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A Diffusion Processes31

A.1 Posteriors32

Posterior of Amino Acid Types The generative diffusion kernel for amino acid types p(st−1
j |Rt, C)33

(Eq.3) should align to the posterior q(st−1
j |stj , s0j ). It can be derived from Eq.1 and Eq.2 [8]:34

q(st−1
j |stj , s0j ) = Multinomial

([
αt

type · onehot(stj) + (1− αt
type) ·

1

20
· 1
]
⊙[

ᾱt−1
type · onehot(s0j ) + (1− ᾱt−1

type ) ·
1

20
· 1
])

. (17)

The vector inside Multinomial(·) might not sum to one. In this case, the probability of a class is the35

ratio of the value in the sum of the vector.36

Posterior of Cα Coordinates The generative diffusion kernel p
(
xt−1
j

∣∣∣Rt, C
)

(Eq.7) should align37

to the posterior obtained from Eq.5 and Eq.6 [7]:38

q(xt−1
j | xt

j ,x
0
j ) = N

(
xt−1
j

∣∣∣∣∣µq

(
xt
j ,x

0
j

)
,
(1− ᾱt−1

pos )βt
pos

1− ᾱt
pos

I

)
, (18)

where µq(· · · ) =

√
ᾱt−1

pos βt
pos

1− ᾱt−1
pos

x0
j +

√
αt

pos(1− ᾱt−1
pos )

1− ᾱt
pos

xt
j . (19)

A.2 Amino Acid Cα Position Normalization39

As amino acid Cα positions could be arbitrary in the 3D space. We need to normalize them such that40

we can use the standard normal distribution with zero-mean and unit-variance as the prior. First, we41

need to derive the statistics of CDR positions. For each CDR in the SAbDab dataset, we shift the42

overall structure such that the center point of the two CDR anchors is located in the origin. Then, we43

aggregate Cα positions in the shifted CDRs. Finally, we calculate the mean and standard deviation of44

them. Before training and inference, we shift the whole structure according to their CDR anchors,45

and further shift and scale the structure according to the pre-calculated mean and standard deviation46

to obtain the normalized coordinates.47

B Distributions on SO(3)48

B.1 Preliminary: Aixs-Angle Representation of Rotations49

Conventionally, a rotation is usually represented by 3 Euler angles (α, β, γ), which can be interpreted50

as the composition of counter-clockwise rotations by α, β, γ about x, y, z axes. However, the51

Euler representation is unsuitable for defining useful operations and distributions w.r.t. rotations52

considered in this work. Alternatively, we introduce another rotation representation called axis-angle53

representations. This representation parameterized a rotation with an rotational axis u (∥u∥2 = 1)54

and an angle θ (θ ∈ R). For more details about the axis-angle representation, we refer the reader to55

[6, 18, 19].56

B.2 Logarithm of Rotation Matrices and Exponential of Skew-Symmetric Matrices57

Logarithm of Rotation Matrices Derived from the definition of matrix logarithm, the logarithm58

of a rotation matrix R is a skew-symmetric matrix [6], which can be represented as:59

S := logR =

[
0 −vz vy
vz 0 −vx
−vy vx 0

]
. (20)

It can be proven that v = [vx, vy, vz] is the rotational axis of R, and ∥v∥2 is the rotational angle. For60

brevity, we can use the vector notation v to represent a rotation in the logarithm space. The space is61

also known as so(3) (different from the rotation group SO(3), the symbol is in lowercase).62
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To efficiently compute the logarithm of a rotation matrix without computing matrix logarithm or63

solving rotational axis-angle, we can use the following formula [6]:64

logR =
θ

2 sin θ
(R−R⊺), (21)

where θ can be obtained from θ = cos−1
(
TrR−1

2

)
by the fact that Tr(R) = 1 + 2 cos θ. Specially,65

when θ = 0 (or R = I), logR = [0,0,0].66

Exponential of Skew-Symmetric Matrices The inversion of rotation matrix logarithm is the67

exponential of skew-symmetric matrices. Derived from the definition of matrix exponential, the68

conversion formula is [6]:69

expS = I +
sin ∥v∥2
∥v∥2

S +
1− cos ∥v∥2
∥v∥22

S2, (22)

where S is a skew-symmetric matrix parameterized by three values v = [vx, vy, vz], identical to the70

definition in Eq.20.71

Remarks The logarithm and exponential defined above provide an easy way to create and manipu-72

late rotations in the axis-angle parameterization space. For example, when we would like to create a73

rotation matrix with an axis and an angle, we can first create a vector v whose direction is the same74

as the given axis and length equals to the angle. Then, we rewrite the vector v into a skew-symmetric75

matrix S, and finally convert it to a rotation matrix by Eq.22. We can also manipulate a rotation76

matrix, for example, changing its rotational angle, by mapping it to the logarithm space, modifying77

the skew-symmetric matrix, and finally converting it back to a rotation matrix using the exponential78

formula.79

B.3 ScaleRot: Rotation Scaling Function80

When we parameterize a rotation matrix with an axis and an angle, it is natural to define the rotation81

scaling function ScaleRot as scaling the rotational angle. Formally, the definition is:82

ScaleRot(k,R) := exp (k logR) , (23)

where k is the scaling factor and R is a rotation matrix. Specially, ScaleRot(0,R) = I for all83

rotation matrix R. Intuitively, scaling a rotation matrix by 0 cancels its effect, leading to the identity84

transform.85

B.4 IGSO(3): Isotropic Gaussian Distribution on SO(3)86

The isotropic Gaussian distribution on SO(3), denoted as IGSO(3), is defined on the axis-angle87

space of rotation: S2 × [0, π], where S2 = {∥x∥2 = 1|x ∈ R3} is the unit sphere in R3. IGSO(3) is88

parameterized by a mean rotation M and a scalar variance σ2. Let u ∈ S2 and θ denotes the rotational89

axis and angle random variables respectively. We first consider IGSO(3) with the identity matrix as90

its mean: IGSO(3)(u, θ|I, σ2). Its p.d.f. is defined by the product of the uniform distribution on S291

and a special angular distribution [13, 14, 11]:92

pIGSO(3)
(u, θ|I, σ2) = puniform(S2)(u)pangular(θ|σ2), (24)

where puniform(S2)(u) =
1

4π
δ (∥u∥2 − 1) , (u ∈ S2) (25)

and pangular(θ|σ2) =
1− cos θ

π

∞∑
l=0

(2l + 1)e−l(l+1)σ2 sin
((
l + 1

2

)
θ
)

sin( θ2 )
. (θ ∈ [0, π]) (26)

When the mean is other than I , to sample from the distribution, we can first sample an rotation E93

from IGSO(3)(u, θ|I, σ2). Then, we left-multiply R to E to obtain the desired random value RE.94

Sampling The algorithm for drawing samples from IGSO(3)(I, σ
2) (here the mean rotation is95

identity) can be broken down into two steps.96
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The first step is to draw a unit vector u from the uniform distribution on S2, puniform(S2)(u). This can97

be efficiently done by first sampling from the 3D standard Gaussian distribution and then normalize98

the sampled vector to unit length.99

The second part is drawing samples from pangular(θ|σ2) which could be more tricky. We empirically100

use two different proximate sampling strategies depending on the variance σ2. When σ is larger101

than 0.1, the series (Eq.26) converges fast (with in 1024 steps). In such cases, we use histograms102

to approximate the distribution. In specific, we evenly partition [0, π] into 8192 bins, and use the103

probability density pangular(θ|σ2) at the center of each bin as the bin weight. To draw samples from104

the discretized distribution, we first randomly select a bin according to their weights. Then, we105

sample from the uniform distribution spanning from the lower bound to the upper bound of the106

bin. The discretization process is time-consuming. However, since the variances in the diffusion107

processes are predetermined, we pre-compute and cache the bins and weights, so that we can draw108

sample efficiently. When σ is smaller than 0.1, we approximate the distribution using the truncated109

Gaussian distribution whose mean is 2σ and standard deviation is σ. Empirically, we find that the110

above proximate sampling algorithm is sufficient for training and sampling from our diffusion model.111

To sample from IGSO(3) with an arbitrary mean rotation R, we first draw a rotation from112

pangular(θ|σ2), denoted as E. Finally, we left-multiply R to E to get the desired sample.113

B.5 Uniform Distribution on SO(3)114

The uniform distribution on SO(3) is equivalent to the uniform distribution of normalized quaternions115

on S3 [16]. To sample a random rotation uniformly, we first sample a random vector from the 4D116

standard normal distribution. Next, we normalize the vector and treat it as a quaternion. Finally,117

we convert the quaternion to a rotation matrix which can be regarded as a sample from the uniform118

distribution on SO(3).119

C Neural Network Parameterization120

C.1 Computing Residue Orientations121

The orientation of a residue is determined by the coordinate of its three backbone atoms: Cα, C, and122

N. Let xα
i , xC

i , and xN
i denote the 3D coordinates of the three backbone atoms of the i-th residue123

respectively. The orientation of the residue, denoted by Oi, can be constructed using the following124

Gram-Schmidt-based algorithm:125

v1 ← xC
i − xα

i , (27)

e1 ←
v1

∥v1∥
, (28)

v2 ← xN
i − xα

i , (29)
u2 ← v2 − ⟨e1,v2⟩e1, (30)

e2 ←
u2

∥u2∥
, (31)

e3 ← e1 × e2, (32)
Oi ← [e1, e2, e3] . (33)

C.2 Architectures126

Amino Acid Embedding Layer The embedding layer for each amino acid takes into account the127

following information:128

• Amino acid type: Each of the 20 amino acid types is represented by an embedding vector129

denoted by etype
i .130

• Heavy atom local coordinates: The coordinate of each heavy atom in an amino acid is131

projected to the local coordinate frame using the rule xlocal
i = O⊺

i (x
atom
i − xα

i ). All of the132

local coordinates are concatenated into a single vector denotes by ecoord
i . If some heavy133

4



atoms are missing, their local coordinates are filled by zeros. Note that the local coordinates134

are invariant to global rotation and translation thanks to the projection rule.135

• Backbone dihedral angles: The backbone dihedrals of an amino acid, including ϕ, ψ, and ω136

[12, 9], is transformed using a series of sine and cosine functions with different frequencies,137

which are then concatenated into a single vector edihed
i .138

• CDR flags and anchor flags: Amino acids on the CDR or by the two ends of the CDR139

(anchors) are differentiated from other amino acids by special 0-1 flags denoted as eflag
i .140

All of the vectors above are concatenated and fed to an MLP to produce the final embedding vector141

for each residue.142

Pairwise Embedding Layer Pairwise embeddings include information about the relationship143

between two residues. The pairwise embedding for residue i and j involves the following information:144

• Amino acid types of both amino acids: There are 20 × 20 = 400 combinations of two145

amino acid types. We represent each of them using an embedding vector denoted by ztype
ij .146

• Sequential relative position: If two residues are on the same chain and their distance on147

the sequence is less than or equal to 32 (dseq
ij ∈ {−32 . . . 32}), the distance is represented by148

an embedding vector zseq
ij . Otherwise, the distance embedding is filled with zeros.149

• Pairwise distances: The distances between all pairs of atoms are flattened into a vector and150

transformed by e−cdij (c is a learnable coefficient) into the spatial distance embedding zdist
ij .151

Missing pairs are filled with zeros.152

• Pairwise backbone dihedrals: The backbone dihedrals between any two amino acids i and153

j are defined as ϕij = Dihedral(xC
i ,x

N
j ,x

α
j ,x

C
j ) and ψij = Dihedral(xN

i ,x
α
i ,x

C
i ,x

N
j ).154

These two dihedrals are transformed by a series of sine and cosine functions into pairwise155

dihedral embeddings zdihed
ij .156

We concatenate the above vectors and feed them into an MLP to get the final pairwise embeddings157

for each pair of amino acids zij .158

Encoder The encoder for encoding the current diffusion state consists of a stack of orientation-159

aware invariant 3D attention layers. Its aim is to capture relationships between amino acids and160

provide high-level representations for each residue to denoise.161

Let hℓ
i denote the hidden representation output from the last layer (when ℓ = 0, the representation is162

the initial residue embedding). The formulas for computing the logit of attention weight between163

residue i (query) and j (key) is:164

aij =
〈
q
(
hℓ
i

)
,k
(
hℓ
j

)〉
+ f (zij) + g

({
Oi

⊺(xatom
j − xα

i )
}

atom

)
, (34)

where q(·), k(·), f(·), and g(·) are MLP subnetworks. The attention weights can be obtained by165

taking softmax: wij = softmaxNj=1(aij). Note that, for simplicity, we do not consider attention166

heads in the formula, but in practice, we use multiple attention heads and different heads can be167

combined easily via concatenation.168

The formula for computing the value passed from residue j to i is:169

vij = v
(
hℓ
j , zij ,

{
Oi

⊺(xatom
j − xα

i )
}

atom

)
, (35)

where v(·) is a network consisting of MLPs. Finally, the values along with attention weights are used170

to update the amino acid representations with residual connection and layer normalization, same as171

the standard transformer [17].172

C.3 Notes on the Notations of the Denoising Networks F , G, and H173

Clarification of Notations The notations F , G, and H do not only denote the MLPs following the174

encoder that output denoising results. It refers to the embedding layers, the encoder, and the specific175

output MLP (for example, F includes the MLP for denoising amino acid types). Therefore, the input176

to F , G, and H is the diffusion state (sequence and structure) rather than hidden representations.177

Treating the three sections as a whole allows us to neatly express the equivariance property of the178

model.179
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Errata On Line 219, the update rule for orientations should be Ôt−1
j = Ot

jMj , and H is equivari-180

ant rather than invariant.181

Eq.16 should be H(RRt + r,RC + r) = RH(Rt, C), as the predicted orientations are equivariant.182

C.4 Proof of Equivariance183

Lemma 1. The Euclidean distance function between two points is invariant to rotations and transla-184

tions, i.e. d(Rx1 + r,Rx2 + r) = d(x1,x2), ∀R ∈ SO(3), r ∈ R3.185

Proof.

d(Rx1 + r,Rx2 + r) = ∥(Rx1 + r)− (Rx2 + r)∥2
= ∥R(x1 − x2)∥2
= (x1 − x2)

⊺���R⊺R(x1 − x2)

= ∥x1 − x2∥2
= d(x1,x2).

Lemma 2. The dihedral function for four points is invariant to rotations and translations, i.e.186

Dihedral(Rx1+r,Rx2+r,Rx3+r,Rx4+r) = Dihedral(x1,x2,x3,x4), ∀R ∈ SO(3), r ∈187

R3. Here, Dihedral(· · · ) is defined as:188

Dihedral(x1 . . .x4) = atan2(v2 · ((v1 × v2)× (v2 × v3)), ∥v2∥(v1 × v2) · (v2 × v3)), (36)

where vi = xi+1 − xi (i = 1, 2, 3).189

Proof. First, we note that:190

(Rxi+1 + r)− (Rxi + r) = R(xi+1 − xi) = Rvi.

By the equivariance of cross product (Ra×Rb = R(a× b)) and the invariance of inner product191

(Ra ·Rb = a · b), we have:192

Dihedral(Rxi + r|i = 1 . . . 4) = atan2(Rv2 · (R(v1 × v2)×R(v2 × v3)),

∥Rv2∥R(v1 × v2) ·R(v2 × v3))

= atan2(Rv2 ·R((v1 × v2)× (v2 × v3)),

∥v2∥(v1 × v2) · (v2 × v3))

= atan2(v2 · ((v1 × v2)× (v2 × v3)),

∥v2∥(v1 × v2) · (v2 × v3))

= Dihedral(xi|i = 1 . . . 4)

Lemma 3. The per-amino-acid orientation Oi is equivariant to rotations and translations, i.e.,193

O(Rxα
i + r,RxC

i + r,RxN
i + r) = RO(xα

i ,x
C
i ,x

N
i )194

Proof. First, we show that the first two basis vectors e1 and e2 are equivariant:195

e1(Rxα
i + r,RxC

i + r) =
(RxC

i + r)− (Rxα
i + r)

∥(RxC
i + r)− (Rxα

i + r)∥

= R
xC
i − xα

i

∥vxCi − xα
i ∥

= Re1(x
α
i ,x

C
i ).

Let v2 = xN
i −xα

i . We have (RxN
i +r)− (Rxα

i +r) = Rv2. Then, we can prove the equivariance196

of e2:197

e2(Rxα
i + r,RxC

i + r,RxN
i + r) = Rv2 − ⟨Re1,Rv2⟩Re1

= Rv2 − ⟨e1,v2⟩Re1
= R(v2 − ⟨e1,v2⟩e1)
= Re2(x

α
i ,x

C
i ,x

N
i )
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By the equivariance of cross product, it is straightforward to show that e3 is also equivariant. Finally,198

combining the equivariance of e1, e1, and e3, we prove the equivariance of the orientation matrix:199

O(Rxα
i + r,RxC

i + r,RxN
i + r) = [Re1,Re2,Re3]

= RO(xα
i ,x

C
i ,x

N
i ).

Lemma 4. The per-amino-acid and pairwise embedding layers are invariant to rotations and200

translations of the input structure. i.e.201

e(si, {xatom
i }atom, ϕi, ψi, ωi, e

flag
i ) = e(si, {Rxatom

i + r}atom, ϕi, ψi, ωi, e
flag
i ), and

z({d(xatom1
i ,xatom2

j )}atom1, atom2, · · · ) = z({d(Rxatom1
i + r,Rxatom2

j + r)}atom1, atom2, · · · ).

Proof. Before embedding atom positions for an amino acid, the network first projects the positions202

using the orientation by the rule:203

xlocal
i = O⊺

i (x
atom
i − xα

i )

The projection operation is invariant to rotations and translations, using Lemma 3:204

xlocal
i (Rxatom

i + r,Rxα
i + r) = (ROi)

⊺((Rxatom
i + r)− (Rxα

i + r))

= O⊺
i �

��R⊺R(xatom
i − xα

i )

= xlocal
i (xatom

i ,xα
i ).

The formulas for computing dihedral angles (ϕi, ψi, ωi) are also invariant by Lemma 2 Other variables205

(amino acid types and CDR flags) are independent of the 3D structure and hence they are invariant.206

So far, we have showed that all the components of embedding layers are invariant to rotations and207

translations of the overall 3D structure. Therefore, the embedding layer is invariant.208

Pairwise embedding layers involve distances between residues, which are invariant by Lemma 2.209

Other variables are irrelevant to 3D structures. Hence, the pairwise embedding layer is invariant.210

Lemma 5. The orientation-aware attention layer is invariant to rotations and translations if the211

input hidden representations hi, zij(i, j = 1 . . . N) come from invariant functions.212

Proof. First, we show that projecting atoms on the j-th amino acid to the orientation of the i-th amino213

acid is invariant to rotations and translations by Lemma 3:214

(ROi)
⊺((Rxatom

j + r)− (Rxα
i + r)) = O⊺

i �
��R⊺R(xatom

j − xα
i ).

As other inputs to the attention layer (hi, zij(i, j = 1 . . . N)) are invariant to rigid transforms on the215

structure, the networks for computing attention weights and values are invariant. Hence, the attention216

layer is invariant.217

In the case where we stack multiple attention layers, each layer outputs invariant representations for218

its next layer. Therefore, such network consisting of multiple attention layers is invariant.219

Proposition 1. For any proper rotation matrix R ∈ SO(3) and any 3D vector r ∈ R3 (rigid220

transformation (R, r) ∈ SE(3)), F , G and H satisfy the following equivariance properties:221

F (RRt + r,RC + r) = F (Rt, C), (37)

G(RRt + r,RC + r) = RG(Rt, C), (38)

H(RRt + r,RC + r) = RH(Rt, C), (39)

where RRt+r := {stj ,xt
j+r,ROt

j}
l+m
j=l+1 and RC+r := {si,xi + r,ROi}i∈{1...N}\{l+1,...,l+m}222

denote the transformed structure.223

Proof. By Lemma 5, we know that the encoder network produces invariant representations. Therefore,224

the MLP for predicting amino acid types that transforms the invariant representations into a probability225

over 20 categories is invariant, so F is invariant.226
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The MLP for predicting local coordinate changes MLPG(hi) is invariant. The local coordinate227

change is converted to the global coordinate change using the following rule:228

ϵ̂j = Ot
j MLPG (hj) .

By Lemma 3, the above rule is equivariant to rotations, and hence G is equivariant to rotations.229

Similarly, the MLP for predicting changes in orientation MLPH(hi) is invariant. The changes is230

applied to the original orientation by:231

Ôt−1
j = Ot

jMj ,

which is equivariant to rotations according to Lemma 3. Therefore, H is equivariant to rotations.232

D Sampling Algorithms233

D.1 Backbone Atoms and Sidechain Cβ Construction234

The coordinates of backbone atoms (N, Cα, C, O) and sidechain Cβ can be determined by the235

orientation and the Cα position of an amino acid because the geometry of these atoms is almost236

inflexible. To construct the position of N, Cα, C, and Cβ for the i-th amino acid, we use the following237

formula:238

xatom
i = Oic

atom + xi, (atom ∈ {N, Cα, C, Cβ}) (40)

where Oi and xi is the model-predicted amino acid orientation and Cα position. catom is the local239

coordinate derived from experimental data relative to the orientation and the Cα position, as shown240

in the following table.241

Atom cx cy cz

N -0.526 1.361 0.000
Cα 0.000 0.000 0.000
C 1.525 0.000 0.000
Cβ -0.500 -0.733 -1.154

The position of O depends on the ψ angle of the amino acid, which further relies on the next amino242

acid on the sequence. Therefore, after constructing backbone atoms, we calculate the ψ angle for243

each amino acid (ψi = Dihedral(Ni,Ci
α,C

i,Ni+1)), and use the following rule to construct O244

coordinates:245

xO
i = Oic

O(ψi) + xi, (41)

where246

cO(ψi) =

[
1 0 0
0 cosψi − sinψi

0 sinψi cosψi

][
2.151
−1.062
0.000

]
. (42)

D.2 Sidechain Packing and Full Atom Refinement247

We use PackRotamersMover in PyRosetta [3] to pack sidechains only for amino acids on the248

generated CDR. The packing program is based on the Dunbrack 2010 rotamer library [15] and the249

REF2015 energy function [1].250

After packing sidechains, we refine the structure with OpenMM [5]. Specifically, we first use251

PDBFixer to prepare the structure for refinement. We minimize the potential energy of the structure.252

The potential energy is AMBER99SB force field plus quadratic constraint terms that restrain the253

position of non-CDR atoms.254
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E Experiments255

E.1 Dataset Curation256

We curated additional structures similar to antibody-antigen complexes from PDB. Before finding257

these structures, we select PDB entries that match the following rules: (1) resolution better than 3.5Å,258

(2) not containing nucleic acids, (3) total number of residues no more than 2000, (4) not appearing in259

SAbDab.260

Next, we identify loops using DSSP [10]. A loop is defined as a continuous sequence of amino acids261

that do not form helices or strands. For such loop-forming residues, DSSP marks the secondary262

structure of them as turn (T), bend (S), or none (-). In addition, we also consider amino acids in regions263

with secondary structures no longer than 3 amino acids as loop-forming. We find subsequences that264

only contain loop-forming residues. Then, we retain loops that meet all of the following criteria: (1)265

containing at least 5 amino acids and at most 20 amino acids, (2) containing at least one amino acid266

that interacts with at least one amino acid on other chains (two amino acids are consider interacting267

if their minimum atom distance is less than 5.0Å). Finally, we cluster the loops at 50% sequence268

identity and remove duplicates. We use a loop along with the chains that it interacts with as an269

antibody-antigen-like example.270

E.2 Hyper-parameters271

The number of diffusion time steps T is 100. The variances of the diffusion processes for positions and272

rotations increase linearly from βpos,ori
1 = 0.00001 to βpos,ori

T = 0.02. For amino acid type diffusion,273

the variances increase linearly from βseq
1 = 0.00001 to βseq

T = 0.1. The number of dimensions for274

amino acid representations is 128 and for pairwise embeddings is 64. The encoder consists of 6275

attention layers. Each attention layer has 12 heads, and the number of key-query-dimensions is 32.276

We train the model on a single NVIDIA A100 GPU for 300K iterations (an iteration is one forward277

and one backward pass). The structure for fed to the model is cropped by k-nearest-neighbor. 256278

amino acids nearest to the training CDR are kept. The batch size is set to 16 and the peak GPU279

memory usage is 38GB. Training data points from SAbDab and PDB are sampled 1:1 in a batch.280

We use the Adam optimizer and the learning rate is 0.0001. The learning rate starts to decay at the281

40K-th iteration. It decays by 0.8 every 10K iterations for 16 times.282

E.3 Interaction Energy283

The interaction energy (relative binding free energy) between two groups of molecules is defined as284

the difference of free energy between the bound state and the unbound state [4]:285

∆G = GAB − (GA +GB). (43)

In the setting of this work, A and B denote antibody and antigen respectively. GAB is the energy of286

the antibody-antigen complex. GA and GB are the energies of the antibody alone and the antigen287

alone.288

We use the Rosetta energy function REF2015 [1] to estimate G’s for the whole complex (GAB), the289

antibody alone (GA), and the antigen alone (GB). Before calculation, we use the FastRelax routine290

provided by Rosetta to further refine sidechains in order to get a better energy estimation [2]. Finally,291

we apply Eq.43 to get the interaction energy.292

E.4 Code and Data Availability293

Code and data of this work will be available once the paper is made public294

9



E.5 Additional Results295

Table 4: The performance of the baselines and our method in the fix-backbone design task for
CDR-Ls. Supplement to Table 2.

IMPROVE% (%, ↑) AAR (%, ↑)
CDR L1 L2 L3 L1 L2 L3

FixBB 31.49 (1.1) 21.83 (0.1) 25.17 (0.3) 30.76 (0.2) 26.11 (0.1) 17.33 (0.1)
AR 25.23 (3.2) 40.67 (2.0) 30.46 (1.7) 66.09 (2.8) 73.45 (1.3) 52.60 (3.8)

Ours 23.90 (1.7) 43.83 (5.4) 29.84 (3.2) 68.56 (1.1) 66.75 (2.4) 52.78 (1.5)
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