDFA (SPI) 0.9534 0.0934 0.7835 0.1406 0.6166 0.2575

7 SCAN 0.5932 - 0.5923 - 0.5861 -
DDFA (SPI) 0.9037 0.1151 0.8157 0.1448 0.6608 0.1975

10 SCAN 0.5831 - 0.5848 - 0.582 -
DDFA (SPI) 0.9071 0.1547 0.7139 0.1698 0.582 0.164
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Table 7: Extended Results on FieldGuide-28. Each entry is produced with the result of 1 random
seed (this does not include the 1 seed shown in main paper results, due to different transforms—see
App. D for more information). With DDFA (SI) we refer to DDFA’s backbone initialized with SCAN.
Note that in DDFA (SI), we do not leverage SCAN for clustering. α is the Dirichlet parameter used
for generating label marginals in each domain, κ is the maximum allowed condition number of the
generated QY |D matrix, r is number of domains.

r Approaches α : 0.5, κ : 12 α : 3, κ : 20 α : 10, κ : 28

Test acc QY |D err Test acc QY |D err Test acc QY |D err

28 SCAN 0.2882 - 0.2915 - 0.314 -
DDFA (SPI) 0.5472 0.0359 0.3102 0.0338 0.3136 0.0355

37 SCAN 0.295 - 0.3126 - 0.3145 -
DDFA (SPI) 0.7595 0.0276 0.5214 0.0318 0.3257 0.0409

42 SCAN 0.2856 - 0.3177 - 0.2883 -
DDFA (SPI) 0.6699 0.0317 0.4714 0.0373 0.4082 0.0311

47 SCAN 0.2807 - 0.3184 - 0.3044 -
DDFA (SPI) 0.7087 0.0352 0.4728 0.0353 0.2992 0.0394
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Convex polytope

Image of anchor subdomain

Figure 3: This figure illustrates the case with 3 domains and 3 classes. The oracle domain discrimi-
nator maps points from a high-dimensional input space to a k “ 3 vertex convex polytope (shaded
red) embedded in ∆r´1, r “ 3 (shaded yellow). The anchor subdomains map to the vertices of this
polytope.

F Discussion of Convex Polytope Geometry970

The geometric properties of topic modeling for finite, discrete random variables has been explored in971

depth in related works (Huang et al. [32], Donoho and Stodden [20], Chen et al. [12]). The observation972

that columns in QX|D are convex combinations of columns in QX|Y leads to a perspective on973

identification of the matrix decomposition as identification of the convex polytope in Rm which974

encloses the datapoints (the corners of which correspond to columns of QX|Y ).975

Here, we briefly discuss an interesting but somewhat different application of convex polytope976

geometry. Instead of a convex polytope in Rm with corners as columns of QX|Y , we concern977

ourselves with the convex polytope in Rr with corners as columns in QD|Y , which must enclose all978

fpxq for x P X , qpxq ą 0.979

Let us assume that Assumptions A.1–A.4 are satisfied.980

We recall the oracle domain discriminator fpxq “ qpd|X “ xq. Let x P X “ Rp. Now, since the981

r values qpd|X “ xq for d P t1, 2, ..., ru constitute a distribution over the random variable d P rrs,982

each of the r values lie between 0 and 1, and also their sum adds to 1. Therefore the vector fpxq lies983

on the simplex ∆r´1. We now express fpxq as a convex combination of the k columns of QD|Y . We984

denote these column vectors QD|Y r:, ys for each y P Y “ rks. Note that each such vector also lies in985

the ∆r´1 simplex.986

As an intermediate step in the proof of 3 given in App. A, we showed that each fpxq is a linear987

combination of these columns of QD|Y with coefficients qpy|X “ xq for all y P Y .988

That is, we can rewrite fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J

989

Since the coefficients in the linear combination are probabilities which, taken together, form a990

categorical distribution, they lie between 0 and 1 and sum to 1. Thus, for all x P X , fpxq can be991

expressed as a convex combination of the columns of QD|Y . Therefore, for any x, fpxq lies inside992

the k´vertex convex polytope with corners as the columns of QD|Y (which are linearly independent993

by Lemma 6). This polytope is embedded in ∆r´1.994

Now consider x in an anchor sub-domain, that is x P Ay for some y P Y . We know that if qpxq ą 0,995

qpy|X “ xq “ 1, qpy1|X “ xq “ 0@y1 ‰ y (Lemma 5). Since the qpy|X “ xq are now one-hot, we996

have that fpxq “ QD|Y r:, ys for x P Ay . In words, this means that fpxq is precisely the yth column997

of QD|Y . It follows that the domain discriminator maps each of the k anchor sub-domains exactly to998

a unique vertex of the polytope.999
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We could now recover the columns of QD|Y , up to permutation, with the following procedure:1000

1. Push all x P X through f .1001

2. Find the minimum volume convex polytope that contains the resulting density of points1002

on the simplex. The vectors that compose the vertices of this polytope are the columns of1003

QD|Y , up to permutation.1004

Note that from Assumption A.4, we are guaranteed to have a region of the input space with at least1005

ϵ ą 0 mass that gets mapped to each of the vertices when carrying out step (i). Therefore, our1006

discovered minimum volume polytope must enclose all of these vertices. Since no mass will exist1007

outside of the true polytope, requiring a minimum volume polytope will ensure that the recovered1008

polytope fits the true polytope’s vertices precisely (as any extraneous volume outside of the true1009

polytope must be eliminated). Then step (ii) recovers QD|Y , up to permutation of columns.1010

Having recovered QD|Y , we can use Lemmas 1 and 2 to recover qpy|x, dq.1011

This procedure is a geometric alternative to the clustering approach outlined in Algorithm 1. In1012

practice, fitting a convex hull around a noisy domain discriminator may be computationally expensive,1013

and may fail to recover the true vertices.1014
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