
Neural Topological Ordering for Computation Graphs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent works on machine learning for combinatorial optimization have shown that1

learning based approaches can outperform heuristic methods in terms of speed and2

performance. In this paper, we consider the problem of finding an optimal topo-3

logical order on a directed acyclic graph with focus on the memory minimization4

problem which arises in compilers. We propose an end-to-end machine learning5

based approach for topological ordering using an encoder-decoder framework.6

Our encoder is a novel attention based graph neural network architecture called7

Topoformer which uses different topological transforms of a DAG for message8

passing. The node embeddings produced by the encoder are converted into node9

priorities which are used by the decoder to generate a probability distribution over10

topological orders. We train our model on a dataset of synthetically generated11

graphs called layered graphs. We show that our model outperforms, or is on-par,12

with several topological ordering baselines while being significantly faster on syn-13

thetic graphs with up to 2k nodes. We also train and test our model on a set of14

real-world computation graphs, showing performance improvements.15

1 Introduction16

Many problems in computer science amount to finding the best sequence of objects consistent with17

some precedence constraints. An intuitive example comes from routing problems, where we would18

like to find the shortest route between cities but we have requirements (i.e. for example to pick up19

and subsequently deliver a package) on the order in which the cities should be visited [1]. Another20

case is found in compiler pipelines, wherein the "cities" become operations to be executed and the21

constraints come from the data dependencies between these operations, such as when the result of22

an operation is an operand in a subsequent one. In this case, the metric to be optimized can be the23

run time of the compiled program, or the memory required to execute the program [2]. Common24

across this class of problems is their formulation in term of finding the optimal topological order25

of the Directed Acyclic Graph (DAG) that encodes the precedence constraints, which induces a26

Combinatorial Optimization [3] (CO) problem which is in general computationally hard [4].27

Already from the two examples above, one can immediately grasp the relevance of such problems28

for industrial Operations Research, which has prompted various actors to invest in the development29

of efficient CO solvers; these solvers usually encapsulate heuristic methods whose design typically30

requires extensive use of domain-specific and problem-specific knowledge, across decades of de-31

velopment. In recent years, considerable interest has emerged in the possibility of replacing such32

handcrafted heuristics with ones learned by deep neural nets [5] (machine learning for combinatorial33

optimization, MLCO). As a matter of fact, both of our two examples of DAG-based CO problems34

have indirectly been object of study in the Machine Learning literature. References [6, 7, 8, 9] take35

into consideration Routing Problems, especially the Traveling Salesperson Problem (TSP) which, on36

account of its richness, complexity and long history of mathematical study [10], has attained the status37

of a standard benchmark for MLCO [8]. Conversely, less attention has been devoted to operations38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

sequencing likely due to the proprietary and sensitive nature of compiler workflows, which hampers39

the definition of public benchmarks. References [11, 12] both consider the task of optimizing the40

run time of a neural network’s forward pass by optimizing the ordering and device assignment of41

its required operations. However, in this last case the sequencing stage is only one part of a larger42

compiler pipeline, and as a result of this both the performance metrics and the datasets employed43

cannot be made available for reproduction by third parties. This makes it both hard to assess the44

results therein, and to draw general conclusions and guidelines for the advancement of MLCO, which45

still suffers from a lack of commonly accepted and standard datasets and benchmarks.46

In this work, we address the problem of finding optimal topological orders in a DAG using deep47

learning, focusing on the compiler task of optimizing the peak local memory usage during execution.48

We make the following contributions:49

• We present a neural framework to optimize sequences on direct acyclic graphs. Mindful of50

the need for scalability, we consider a non-auto-regressive (NAR) scheme for parametrizing51

the probability distribution of topological orders. This allows our method to attain an52

extremely favorable performance vs. run time tradeoff: it always outperforms fast baselines,53

and is only matched or outperformed by those requiring a much longer (in one case 4000x54

more) run time.55

• We address the problem of how to perform meaningful message-passing on DAGs, a graph56

type which has received comparatively less attention in the literature on Graph Neural57

Networks. We introduce Topoformer, a flexible, attention-based architecture wherein58

messages can be passed between each and every pair of nodes, with a different set of59

learnable parameters depending on the topological relation between these.60

• To test our method, we introduce an algorithm for the generation of synthetic, layered,61

Neural Net-like computation graphs, allowing any researcher to generate a dataset of as62

many as desired graphs of any desired size. These graphs are a more faithful model of63

real NN workflows, and allow us to prove our method on a much larger and varied dataset,64

than previous efforts [11]. To our knowledge, this is the first public algorithm of this kind.65

Nevertheless, we also test our method on proprietary graphs to illustrate its relevance to66

realistic compiler workflows.67

2 Related work68

Machine Learning for Combinatorial optimization Combinatorial optimization as a use case for69

deep learning poses interesting technical challenges. First, the combinatorial nature of the problem70

conflicts with the differentiable structure of modern deep neural networks; and second, the models71

need to be run at large scale to solve real world instances, exacerbating the challenges in training72

deep learning models.73

Given the discrete nature of CO problems, a natural approach is to pose them as reinforcement74

learning (RL) problems [13]. The aim is then to learn a policy that selects the best actions to75

maximize a reward directly related to the optimization objective. Algorithms then differ in the way76

the policy is parameterized: either in an end-to-end manner where the actions directly correspond to77

solutions of the optimization problem [12, 6, 8], or in a hybrid manner, where the policy augments78

parts of a traditional solver, e.g. by replacing heuristics used in setting parameters of an algorithm, see79

e.g. [11, 9, 7, 2]. Our approach follows an end-to-end design philosophy, which, not having to rely80

on an external algorithm, affords better control of post-compile run time and facilitates application81

on edge devices [2]. Furthermore, RL has the advantage of being useful as a black box optimizer,82

when no handcrafted heuristics can be designed.83

Sequence optimization via ML Within MLCO, much effort has been devoted to the task of84

predicting optimal sequences [6, 14, 15, 16]. The end-to-end nature of our method places it close85

to the one proposed in [6], although to the best of our knowledge, our work is the first to tackle the86

challenge of enforcing precedence constraints in the network predictions. As we shall see in more87

detail below, this generalization is non-trivial: already counting the number of topological orders88

belongs to the hardest class of computational problems [4]. This has to be contrasted with the fact89

that the number of sequences without topological constraints is simply n! for n objects. Besides,90

as pointed out in [8], no MLCO method has so far been able to convincingly tackle TSPs of sizes91

2

above a few hundred nodes, when it comes to zero-shot generalization to unseen problem instances,92

i.e. when no fine tuning on the test set is done. It is also therein pointed out how an auto-regressive93

parametrization of the sequence (which was the method used in ref. [6]) appears to be necessary to94

achieve acceptable performance even at those small sizes. Conversely, in the present work we show95

compelling zero-shot performance on DAGs of sizes up to thousands of nodes, while nonetheless96

generating our sequences in a fully non-auto-regressive (NAR) way and maintaining a strong run97

time advantage over classical sequencing algorithms. Our results can then also be interpreted as98

cautioning against the idea of using the TSP as the sole, paradigmatic test-bed for MLCO research,99

as [8] remarks.100

ML for compiler optimization The DAG sequencing task we consider is an omnipresent stage101

in compiler workflows, which usually also include such tasks as device assignment and operations102

fusion [12]. In such a setting, jointly optimizing these tasks to reduce the run time of a certain103

workflow (such as the forward pass of a Neural Net) is a common objective, which in [11, 12] is104

tackled with ML methods. In this work we focus on the task of minimizing the peak local memory105

usage during execution, which does not require a performance model or simulator as well as being106

relevant to applications on edge devices [2]. In [11], the ML solution leans on an existing genetic107

algorithm, whilst our solution is end-to-end, much like that proposed in [12]. Another characteristic108

of the solution proposed in [12] is the idea of interpolating between AR and NAR via an iterative109

refinement scheme, in which sequences are generated in one pass but subsequently refined during an110

user-defined number of subsequent passes; conversely, we generate all our sequences in a single pass.111

While in [11] the run time optimization is studied on both real-world and synthetic random graphs –112

the latter being relatively small (up to about 200 nodes), the peak memory optimization is studied only113

on a proprietary dataset augmented via perturbation of the node attributes. In [12] the authors train114

and test their method on a relatively small set of six proprietary workflows which are not disclosed to115

the reader, and out of those six, only the size of the largest instance is mentioned.116

Deep Graph Neural Networks Given that our problem is specified as a DAG, it is a logical choice117

to parametrize our sequence-generation policy with a Graph Neural Network architecture [17]. The118

basic idea of every GNN architecture is to update graph and edge representations by passing messages119

between the graph nodes along the graph edges [18]. However, this can be too restrictive when120

it comes to sequence generation on DAGs. For example, nodes that come after each other in the121

sequence might not be linked by an edge in the graph, and therefore are unable to directly influence122

each other’s representation. Notice how this difficulty is another consequence of the presence of123

precedence constraints in our problem, which conversely was not an issue in e.g. [6] where the graph124

is fully connected and no constraints are present. Relatively few efforts (see e.g. [19, 20, 21]) have125

been devoted to devise a way to perform meaningful message passing on DAGs. As a matter of126

fact, the quest for expressive GNN architectures is at the center of intense theoretical investigation127

[22, 23].128

3 Background129

3.1 Topological orders and DAGs130

We here introduce the mathematical background, starting with a few definitions. A partial order is an131

irreflexive transitive relation < between certain pairs of a set V . We call a pair (x, y) ∈ V × V that is132

related by < comparable, and incomparable otherwise. A Directed Acyclic Graph (DAG) G = (V,E)133

is a directed graph with no directed loops. We can map a DAG G = (V,E) to a partially ordered set134

(V,<) where x < y if there is a directed path from node x to node y. Multiple DAGs map to the same135

partial order. For example, the DAGs with vertex set {x, y, z} and edge sets E = {x→ y, y → z}136

and E′ = {x → y, y → z, x → z}, where s → t denotes a directed edge from s to t, correspond137

to the same partial order x < y < z. We define the transitive closure (TC) of a DAG as the graph138

with most edges that has the same underlying partial order, so that there exists a directed edge (x, y)139

whenever x < y. Conversely, the transitive reduction (TR) is the graph with least edges that results140

in the same partial order. We denote the order induced by a DAG by <G.141

A topological order or sorting of a DAG G is a bijection σ : V → {1, . . . , |V |} such that σ(x) < σ(y)142

whenever x <G y. The set TG of topological orders of G is a subset of the permutation group of the143

vertices and coincides with total orders on V that respect <G, called linear extensions of the partial144

3

order. While there are several well-known algorithms to compute a topological order of a DAG, e.g.145

breadth first search and depth first search, counting the number of topological orders is one of the146

hardest computational problems, being #P complete [4]. In this work we develop a general machine147

learning method to find a topological order that minimizes a given cost function on a DAG, which we148

define in the next section.149

3.2 Peak Memory Minimization150

Deciding the best way to schedule operations in a computational graph representing a neural network151

is a central problem in compilers [11, 12, 2]. We can associate a DAG to a computational graph152

in such a way that nodes represent operations ("ops"), and incoming/outgoing edges represent153

operands/results of these operations. Every time one executes an op, the inputs1 to that op need to154

be in memory, and memory for the outputs needs to be allocated. Therefore, each node of the DAG155

carries a label m : V → N specifying the memory required to store the output of that op. A typical156

first step in scheduling a DAG is to identify topological orders to execute operations. Compilers157

for edge devices, which have limited memory, aim at choosing the optimal topological order that158

minimizes the peak memory footprint [2]. We focus therefore on the peak local memory usage159

minimization task, which can be formulated as the following combinatorial optimization problem on160

a labeled DAG G = (V,E,m):161

min
σ∈TG

C(σ), C(σ) ≡ max(M1(σ), . . . ,M|V |(σ)), (1)

with the definitions162

Mt ≡ It−1 +m(σt), (2)

It = Mt −
∑
i∈St

mi, S ≡ {i : ∀(i, j) ∈ E, j ∈ σ1:t}, (3)

i.e. the memory usage at time t is given by the memory usage It−1 of the outputs which have not yet163

been consumed, at time t− 1, by downstream operations, plus the memory requirement of the output164

of operation σ(t). It is in turn obtained by subtracting from Mt the memory costs of nodes whose165

outgoing edges only connect to already scheduled nodes, i.e. nodes whose output was only required166

by already scheduled operations. Naturally, I0 = 0.167

4 Method168

We use an encoder-decoder architecture whose schematic is shown in figure 1. Our encoder is169

Topoformer, a novel GNN architecture, which derives an embedding for each node of the graph. The170

embeddings are used by the decoder which generates a distribution in the sequence space and finally171

the distribution can be converted to a sequence via different inference methods like sampling, greedy172

inference or beam search. Next, we describe each of the component in detail.173

4.1 Topoformer: topologically masked attention174

A Graph Neural Network (GNN) is a natural choice to encode our scheduling problem via embedding175

of the DAG nodes. All canonical GNN architectures operate by updating these embeddings via the176

aggregation of "messages" sent from the other nodes, usually in the form of some function of their177

own embedding [17]. Architectures mainly differ in how the set of sender nodes is constructed and178

the aggregation function is chosen. In a Graph Convolutional Network [24], the senders are the first179

neighbors of a node and the aggregation function is a weighted average, whilst in a vanilla Graph180

Attention Network [25], the senders are all the other nodes, but their contributions are aggregated181

via averaging with learned weights so as to account for their degree of relevance. When trying to182

apply such mechanisms on DAGs, a common point of contention is whether, and how in practice, the183

partial ordering encoded by it should reflect in the direction of travel of the messages [26, 21, 19].184

While disregarding the DAG structure entirely (as one would do in a vanilla GAT), does not appear185

wise, it might be too restrictive when it comes to our task. For example, nodes that are next to each186

other in the sequence might well be incomparable, i.e. without a path for messages between them.187

1We use "inputs" and "operands" interchangeably throughout the paper.

4

MHA
MHA

MHA
MHA

MHA
MHA

MHA

Topoformer encoder

Non-auto-Regressive
decoder

MLP
Topoformer layer

MLP

Figure 1: Our complete architecture for neural topological ordering. The shades of gray in the MHA
boxes are to highlight how attentions heads operate separately on the forward and backward version
of the first three graphs. The priorities (yi)

|V |
i=1 are represented by the red bars on the original DAG

and decoded into a sequence with its associated probability.

The combinatorial nature of the task also poses requirements; it is known [22, 5] that reasoning188

about CO problems on a graph requires the capacity to reason about the global structure of it,189

whilst architectures such as those proposed in [26, 21, 19] limit the set of sender nodes to a local190

neighborhood of the receiver node. In summary, our architecture must strike a compromise between191

accounting for global structure and local partial ordering information.192

Our Topoformer architecture meets these requirements. A vector xi of input features (see the appendix193

for details about its definition and dimensionality) is first turned into an initial node embedding h
(0)
i194

via a node-wise linear transformation, h(0)
i = Wxi + b. Subsequently, a succession of L attention195

layers, each of them consisting of a Multi-Head Attention (MHA) [25] sub-layer followed by one196

more node-wise MLP, updates these embeddings, similar to a vanilla Transformer [27]; however, we197

confer a topological inductive bias to these updates by having a separate group of attention heads198

masked by each of the following graphs induced by the original DAG:199

• Its transitive reduction (TR).200

• The directed graph obtained by removing the TR edges from the DAG: G\ETR(G).201

• The directed graph obtained by removing the edges of the DAG from its TC: TC(G)\E.202

• The backwards versions (i.e. with flipped edges) of each of the three above.203

• The undirected graph obtained by joining all incomparable pairs.204

By adding together these graphs, one would obtain the fully connected graph relative to the node205

set V , whereupon all nodes would attend to all nodes. Then effectively, the propagation rules of206

5

Topoformer are same as those of a vanilla transformer encoder,207

ĥ
(ℓ)

i =h
(ℓ−1)
i + concatj

[
MHAℓ,j

i

(
h
(ℓ−1)
1 , . . . ,h

(ℓ−1)
|V | ;M j

)]
, (4)

h
(ℓ)
i =ĥ

(ℓ)

i + MLP(ℓ)
(
ĥ
(ℓ)

i

)
, (5)

save for the presence of the mask M j , which ensures that head j only attends to its assigned graph208

among the seven listed above. Following [28], we also apply layer normalization [29] to the MHA209

and MLP inputs. The number of heads assigned to each graph can be chosen independently (setting210

it to zero means to not message-pass along the edges of the respective graph), or parameters can211

be tied among different MHAs. One should also remark how the MLP sub-layer allows the flow212

of information between different attention heads. All nodes are then able to influence each other’s213

representation, while anyway injecting a strong inductive bias based on the DAG structure.214

4.2 Decoder215

Once the embeddings of the nodes are generated, the decoder’s task is to derive a stochastic policy216

p(σ|G) over the valid topological orders of the graph. The most straightforward way is to take217

advantage of the chain rule of conditional probability to decompose the policy as a product218

p(σ|G) ≡
|V |∏
t=2

pθ(σt|σ1:t−1,h, G)× pθ(σ1|h, G), (6)

We could then sample a complete sequence by autoregressively choosing a new node at each step as219

done e.g. in [6]. This scheme is the most principled and expressive; however, when a NN is used as a220

function approximator for pθ, it also requires that |V | calls to this NN be performed, which limits its221

feasibility to relatively small graphs due to the amount of computation required.222

This makes it acceptable to sacrifice expressivity for run time, by employing a Non-Auto-Regressive223

(NAR) scheme which decouples the number of NN calls from the graph size. Similar to the approach224

of [12], we assign scheduling priorities yi ∈ R to the nodes, rather than scheduling probabilities. The225

priority for node i is derived by passing its final embedding through an MLP:226

yi = MLP
(
h
(L)
i

)
. (7)

These priorities are assigned with a single NN inference. The sequence itself is subsequently227

constructed by adding a new node at each step. Given the partial sequence σ1:i−1, the next node can228

only be selected from a subset S(σ1:i−1, G) of schedulable nodes, due to both the graph topology229

and choices made earlier in the sequence. Then, the distribution of the next node to be added at step i230

is given as follows:231

p(σt|σ1:t−1,h, G) =

{
exp(yσt)∑

j∈S(σ1:t−1,G) exp(yj)
if σi ∈ S(σ1:t−1, G)

0 otherwise
. (8)

Decoding methods: We use the following three methods to obtain the next node in the partial232

sequence from the distribution p(σt|σ1:t−1,h, G):233

1. Greedy: At each step t, select the node with the highest probability i.e. σt =234

argmaxσ̃t
p(σ̃t|σ1:t−1,h, G)235

2. Sampling: At each step t, sample from the next node distribution i.e. σt ∼236

p(σ̃t|σ1:t−1,h, G)237

3. Beam search with state-collapsing: We can also expand the partial sequences by using a238

beam search method where the score function is total probability of the partial sequence.239

We improve our beam search routine by making the following observation: suppose there240

are two partial sequences in consideration, σ1:t and σ̃1:t, such that both have scheduled241

the same set of nodes so far (but different order), and C(σ1:t) < C(σ̃1:t). Then, we can242

ignore the partial sequence σ̃1:t and only keep σ1:t in the beam search. This is because both243

partial sequences must schedule the same set of remaining nodes, and hence the set of future244

memory costs are identical for both σ1:t and σ̃1:t, but the current peak memory cost is higher245

for σ̃1:t. Thus, σ1:t dominates σ̃1:t in terms of achievable minimal peak memory usage.246

6

4.3 Training247

Our encoder-decoder architecture induces a distribution pθ(σ|G) on the set of topological orders for248

a given DAG G. The expected cost incurred is given by J(θ|G) = Epθ(σ|G) [C(σ(θ))]. We minimize249

the cost J(θ) = EG [J(θ|G)] via gradient descent using the REINFORCE gradient estimator [30, 13]250

as follows251

∇J(θ) = EG,pθ(σ|G) [(C(σ)− b(G))∇θ log pθ(σ|G)], (9)

where b(G) is a baseline meant to reduce the variance of the estimator. We follow [6] in setting it252

equal to the cost of a greedy rollout of a baseline policy on the graph G253

b(G) ≡ C(argmax
σ

pθ(σ|G)). (10)

5 Experiments254

We conduct experiments on a synthetic dataset of graphs which we refer to as "layered graphs", as255

well as a set of real-world computation graphs. We compare our approach with the following classic256

topological ordering baselines:257

- Depth/Breadth first sequencing - Find the topological order by traversing the graph in depth/breadth258

first manner according to the layout of the graph generated using pygraphviz.259

- Depth-first dynamic programming (DP)- Depth-first DP is a global depth-first method for searching260

the optimal sequence, with automatic backtracking when equivalent partial sequences are found; it261

retains the full sequence with minimum cost so far, and returns it if search does not complete before262

the prescribed timeout.263

- Approximate DP - In approximate DP, a beam of partial sequences are considered in parallel at264

each step, and for each only the next-step option with the lowest cost is retained in the beam at265

the subsequent step. This DP is also able to find the optimal sequence given enough memory and266

compute resources, but here we consider only an approximate version with beam size fixed to 105.267

- Random order - We generate 100 random topological orders, and pick the one with smallest cost.268

Please see the appendix for more detailed description of the baselines. Neural topo order Greedy,269

sample and BS denote the performance of our model in greedy, sampling and beam search inference270

mode respectively. We use a sample size and beam size of 16 sequences, of which the best one271

is subsequently picked, for all our experiments. Next, we describe in detail the results of the two272

experiments.273

5.1 Layered graphs274

In order to generate a large corpus of training data we come up with a way to synthetically generate275

graphs of a given size which have similar structure to the computation graphs of feed-forward neural276

networks. We call our synthetic graph family layered graphs, as these graphs comprise of well-defined277

layers of nodes. The nodes in a layer have connections to the nodes in the subsequent layer and can278

also have skip connections with nodes in layers farther down. The number of layers, number of node279

per layer, number of edges between subsequent layers, number of skip connections and memory280

utilization of the nodes are all generated randomly, and can be controlled by setting appropriate281

parameters. We refer the reader to the appendix for more details on layered graphs, including their282

generation algorithm and some visual examples.283

We train our model on 500-node layered graphs for 325 epochs, where in each epoch we generate a284

training set of 1000 new graphs. We test the performance of our model on a set of 300 unseen graphs285

of the same size, generated with the same method. We also evaluate the cross-size generalization286

performance of our trained model by testing it on graphs of size 1000 and 2000. We refer the reader287

to the appendix for more details on the training algorithm and model configuration.288

Figure 2 shows the performance vs. run time plot on layered graphs of size |V | = 500, 1000, and289

2000. We report the performance in terms of the % gap of peak memory utilization from the peak290

memory obtained via approximate DP, which we consistently observed to be the best-performing291

baseline. Note that the run time is plotted on a log-scale. We can observe that for 500-node graphs,292

our model beats all the baselines except approximate DP in terms of both the memory usage and run293

time. Our model is slightly worse than approximate DP from the memory usage perspective, but it294

runs 100x faster. We also observe that our model generalizes well to larger sized graphs. For the295

7

case of 2000-node graphs our model performs better than approximate DP in terms of peak memory296

usage, while being 4000x times faster. This shows that while approximate DP performs more poorly297

as graph size increases, our model is able to generalize to larger graphs by learning meaningful298

embeddings of the topological structure thanks to Topoformer, and to be extremely fast thanks to our299

NAR decoding scheme.

Figure 2: Average % gap from approximate DP vs average run time comparison on the test set of 300
layered graphs. Lower is better for both % gap and run time.

Table 1: Comparison of methods on the synthetic layered graph test set.

Algorithm
500- node graphs 1000-node graphs 2000-node graphs

% gap from run time % gap from run time % gap from run time
approx. DP [s] approx. DP [s] approx. DP [s]

Approximated DP 0 264.88 0 1561.17 0 8828.86

Depth-First DP 5.76 3600 3.84 3600 2.40 3600
(max. runtime=1H)
Random order 6.86 1.38 2.62 7.13 0.31 36.87
Depth-first seq. 12.9 2.45 7.1 10.91 3.57 51.32
Breadth-first seq. 20.94 2.43 11.31 10.87 6.42 51.52

Neural Topo Order
✓Greedy 4.32 0.6 0.48 1.19 -1.47 2.44
✓Sample 3.49 0.72 0.03 1.41 -1.68 2.87
✓Beam search 3.21 2.68 0.08 5.92 -1.66 14.74

300

5.2 Real-world graphs301

While our synthetic layered graphs are convenient for experimentation, we see value in also presenting302

results obtained from neural computation graphs used for commercial development of our artificial303

intelligence hardware and software products. Here we sample 115 representative graphs that have304

diverse architectures (classifiers, language processors, denoisers, etc.) and size (from a few dozen to305

1k nodes). We split this dataset into a training set and test set via a random 80− 20 split. We train306

our model for 500 epochs and report the performance on the unseen test set at the end of training in307

table 2. In order to ensure fair comparison of run times, we stratify the test set into 3 categories based308

on the graph size.309

Figure 3 shows the performance vs run time plot on the test set of real graphs. We observe that310

for real graphs the performance gap between the best baseline (approximate DP) and our model is311

remarkable. We can obtain sequences which are 50% better than approximate DP on average while312

also being almost 1000x faster on average. This proves the capability of our model to generalize and313

perform well on real-world computation workflows.314

8

Figure 3: Performance vs run time comparison for different approaches on test set of real computation
graphs. Performance is measured in average % gap from approximate DP.

Table 2: Comparison of methods on the real graph test set. Smaller % gap is better

Algorithm
200 - 500-node graphs 500 - 700-node graphs 700 - 1000-node graphs

% gap from run time % gap from run time % gap from run time
approx. DP [s] approx. DP [s] approx. DP [s]

Approximated DP 0 113.54 0 517.60 0 1131.61

Depth-First DP 62.18 3600 102.76 3600 50.57 3600
(max. runtime=1H)
Random order 469.34 0.25 376.16 1.24 116.24 2.40
Depth-first seq. 506.21 0.70 394.93 2.26 123.21 4.49
Breadth-first seq. 348.77 0.75 149.81 2.31 -35.55 4.86

Neural Topo Order
✓Greedy -17.57 0.42 -51.23 0.6 -68.97 0.83
✓Sample -21.53 0.44 -40.51 0.68 -61.46 0.97
✓Beam search -19.5 1.22 -57.34 2.58 -73.45 3.86

6 Conclusions315

In this work we propose an end-to-end machine learning method for the task of optimizing topological316

orders in a directed acyclic graph. Two key elements in our design are: (1) an attention-based GNN317

architecture named Topoformer that employs message passing that is both global and topologically-318

aware in directed acyclic graphs, (2) a non-autoregressive parametrization of the distribution on319

topological orders that enables fast inference. We demonstrated, for both synthetic and real-world320

graphs, the effectiveness of the method in tackling the problem of minimizing peak local memory321

usage for a compute graph – a canonical task in compiler pipelines. Said pipelines also include322

other tasks [12], chief amongst them the one of assigning operations to devices for execution. At323

the present stage, our method and dataset cannot be leveraged for solving these, or for end-to-end324

optimization of a whole pipeline. Extending our method to this more challenging setting is therefore325

a natural direction for future research.326

References327

[1] P. Toth and D. Vigo, Vehicle routing: problems, methods, and applications. SIAM, 2014.328

[2] B. H. Ahn, J. Lee, J. M. Lin, H.-P. Cheng, J. Hou, and H. Esmaeilzadeh, “Ordering chaos:329

Memory-aware scheduling of irregularly wired neural networks for edge devices,” Proceedings330

9

of Machine Learning and Systems, vol. 2, pp. 44–57, 2020.331

[3] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity.332

Courier Corporation, 1998.333

[4] G. Brightwell and P. Winkler, “Counting linear extensions is #p-complete,” in Proceedings334

Annual ACM Symposium on Theory of Computing, 1991, p. 175–181. [Online]. Available:335

https://doi.org/10.1145/103418.103441336

[5] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization: a337

methodological tour d’horizon,” European Journal of Operational Research, vol. 290, no. 2, pp.338

405–421, 2021.339

[6] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing problems!”340

in International Conference on Learning Representations, 2019. [Online]. Available:341

https://openreview.net/forum?id=ByxBFsRqYm342

[7] L. Xin, W. Song, Z. Cao, and J. Zhang, “NeuroLKH: Combining deep learning343

model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem,”344

in Advances in Neural Information Processing Systems, 2021. [Online]. Available:345

https://openreview.net/forum?id=VKVShLsAuZ346

[8] C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent, “Learning TSP requires rethinking gen-347

eralization,” in International Conference on Principles and Practice of Constraint Programming,348

2021.349

[9] A. Correia, D. E. Worrall, and R. Bondesan, “Neural simulated annealing,” 2022. [Online].350

Available: https://openreview.net/forum?id=bHqI0DvSIId351

[10] W. J. Cook, In pursuit of the traveling salesman. Princeton University Press, 2011.352

[11] A. Paliwal, F. Gimeno, V. Nair, Y. Li, M. Lubin, P. Kohli, and O. Vinyals, “Reinforced genetic353

algorithm learning for optimizing computation graphs,” in International Conference on Learning354

Representations, 2020. [Online]. Available: https://openreview.net/forum?id=rkxDoJBYPB355

[12] Y. Zhou, S. Roy, A. Abdolrashidi, D. Wong, P. Ma, Q. Xu, H. Liu, P. Phothilimtha, S. Wang,356

A. Goldie et al., “Transferable graph optimizers for ML compilers,” Advances in Neural357

Information Processing Systems, vol. 33, pp. 13 844–13 855, 2020.358

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.359

[14] G. Mena, D. Belanger, S. Linderman, and J. Snoek, “Learning latent permutations with gumbel-360

sinkhorn networks,” in International Conference on Learning Representations, 2018.361

[15] S. Linderman, G. Mena, H. Cooper, L. Paninski, and J. Cunningham, “Reparameterizing the362

Birkhoff polytope for variational permutation inference,” in Proceedings of the International363

Conference on Artificial Intelligence and Statistics, vol. 84, 09–11 Apr 2018, pp. 1618–1627.364

[Online]. Available: https://proceedings.mlr.press/v84/linderman18a.html365

[16] A. Gadetsky, K. Struminsky, C. Robinson, N. Quadrianto, and D. Vetrov, “Low-variance black-366

box gradient estimates for the plackett-luce distribution,” in Proceedings of the AAAI Conference367

on Artificial Intelligence, vol. 34, no. 06, 2020, pp. 10 126–10 135.368

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph369

neural networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1,370

pp. 4–24, 2020.371

[18] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,372

A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner et al., “Relational inductive biases, deep373

learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.374

[19] V. Thost and J. Chen, “Directed acyclic graph neural networks,” in International Conference on375

Learning Representations, 2020.376

[20] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-VAE: A variational autoencoder for377

directed acyclic graphs,” Advances in Neural Information Processing Systems, vol. 32, 2019.378

[21] M. Bianchini, M. Gori, and F. Scarselli, “Recursive processing of directed acyclic graphs,” in379

Neural Nets WIRN Vietri-01, 2002, pp. 96–101.380

[22] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu, “Do transformers really381

perform badly for graph representation?” Advances in Neural Information Processing Systems,382

vol. 34, 2021.383

10

https://doi.org/10.1145/103418.103441
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=VKVShLsAuZ
https://openreview.net/forum?id=bHqI0DvSIId
https://openreview.net/forum?id=rkxDoJBYPB
https://proceedings.mlr.press/v84/linderman18a.html

[23] R. Sato, “A survey on the expressive power of graph neural networks,” 2020. [Online].384

Available: https://arxiv.org/abs/2003.04078385

[24] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”386

in International Conference on Learning Representations, 2017.387

[25] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention388

networks,” in International Conference on Learning Representations, 2018. [Online]. Available:389

https://openreview.net/forum?id=rJXMpikCZ390

[26] R. Wang, Z. Hua, G. Liu, J. Zhang, J. Yan, F. Qi, S. Yang, J. ZHOU, and X. Yang, “A bi-level391

framework for learning to solve combinatorial optimization on graphs,” in Advances in Neural392

Information Processing Systems, 2021.393

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and394

I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems,395

vol. 30, 2017.396

[28] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and397

T. Liu, “On layer normalization in the transformer architecture,” in International Conference on398

Machine Learning. PMLR, 2020, pp. 10 524–10 533.399

[29] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” in NIPS Deep Learning400

Symposium, 2016. [Online]. Available: https://arxiv.org/pdf/1607.06450v1.pdf401

[30] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement402

learning,” Machine learning, vol. 8, no. 3, pp. 229–256, 1992.403

[31] A. B. Kahn, “Topological sorting of large networks,” Communications of the ACM, vol. 5,404

no. 11, pp. 558–562, 1962.405

Checklist406

1. For all authors...407

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s408

contributions and scope? [Yes] See section 5409

(b) Did you describe the limitations of your work? [Yes]410

(c) Did you discuss any potential negative societal impacts of your work? [No] We cannot411

foresee any possible negative impacts, due to the highly technical nature of the task412

under consideration.413

(d) Have you read the ethics review guidelines and ensured that your paper conforms to414

them? [Yes]415

2. If you are including theoretical results...416

(a) Did you state the full set of assumptions of all theoretical results? [N/A]417

(b) Did you include complete proofs of all theoretical results? [N/A]418

3. If you ran experiments...419

(a) Did you include the code, data, and instructions needed to reproduce the main experi-420

mental results (either in the supplemental material or as a URL)? [No] The code and421

the data are proprietary. We do include clear instructions on how our synthetic graph422

dataset is generated in the appendix.423

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they424

were chosen)? [Yes] Please see the appendix for training details425

(c) Did you report error bars (e.g., with respect to the random seed after running exper-426

iments multiple times)? [Yes] We report the standard deviation of the % gap from427

approximate DP and the run time for each method in the appendix428

(d) Did you include the total amount of compute and the type of resources used (e.g., type429

of GPUs, internal cluster, or cloud provider)? [Yes] Please see the appendix for details430

on compute resources431

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...432

(a) If your work uses existing assets, did you cite the creators? [N/A]433

11

https://arxiv.org/abs/2003.04078
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/pdf/1607.06450v1.pdf

(b) Did you mention the license of the assets? [N/A]434

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]435

436

(d) Did you discuss whether and how consent was obtained from people whose data you’re437

using/curating? [N/A]438

(e) Did you discuss whether the data you are using/curating contains personally identifiable439

information or offensive content? [N/A]440

5. If you used crowdsourcing or conducted research with human subjects...441

(a) Did you include the full text of instructions given to participants and screenshots, if442

applicable? [N/A]443

(b) Did you describe any potential participant risks, with links to Institutional Review444

Board (IRB) approvals, if applicable? [N/A]445

(c) Did you include the estimated hourly wage paid to participants and the total amount446

spent on participant compensation? [N/A]447

12

448

Appendix449

Table of Contents
450
451

A Layered graphs dataset 13452

B Ablation studies 16453

B.1 Changing the Encoder . 16454

B.2 Changing the Decoder . 17455

C Training and Model details 18456

C.1 Training . 18457

C.2 Model architecture . 18458

C.3 Baselines . 18459

C.4 Baseline policy . 19460

C.5 Input features and initial node embedding . 19461

462
463464

A Layered graphs dataset465

We report here the details of the generation algorithm we use to create our dataset. It is not the466

first time that a synthetic dataset of graphs is used to train and test an ML framework on a compiler467

task, as this was already done in ref. [11]. However, the models therein used were generic random468

graph models (e.g. Erdos-Renyi), rather than a model explicitly tailored to reproduce NN-like469

computation graphs. We develop such a model, and we release its details with the intent of both470

ensuring reproducibility of our results, as well as of providing tool that we hope will be picked up by471

researchers interested in compiler problems, as well as more general sequence optimization task on472

DAGs.473

The algorithm builds a graph by organizing a fixed number |V | of nodes into well-defined layers, and474

then placing edges between subsequent layers, as well as skip connections that skip at least one layer.475

While the number of nodes is fixed by the user, the target number of layers L depends on the width476

factorW of the graph. A width factor of 0 would result in a one-dimensional chain graph, whilst a477

width factor of 1 in a graph with a single, wide layer,478

L =

⌈√
|V |

(
1

W
− 1

)⌉
, (11)

where ⌈·⌉ is the ceiling function. In order to promote architectural variability within the dataset,479

we choose to randomly draw a new width factor,W ∼ U (0.25, 0.5), for each graph, with U(a, b)480

denoting the uniform distribution in the [a, b] interval. Subsequently, the number of nodes to assign481

to each layer ℓ is also an integer randomly drawn from a uniform distribution482

Nℓ ∼ U (⌈|V |/L (1− σN)⌉, ⌊|V |/L (1 + σN)⌋) , (12)

with σN being a user-defined variability parameter, and ⌊·⌋ is the floor function. We stress that both483

L and Nℓ are just target values, since we wish to keep |V | fixed: this layer-by-layer node addition484

process is stopped as soon as the graph has the number of nodes |V | required, which might lead to485

the number of layers and nodes per layer being ultimately different from their respective targets. The486

pseudocode for this procedure is reported in algorithm 1.487

After the layers are set up, the algorithm proceeds to assign edges between adjacent layers. As488

an example, let us assume that N1 and N2 are the numbers of nodes for two adjacent layers, with489

N2 < N1. The maximal number of edges between these two layers, corresponding to a fully-490

connected, MLP-like topology, would be N1 ×N2. Since we want each node to have at least one491

ingoing and one outgoing connection (except for those in the first and last layers), the minimal492

13

Algorithm 1: Node-assignment algorithm for layered graphs.
Output: A layered graph G = (V,) without edges
Input: Total number of nodes |V |, number-of-nodes-per-layer variability σN
Data: layer index ℓ, node index n, node counter N , target number Nℓ of nodes for layer ℓ
ℓ← 0;
N ← 0;
while True do
Nℓ ∼ U (⌈|V |/L (1− σN)⌉, ⌊|V |/L (1 + σN ⌋));
for n ∈ [1,Nℓ] do

if N ≥ |V | then
break;

add node n to graph G;
add node n to layer ℓ;
N ← N + 1;

end
ℓ← ℓ+ 1

end

number of connections must be max(N1,N2) = N1. The user can interpolate between these two493

extrema by tuning the edge density parameter ρE , with the number of edges to place between the two494

layers being ultimately equal to495

|E|(ℓi,ℓi+1) = (Nℓi ×Nℓi+1)ρE + (1− ρE)max(Nℓi ,Nℓi+1). (13)
This budget of edges is subsequently distributed among the nodes in the larger layer (layer 1 in our496

example), with them being assigned to the node with the smallest number of so-far-assigned edges497

(ties are broken randomly), until it is exhausted. What then remains to do is connecting all the so498

assigned edges to nodes in the other layer (layer 2 in our example above). We choose these destination499

nodes in a such a way that, if the layers were visualized as being centered one above the other, with500

the larger layer at the top, the edges assigned to a node end up more or less equally spaced in 2-d cone501

below it. This procedure is repeated for every pair of adjacent layers, as we report in algorithm 2.502

Skip connections, i.e. edges skipping at least one layer, which are often found in modern NN503

architectures, are then added to the graph. The total number of skip connections to add is fixed as504

NS = |E| ρS
(1− ρS)

, (14)

where |E| is the total number of edges in the graph so far, and ρS a user-defined skip connection505

density. For each skip connection, we randomly draw a source layer among those between the first506

and the third-to-final ones (since skip connections must skip at least one layer). The target layer507

number is then also drawn at random between the source layer number +2, and the final layer (both508

included). One must then assign a source and a target node within each of these layers. We just select509

the source node at random within the source layer, and then assign the target node in such a way510

that it would be more or less directly below the source node if the graph were visualized on a 2-d511

plane. The pseudocode of this procedure is reported in algorithm 3, and figure 4 shows three example512

instances of layered graphs created with our algorithm.513

Finally, we specify the assignment of memory costs to the nodes. In the layered graph model, we514

have both output memory costs (mi)
|V |
i=1 and parameter costs (pi)

|V |
i=1, where the output cost is the515

memory usage of the output of an operation, and the parameter cost the one of a variable necessary to516

execute the operation; for example, if the operation at node i were a matrix multiplication, y = Mx,517

oi would be the memory usage of y and pi the one of the matrix M . The parameter cost of operation518

σt during a sequence is added to the memory usage at time t, but not to the cost at subsequent steps519

since the memory associated to it can be de-allocated as soon as the operation has been executed.In520

particular, the memory utilization cost Mt in (2) gets modified to the following:521

Mt = It−1 +m(σt) + p(σt) (15)
where It is defined in (3). Both costs are randomly drawn from a simple mixture of Gaussians522

GMM(w, µ, σ) ≡
∑4

i=1 wiN (µi, σi),523

mi ∼ GMM(w, µ, σ), pi ∼ GMM(w, µ, σ). (16)

14

Algorithm 2: Edge-assignment algorithm for layered graphs.
Output: A layered graph G = (V,E) with edges but no skip connections.
Input: A layered graph G = (V,) without edges, edge density ρE
Data: Number |E|(ℓi,ℓj) of edges between layers ℓi and ℓj . cn is a counter of edges incoming or

outgoing from node n
for ℓ1 ∈ graph layers do

ℓ2 = ℓ1 + 1;
|E|(ℓ1,ℓ2) = (Nℓ1 ×Nℓ2)ρE + (1− ρE)max(Nℓ1 ,Nℓ2) (rounded to the closest integer);
if N1 ≥ N2 then

ℓs ← ℓ1, ℓt ← ℓ2;
else

ℓs ← ℓ2, ℓt ← ℓ1;
end
for n ∈ ℓs do

cn ← 0;
end
while

∑
n∈ℓs

cn < |E|(ℓ1,ℓ2) do
S ← argmin cn;
Pick i randomly from set S;
ci ← ci + 1;

end
for n ∈ [0,Nℓs − 1] do

if Nℓs = 1 then
nc = 0;

else
nc = n× Nℓt−1

Nℓs−1 set "center node," rounded to the nearest integer
end
for i ∈ [0, cn − 1] do

nt = (nc − (cn − 1)//2) + [0, cn − 1] (a range centered at nc);
Shift the range nt up/down such that no index is less than 0 or greater than Nℓt − 1 ;
for j ∈ nt do

add one edge between node n of layer ℓs and node j of layer ℓt
end

end
end

end

Figure 4: Three example graphs from the layered graph family with (from left) 25, 50, and 100 nodes,
generated using the algorithm we describe in the text. One can clearly make out the layered structure
and easily remark the presence of skip connections.

To align the costs assignment with the real world computation graphs, instead of sampling the memory524

costs for each node n, we sample one output cost ml and parameter cost pl for each layer l and assign525

15

Algorithm 3: Skip connection-assignment algorithm for layered graphs.
Output: A layered graph G = (V,E) with both connections between adjacent layers, and skip

connections
Input: A layered graph G = (V,E) with edges between adjacent layers but no skip connections,

skip connection density ρS
Data: number of layers L, number of edges |E|
if L<3 then

break; /* cannot have skip connections with fewer than 3 layers */

NS = ⌈|E| ρS

(1−ρS)⌉;
for i ∈ [0,NS) do

ℓs ← a layer at random between the first and third-to-last (both included);
ℓt ← a layer at random between layer number ℓs + 2 and the last (both included);
xs ∼ U(0, 1);
y ∼ U(0, 1);
xt = xs + 0.2× y;
xt = min(xt, 0.999); /* ensure that xt ∈ [0, 1) */
add an edge between node ⌊xsNℓs⌋ of layer ℓs and node ⌊xtNℓt⌋ of layer ℓt

end

the costs ml, pl to each node in layer l. This is because many real world computation graphs are a526

tiled version of the original precedence graph of compute nodes where each node is broken down527

into a layer of nodes with similar shape and parameter requirements. This concludes the description528

of our dataset generation algorithm. For the sake of reproducibility, we report below the value we529

took for all the user-defined parameters mentioned in this section:530

• Variability of number of nodes per layer σN = 0.75531

• Edge density ρE = 0.2532

• Skip connection density ρS = 0.14533

• Means of the Gaussian mixture (µ1, µ2, µ3, µ4) = (0.5, 1, 3, 5)534

• Standard deviations of the Gaussian mixture (σ1, σ2, σ3, σ4) = (0.5, 1, 1, 1)535

• Weights of the Gaussian mixture (w1, w2, w3, w4) = (0.3, 0.3, 0.3, 0.1)536

B Ablation studies537

In order to measure the effectiveness of our architecture we perform ablation experiments to study538

the effect of changing the encoder (Table 3), changing the decoder to an auto-regressive decoder and539

changing both the encoder and the decoder (Table 4).540

B.1 Changing the Encoder541

We conduct experiments by using an MLP and fully connected transformer as an encoder architecture542

to quantify the effectiveness of our topoformer architecture. In order to align topoformer architecture543

with traditional GNNs, we also test the performance of topoformer architecture by changing its544

configuration such that message passing is only done on the edges and the corresponding backward545

edges of the input DAG. This can be achieved by setting the number of heads to be 0 for the graph546

obtained by removing the edges of the DAG from its TC, its backward version and the undirected547

graph of incomparable pair of nodes. We also tie the parameters of the heads corresponding to the548

forward edges and tie the parameters of the heads corresponding to the backward edges. We keep the549

decoder fixed to our non-autoregressive decoder for these experiments.550

We train each model on the layered graph dataset of 500 node graphs. We evaluate the performance551

of the trained model on the test set (300 graphs) of 500 node and 1000 node graphs. We use a552

sample size and beam width of 16 for evaluation on both 500 and 1000 node graphs. The MLP and553

transformer use the same number of layers and hidden dimension as the topoformer specified in554

16

Table 3: Comparison of different encoder architectures. Topoformer with MP (message passing) on
DAG corresponds to forward and backward message passing only on the input DAG using topoformer.

Algorithm
500-node graphs 1000-node graphs

% gap from run time % gap from run time
approx. DP [s] approx. DP [s]

MLP
✓Greedy 8.31 ± 0.76 0.58 ± 0.0 2.95 ± 0.48 1.52 ± 0.01
✓Sample 4.41 ± 0.50 0.67 ± 0.0 0.68 ± 0.35 1.84 ± 0.02
✓Beam search 6.5 ± 0.69 2.47 ± 0.01 2.43 ± 0.49 7.62 ± 0.07

Fully connected Transformer
✓Greedy 8.46 ± 0.72 0.69 ± 0.01 3.09 ± 0.46 1.3 ± 0.01
✓Sample 4.72 ± 0.52 0.8 ± 0.01 0.85 ± 0.37 1.55 ± 0.02
✓Beam search 6.52 ± 0.72 2.98 ± 0.03 2.09 ± 0.47 6.49 ± 0.07

Topoformer with MP on DAG (Ours)
✓Greedy 4.82 ± 0.55 0.73 ± 0.01 0.76 ± 0.36 1.62 ± 0.02
✓Sample 3.67 ± 0.52 0.85 ± 0.01 0.21 ± 0.36 1.99 ± 0.02
✓Beam search 3.68 ± 0.57 3.03 ± 0.03 0.35 ± 0.37 8.1 ± 0.08

Full Topoformer (Ours)
✓Greedy 4.31 ± 0.56 1.04 ± 0.01 0.47 ± 0.36 1.51 ± 0.01
✓Sample 3.35 ± 0.52 1.21 ± 0.01 -0.01 ± 0.35 1.8 ± 0.02
✓Beam search 3.08 ± 0.51 4.15 ± 0.02 0.05 ± 0.36 7.4 ± 0.07

appendix C. We run the inference on our test set of 300 graphs 10 times for each model to be more555

precise in our run time calculations. We report the mean % gap from approximate DP and the mean556

run time across all the graphs and trials along with their 95% confidence interval.557

Table 3 shows the performance of different encoder architectures. It can be observed that both558

versions of our topoformer architecture have a superior performance than MLP and fully connected559

transformer for both graph sizes. Moreover, full topoformer (message passing on all the seven graphs560

listed in section 4.1) has a better memory cost performance than topoformer with message passing561

only the forward and backward edges of the DAG. This shows the benefit of global message passing562

between all the nodes which is enabled by the full topoformer.563

B.2 Changing the Decoder564

We compare the performance of our architecture with the model which uses topoformer as an encoder565

but uses an auto-regressive decoder. We adapt the decoder designed for the TSP problem [6] for566

our memory-minimization problem. The decoder of [6] uses a notion of context node for decoding567

and at each decoding step using a series of multi-head attention with the context node arrives at568

the distribution of the next node to be selected for the order. We modify the masking procedure in569

the decoder of [6] to mask out all the nodes which are not present in the set of feasible next nodes570

S(σ1:t−1, G).571

We also conduct an experiment by changing both the encoder and decoder by adapting the model of572

[6] to our problem. We adapt the auto-regressive decoder of [6] as described above. [6] uses a fully573

connected transformer as an encoder since the underlying graph in TSP is a fully connected graph.574

We modify the encoder of [6] to do message passing only on the edges of our input DAG so that it575

can exploit the topological structure of the graph in the encoding stage. We refer to this model as576

"GNN encoder + AR decoder" in table 4.577

We train both the models: "GNN encoder + AR decoder" and "Topoformer + AR decoder" on the578

layered graph dataset of 500 node graphs. We evaluate the performance of the trained model on579

the test set (300 graphs) of 500 node and 1000 node graphs. We use a sample size and beam width580

of 16 for 500 node graphs and a sample size and beam width of 8 for 1000 node graphs. We use581

17

Table 4: Comparison with Auto-regressive decoding

Algorithm
500-node graphs 1000-node graphs

% gap from run time % gap from run time
approx. DP [s] approx. DP [s]

GNN encoder + AR decoder
✓Greedy 6.13 ± 0.58 1.66 ± 0.01 1.84 ± 0.39 3.34 ± 0.02
✓Sample 4.71 ± 0.56 1.76 ± 0.01 1.38 ± 0.37 3.59 ± 0.02
✓Beam search 4.87 ± 0.61 4.01 ± 0.02 2.09 ± 0.41 7.90 ± 0.05

Topoformer + AR decoder
✓Greedy 4.43 ± 0.55 1.53 ± 0.01 0.53 ± 0.35 3.05 ± 0.02
✓Sample 3.33 ± 0.51 1.7 ± 0.01 0.05 ± 0.35 3.38 ± 0.02
✓Beam search 3.14 ± 0.52 4.27 ± 0.04 0.13 ± 0.36 7.90 ± 0.05

Topoformer + NAR decoder (Ours)
✓Greedy 4.31 ± 0.56 1.04 ± 0.01 0.47 ± 0.36 1.53 ± 0.01
✓Sample 3.35 ± 0.52 1.21 ± 0.01 0.09 ± 0.35 1.78 ± 0.01
✓Beam search 3.08 ± 0.51 4.15 ± 0.02 0.2 ± 0.36 5.57 ± 0.05

a smaller sample size for 1000 node graphs due to GPU memory issues with the auto-regressive582

decoder approaches.583

Table 4 shows the mean and the 95% confidence interval of the % gap from approximate DP and584

run time for the three approaches on 500 and 1000 node graphs. We note that the performance of585

topoformer with AR decoder is quite close to our model for both 500 and 1000 node graphs. However,586

our model can run inference 2x faster than topoformer with AR decoder on 1000 graphs nodes (in587

greedy mode). Also, our model outperforms the adaptation of [6] attention based GNN encoder and588

AR decoder to our problem both in terms of memory cost of sequence and run time. This shows the589

merit of our topoformer architecture over using a traditional GNN architecture which does message590

passing only on the input graph.591

C Training and Model details592

C.1 Training593

We train our model using the ADAM optimizer with the initial learning rate of 10−4 and learning594

rate decay factor of 0.996 per epoch. We use a batch size of 8 for training our model. The training595

and testing of our model is done on a single GPU (Nvidia Tesla V-100) with 32 GB memory.596

597

C.2 Model architecture598

We use topoformer with number of layers nlayers = 4, embedding dimension d = 256, number599

of heads nheads = 10 for each MHA operation on the seven graphs listed in section 4.1 and600

the query and value dimension of 64 for each head of MHA. The MLP used in (5) consists of601

a linear layer (dinput = doutput = 256) with GELU activation followed by another linear layer602

(dinput = doutput = 256). The MLP used in (7) to generate the node priorities consists of a603

linear layer (dinput = doutput = 256) with RELU activation followed by another linear layer604

(dinput = 256, doutput = 1). In order to restrict the range of priority values, we also normalize the605

priorities of the nodes used for the decoding as follows:606

ỹi = α× yi −mean(y)
std(y)

(17)

where y =
[
y1, y2, . . . , y|V |

]
and α is a hyperparamter. We set α = 5 for our experiments.607

18

C.3 Baselines608

We provide more details about the dynamic programming baselines used in our experiments to609

compare the performance of our model610

• Depth-First Dynamic Programming (DP). Topological orders are generated in a depth-first611

manner (with backtracking) where next node is picked randomly among available candidates.612

Branch exploration is terminated if 1) the same set of nodes are in the partial sequence as613

a branch that has been already explored - only the lowest cost partial sequence is retained614

(dynamic programming approach), and 2) if the current partial cost is already higher than615

the lowest cost of any full sequence already found (cost increases monotonically). This616

algorithm will eventually find the global optimal order, though the run time for doing so is617

expected to be at least exponential in |V| [2]; it is however able to return at least one complete618

sequence in time O(|V |+ |E|) [31] in the worst case, same as DFS. In our implementation,619

we set a wall time of one hour and pick the best complete path found. We observe that for620

our synthetic layered graphs, if the graph size is as small as |V | = 100, we can actually find621

the optimal sequence in most cases within the one hour budget. We ran this algorithm on a622

CPU machine with Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz623

• Approximate DP. We define the state space S as the space including a set of all nodes624

for each partial sequence (which ignores the ordering information) and the action space625

for each state as the space of all possible next-node choices at that state (based on the626

topological structure). As an example for the state representation, if there is a partial627

sequence 5 → 2 → 4 → 3 → 1, the corresponding state is {1, 2, 3, 4, 5}. With the628

empty set ∅ being an initial state (meaning that no node has been added), we consider a629

state transition model that adds an action (a node) to a state and creates a successor state.630

Specifically, we can partition S into S0 ∪ S1 ∪ · · · ∪ S|V |, where St is the space including a631

set of all nodes for each length-t partial sequence (note that S0 = {∅}). At every iteration632

t = 0, 1, ..., |V | − 1, the algorithm takes St and assumes that we have (1) the minimum cost633

and (2) the best partial sequence for each state in St, where the minimum cost is over all634

feasible partial sequences corresponding to the state. Then, for each successor state in St+1,635

the algorithm computes the minimum cost and the best partial sequence for reaching out636

that state.637

It should be noted that the algorithm gives an exact solution if the amount of time and638

memory resource is sufficient, e.g., an exact solution can be found for 100-node graphs.639

However, due to the practical resource limitation, we only keep top-K elements of St+1 for640

each iteration t based on costs. We use the beam size K = 100, 000 for all experiments, and641

Nvidia Tesla V-100 is used for parallel computation across multiple states for each iteration.642

C.4 Baseline policy643

The baseline b(G) used in the policy gradient update is generated using the greedy rollout of the644

baseline policy. The baseline policy is also an instance of our model which is updated regularly645

during the course of training. At the end of each epoch, if the performance of the model being trained646

becomes better than the baseline model (in greedy inference mode) on a set of validation graphs then647

we copy the weights of the trained mode to the baseline model.648

C.5 Input features and initial node embedding649

We use the following as the input features xj for node j:650

1. Output memory cost mj and parameter memory cost pj651

2. In-degree and out-degree of the node652

3. Minimum and maximum distance (in terms of hop count) of the node from the source and653

target node654

We normalize each entry of the input node feature across the nodes so that the features lie between 0655

and 1 making it invariant with respect to the graph size. To be precise, the ith entry of the normalized656

19

input feature of node j is given as x̄i
j =

xi
j

maxn xi
n

. Finally, the initial embedding h0
j for node j is657

obtained by passing x̄j through a linear layer.658

20

	Introduction
	Related work
	Background
	Topological orders and DAGs
	Peak Memory Minimization

	Method
	Topoformer: topologically masked attention
	Decoder
	Training

	Experiments
	Layered graphs
	Real-world graphs

	Conclusions
	Appendix
	 Appendix
	Layered graphs dataset
	Ablation studies
	Changing the Encoder
	Changing the Decoder

	Training and Model details
	Training
	Model architecture
	Baselines
	Baseline policy
	Input features and initial node embedding

