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A Examples of computations

A.1 Step by step example : autonomous control

To measure whether the system

dx1(t)

dt
= sin(x2

1) + log(1 + x2) +
atan(ux1)

1 + x2

dx2(t)

dt
= x2 � ex1x2 ,

is controllable at a point xe, with asymptotic control ue, using Kalman condition we need to

1. differentiate the system with respect to its internal variables, obtain the Jacobian
A(x, u)

A(x, u) =

 
2x1 cos(x2

1) +
u(1+x2)�1

1+u2x2
1

(1 + x2)�1 � atan(ux1)
(1+x2)2

�x2ex1x2 1� x1ex1x2

!

2. differentiate the system with respect to its control variables, obtain a matrix B(x, u)

B(x, u) =

✓
x1((1 + u2x2

1)(1 + x2))�1

0

◆

3. evaluate A and B in xe = [0.5], ue = 1

A(xe, ue) =

✓
1.50 0.46
�0.64 0.36

◆
, B(xe, ue) =

✓
0.27
0

◆

4. calculate the controllability matrix given by (2).

C = [B,AB]((xe, ue)) =

✓
0.27
0

◆
,

✓
1.50 0.46
�0.64 0.36

◆✓
0.27
0

◆�
=

✓
0.27 0.40
0 �0.17

◆

5. output n�d, with d the rank of the controllability matrix, the system is controllable
if n� d = 0

n� rank(C) = 2� 2 = 0 : System is controllable in (xe = [0.5], ue = 1)

6. (optionally) if n� d = 0, compute the control feedback matrix K as in (3)

K = (�22.8 44.0) .

A.2 Step by step example: stability of linear PDE

To find the existence and behavior at infinite time of a solution, given a differential operator
Dx and an initial condition u0 we proceed as follows

1. find the Fourier polynomial f(⇠) associated to Dx

Dx = 2@2
x0

+ 0.5@2
x1

+ @4
x2

� 7@2
x0,x1

� 1.5@x1@
2
x2
,

f(⇠) = �4⇡⇠20 � ⇡⇠21 + 2⇡⇠42 + 14⇡⇠0⇠1 + 3i⇡⇠1⇠22

2. find the Fourier transform ũ0(⇠) of u0

u0(x) = e�3ix2x�1
0 sin(x0)e2.5ix1e�x2

2 ,

eu0(⇠) = ⇡3/21[�(2⇡)�1,(2⇡)�1](⇠0)�0(⇠1 � 2.5(2⇡)�1)e�⇡2(⇠2+3(2⇡)�1)2

3. find the set F of frequency ⇠ for which ũ0(⇠) 6= 0

F = [�(2⇡)�1, (2⇡)�1]⇥ {2.5(2⇡)�1}⇥ (�1,+1)
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4. minimize f(⇠) on F
minF (f(⇠)) = �22.6

5. output (0,0) if this minimum is infinite, (1,0) is finite and negative, (1,1) if finite
and positive. (optionally) output F
Out = (1, 0) : there exists a solution u ; it does not vanish at t ! +1

A.3 Examples of inputs and outputs

A.3.1 Local stability

System Speed of convergence
at xe = [0.01]

8
>>>><

>>>>:

d
dtx0 = � x1

atan (8x0x2)
+ 0.01

atan (0.0008)

d
dtx1 = � cos (9x0) + cos (0.09)

d
dtx2 = x0 �

p
x1 + x2 � 0.01 + 0.1

p
2

�1250

8
>>>>>>><

>>>>>>>:

d
dtx0 = � 2x2

x0�2x2(x1�5) + 0.182

d
dtx1 = (x1 + (x2 � ex1) (tan (x0) + 3)) (log (3) + i⇡)

+3.0 log (3) + 3.0i⇡

d
dtx2 = asin

⇣
x0 log

⇣
� 4

x1

⌘⌘
� asin (0.06 + 0.01i⇡)

�0.445

8
>>>>><

>>>>>:

d
dtx0 = ex1+e

� sin (x0�e2)
� 1.01ee

� sin (0.01�e2)

d
dtx1 = 0.06� 6x1

d
dtx2 = �201 + x0+2

x2
0x2

6.0 (locally stable)

8
>>>>>><

>>>>>>:

d
dtx0 = x2e�x1 sin (x1)� 9.9 · 10�5

d
dtx1 = 7.75.10�4 � ex2 atan (atan (x1))

4ex2+9

d
dtx2 = (x1 � asin (9)) e�

x0
log (3)+i⇡

� (0.01� asin (9)) e�
0.01

log (3)+i⇡

�0.0384

8
>>>>>>><

>>>>>>>:

d
dtx0 = �x0(7� 4p7

p
i)

9 � x1 + 0.0178� 0.00111 4
p
7
p
i

d
dtx1 = �0.000379 + e�

63
cos ((x2�9) atan (x1))+7

d
dtx2 = �x0 � x1 + asin

⇣
cos (x0) +

x2
x0

⌘

�1.55 + 1.32i

3.52.10�11 (locally stable)
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A.3.2 Controllability: autonomous systems

Autonomous system
Dimension of

uncontrollable space
at xe = [0.5], ue = [0.5]

8
>>>>>>>><

>>>>>>>>:

dx0
dt = � asin

⇣
x1
9 � 4 tan (cos (10))

9

⌘

� asin
⇣

4 tan (cos (10))
9 � 0.0556

⌘

dx1
dt = u� x2 + log

⇣
10 + tan (x1)

u+x0

⌘
� 2.36

dx2
dt = 2x1 + x2 � 1.5

0 (controllable)

8
>>>><

>>>>:

dx0
dt = u� asin (x0)� 0.5 + ⇡

6

dx1
dt = x0 � x1 + 2x2 + atan (x0)� 1.46

dx2
dt = 5x2

cos (x2)
� 2.85

1

8
>>>><

>>>>:

dx0
dt = 6u+ 6x0 � 6x1

x0

dx1
dt = 0.75 + x2

1 � cos (u� x2)

dx2
dt = �x2

0 + x0 + log (ex2)� 0.75

2

8
>>>>>>><

>>>>>>>:

dx0
dt = +x0

⇣
cos
⇣

u
x0+2x2

⌘
+ asin (u)

x1

⌘

�0.5 cos
�
1
3

�
� ⇡

6

dx1
dt = ⇡x1

4(x2+4) �
⇡
36

dx2
dt = 2.5� 108e0.5 � 12x0x2 + x1 + 108eu

0 (controllable)

8
>>>>><

>>>>>:

dx0
dt = �10 sin

⇣
3x0

log (8) � 22
⌘
� 6.54

dx1
dt = sin

⇣
9 + �x1�4

8x2

⌘
� 1

dx2
dt = 4 tan

�
4x0
u

�
� 4 tan (4)

1
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A.3.3 Controllability: non-autonomous systems

Non-autonomous system Local controllability
at xe = [0.5], ue = [0.5]

8
>><

>>:

dx0
dt = (x2 � 0.5) e� asin (8)

dx1
dt = et+0.5 � et+x1 + �x1+e

x0
u

x2
+ 1� 2e

dx2
dt = t(x2 � 0.5)

⇣
asin (6) +

p
tan (8)

⌘ False

8
>>><

>>>:

dx0
dt = atan (

p
x2)

x0�1 � 2 atan
⇣p

2
2

⌘

dx1
dt = � u

�p
x0x1+3 + x2 + log (x0)

+ log(2)� 0.5 + (1/(6�
p
2))

dx2
dt = �70t(x0 � 0.5)

False

8
><

>:

dx0
dt = x0+7

sin (x0eu)+3

dx1
dt = � 9x2e

� sin (
p

log (x1))
x0

dx2
dt = t+ asin (tx2 + 4)

False

8
<

:

dx0
dt = 0.5� x2 + tan (x0)� tan (0.5)
dx1
dt = t

x1(t+cos (x1(t+u))) �
t

0.5(t+cos (0.5t+0.25))
dx2
dt = 2.75� x0 (u+ 4)� x0

True

8
>>><

>>>:

dx0
dt = u (u� x0 � tan (8)) + 0.5(tan (8))
dx1
dt = � 6t(�2+⇡

2 )
x0x1

� 12t (4� ⇡)
dx2
dt = �7(u� 0.5)� 7 tan (log (x2))

+7 tan (log (0.5))

True

A.3.4 Stability of partial differential equations using Fourier transform

PDE @tu+Dxu = 0 and initial condition Existence of a solution,
u ! 0 at t ! +1

8
<

:

Dx = 2@x0

�
2@4

x0
@4
x2

+ 3@3
x1

+ 3@2
x1

�

u0 = �0(�18x0)�0(�62x2)e89ix0�8649x2
1+89ix1�59ix2

False , False

8
<

:

Dx = �4@4
x0

� 5@3
x0

� 6@2
x0
@2
x1
@2
x2

+ 3@2
x0
@x1 � 4@6

x1

u0 = (162x0x2)�1
�
ei(�25x0+96x2) sin (54x0) sin (3x2)

� True , False

8
>><

>>:

Dx = @x1

�
4@5

x0
@x1 + 4@2

x0
� 9@x0@

6
x2

+2@3
x1
@5
x2

� 4@3
x1
@4
x2

� 2@x2

�

u0 = (33x0)�1
⇣
e86ix0�56ix1�16x2

2+87ix2 sin (33x0)
⌘ True , False

8
><

>:

Dx = �6@7
x0
@2
x2

+ @5
x0
@6
x2

� 9@4
x0
@2
x1

� 9@4
x0
@4
x2

+7@2
x0
@6
x2

+ 4@2
x0
@5
x2

� 6@6
x1

u0 = �0(88x1)e�2x0(2312x0+15i)

True , True
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B Mathematical definitions

B.1 Notions of stability

Let us consider a system
dx(t)

dt
= f(x(t)). (7)

xe is an attractor, if there exists ⇢ > 0 such that

|x(0)� xe| < ⇢ =) lim
t!+1

x(t) = xe. (8)

But, counter intuitive as it may seem, this is not enough for asymptotic stability to take place.

Definition B.1. We say that xe is a locally (asymptotically) stable equilibrium if the two
following conditions are satisfied:

(i) xe is a stable point, i.e. for every " > 0, there exists ⌘ > 0 such that

|x(0)� xe| < ⌘ =) |x(t)� xe| < ", 8 t � 0. (9)

(ii) xe is an attractor, i.e. there exists ⇢ > 0 such that

|x(0)� xe| < ⇢ =) lim
t!+1

x(t) = xe. (10)

In fact, the SMT of Subsection 3.1 deals with an even stronger notion of stability, namely
the exponential stability defined as follows:
Definition B.2. We say that xe is an exponentially stable equilibrium if xe is locally stable
equilibrium and, in addition, there exist ⇢ > 0, � > 0, and M > 0 such that

|x(0)� xe| < ⇢ =) |x(t)|  Me��t|x(0)|.

In this definition, � is called the exponential convergence rate, which is the quantity predicted
in our first task. Of course, if xe is locally exponentially stable it is in addition locally
asymptotically stable.

B.2 Controllability

We give here a proper mathematical definition of controllability. Let us consider a non-
autonomous system

dx(t)

dt
= f(x(t), u(t), t), (11)

such that f(xe, ue) = 0.
Definition B.3. Let ⌧ > 0, we say that the nonlinear system (11) is locally controllable at
the equilibrium xe in time ⌧ with asymptotic control ue if, for every " > 0, there exists ⌘ > 0
such that, for every (x0, x1) 2 Rn ⇥ Rn with |x0 � xe|  ⌘ and |x1 � xe|  ⌘ there exists a
trajectory (x, u) such that

x(0) = x0, x(⌧) = x1

|u(t)� ue|  ", 8 t 2 [0, ⌧ ].
(12)

An interesting remark is that if the system is autonomous, the local controllability does not
depend on the time ⌧ considered, which explains that it is not precised in Theorem 3.2.
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B.3 Tempered distribution

We start by recalling the multi-index notation: let ↵ = (↵1, ...,↵n) 2 Nn, x 2 Rn, and
f 2 C1(Rn), we denote

x↵ = x↵1
1 ⇥ · · ·⇥ x↵n

n

@↵
x f = @↵1

x1
. . . @↵n

xn
f.

(13)

↵ is said to be a multi-index and |↵| =
Pn

i=1 |↵i|. Then we give the definition of the Schwartz
functions:
Definition B.4. A function � 2 C1 belongs to the Schwartz space S(Rn) if, for any
multi-index ↵ and �,

sup
x2Rn

|x↵@�
x�| < +1. (14)

Finally, we define the space of tempered distributions:
Definition B.5. A tempered distribution � 2 S 0(Rn) is a linear form u on S(Rn) such that
there exists p > 0 and C > 0 such that

|hu,�i|  C
X

|↵|,|�|<p

sup
x2Rn

|x↵@�
x�|, 8 � 2 S(Rn). (15)

C Additional experiments

C.1 Prediction of speed of convergence with higher precision

In Section 5.1, � is predicted with a 10% margin error. Prediction of � to better accuracy
can be achieved by training models on data rounded to 2, 3 or 4 significant digits, and
measuring the number of exact predictions on the test sample. Overall, we predict � with
two significant digits in 59.2% of test cases. Table 7 summarizes the results for different
precisions (for transformers with 6 layers and a dimensionality of 512).

Table 7: Exact prediction of local convergence speed to given precision.

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6 Overall

2 digits 83.5 68.6 55.6 48.3 40.0 59.2
3 digits 75.3 53.2 39.4 33.4 26.8 45.7
4 digits 62.0 35.9 25.0 19.0 14.0 31.3

D Proofs of theorems

D.1 Analysis of Problem 2

The proofs of Theorem 3.2, of validity of the feedback matrix given by the expression (3),
and of the extension of Theorem 3.2 to the non-autonomous system given by condition (4)
can be found in Coron (2007). We give here the key steps of the proof for showing that the
matrix K given by (3) is a valid feedback matrix to illustrate the underlying mechanisms:

• Setting V (x(t)) = x(t)trC�1
T x(t), where x is solution to x0(t) = f(x, ue+K.(x�xe)),

and

CT =

 
e�AT

"Z T

0
e�AtBBtre�Atrtdt

#
e�AtrT

!
. (16)

• Showing, using the form of CT , that

d

dt
(V (x(t))) = �|BtrC�1

T x(t)|2 � |Btre�TAtr

C�1
T x(t)|2

17
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• Showing that, if for any t 2 [0, T ], |BtrC�1
T x(t)|2 = 0, then for any i 2 {0, ..., n� 1},

xtrC�1
T AiB = 0, 8 t 2 [0, T ].

• Deducing from the controllability condition (2), that

x(t)trC�1
T = 0, 8 t 2 [0, T ].

and therefore from the invertibility of C�1
T ,

x(t) = 0, 8 t 2 [0, T ].

• Concluding from the previous and LaSalle invariance principle that the system is
locally exponentially stable.

D.2 Analysis of Problem 3

In this section we prove Proposition 3.1. We study the problem

@tu+
X

|↵|k

a↵@
↵
x u = 0 on R+ ⇥ Rn, (17)

with initial condition
u(0, ·) = u0 2 S 0(Rn), (18)

and we want to find a solution u 2 C0([0, T ],S 0(Rn)).

Denoting eu the Fourier transform of u with respect to x, the problem is equivalent to

@teu(t, ⇠) +
X

|↵|k

a↵(i⇠)
↵eu(t, ⇠) = 0, (19)

with initial condition eu0 2 S(Rn). As the only derivative now is with respect to time, we
can check that

eu(t, ⇠) = eu0(⇠)e
�f(⇠)t, (20)

where f(⇠) =
P

|↵|k a↵(i⇠)
↵, is a weak solution to (19) belonging to the space

C0([0,+1),D0(Rn)). Indeed, first of all we can check that for any t 2 [0,+1), ⇠ !
exp (�f(⇠)t) is a continuous function and eu0 belongs to S 0(Rn) ⇢ D0(Rn), thus eu(t, ·) be-
longs to D0(Rn). Besides, t ! e�f(⇠)t is a C1 function whose derivative in time are of
the form P (⇠)e�f(⇠)t where P (⇠) is a polynomial function. eu is continuous in time and
eu 2 C0([0,+1),D0(Rn)). Now we check that it is a weak solution to (19) with initial
condition eu0. Let � 2 C1

c ([0,+1) ⇥ Rn) the space of smooth functions with compact
support, we have

� heu, @t�i+
X

|↵|k

a↵(i⇠)
↵heu,�i+ heu0,�i

=� heu0, @t(e
�f(⇠)t�)i � heu0, f(⇠)e

�f(⇠)t�i+ heu0, e
�f(⇠)tf(⇠)�i+ heu0,�i

=0.

(21)

Hence, u defined by (20) is indeed a weak solution of (19) in C0([0,+1),D0(Rn)). Now,
this does not answer our question as this only tells us that at time t > 0, u(t, ·) 2 D0(Rn)
which is a less regular space than the space of tempered distribution S 0(Rn). In other words,
at t = 0, eu = eu0 has a higher regularity by being in S 0(Rn) and we would like to know if
equation (19) preserves this regularity. This is more than a regularity issue as, if not, one
cannot define a solution u as the inverse Fourier Transform of eu because such function might
not exist. Assume now that there exists a constant C such that

8⇠ 2 Rn , eu0(⇠) = 0 or Re(f(⇠)) > C. (22)

8 ⇠ 2 Rn, 1supp(eu0)e
�f(⇠)t  e�Ct. (23)

18
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This implies that, for any t > 0, eu 2 S 0(Rn). Besides, defining for any p 2 N,

Np(�) =
X

|↵|,|�|<p

sup
⇠2Rn

|⇠↵@�
⇠ �(⇠)|, (24)

then for t1, t2 2 [0, T ],

Np((e
�f(⇠)t1 � e�f(⇠)t2)�) =

X

|↵|,|�|<p

sup
⇠2Rn

|⇠↵P�(⇠,�)|, (25)

where P�(⇠,�) is polynomial with f(⇠), �(⇠), and their derivatives of order strictly smaller
than p. Besides, each term of this polynomial tend to 0 when t1 tends to t2 on supp(fu0), the
set of frequency of u0. Indeed, let �1 be a multi-index, k 2 N, and Qi(⇠) be polynomials in
⇠, where i 2 {0, ..., k}.

�����1supp(u0)@
�1

⇠ �(⇠)

 
kX

i=0

Qi(⇠)t
i
1e

�f(⇠)t1 �Qi(⇠)t
i
2e

�f(⇠)t2

!�����


kX

i=0

max
supp(eu0)

���ti1e�f(⇠)t1 � ti2e
�f(⇠)t2

���max
⇠2Rn

���@�1

⇠ �(⇠)Qi(⇠, t)
��� .

(26)

From (22), the time-dependant terms in the right-hand sides converge to 0 when t1 tends to
t2. This implies that u 2 C0([0, T ],S 0(Rn)). Finally let us show the property of the behavior
at infinity. Assume that C > 0, one has, for any � 2 S(Rn)

heu(t, ·),�i = heu0,1supp(eu0)e
�f(⇠)t�i. (27)

Let us set g(⇠) = e�f(⇠)t�(⇠), one has for two multi-index ↵ and �

|⇠↵@�
⇠ g(⇠)|  |⇠↵Q(⇠)e�f(⇠)t|, (28)

where Q is a sum of polynomials, each multiplied by �(⇠) or one of its derivatives. Thus
⇠↵Q(⇠) belongs to S(Rn) and therefore, from assumption (22),

|⇠↵@�
⇠ g(⇠)|1supp(u0)  max

⇠2Rn
|⇠↵Q(⇠)|e�Ct, (29)

which goes to 0 when t ! +1. This imply that eu(t, ·) ! 0 in S 0(Rn) when t ! +1, and
hence u(t, ·) ! 0. This ends the proof of Proposition 3.1.

Let us note that one could try to find solutions with lower regularity, where u is a distribution
of D0(R+ ⇥ Rn), and satisfies the equation

@tu+
X

|↵|k

a↵@
↵
x u = �t=0u0 on R+ ⇥ Rn. (30)

This could be done using for instance Malgrange-Erhenpreis theorem, however, studying the
behavior at t ! +1 may be harder mathematically, hence this approach was not considered
in this paper.

E Size of the problem space

Lample and Charton (2020) provide the following formula to calculate the number of functions
with m operators:

E0 = L

E1 = (q1 + q2L)L

(m+ 1)Em = (q1 + 2q2L)(2m� 1)Em�1 � q1(m� 2)Em�2

Where L is the number of possible leaves (integers or variables), and q1 and q2 the number
of unary and binary operators. In the stability and controllability problems, we have q1 = 9,
q2 = 4 and L = 20 + q, with q the number of variables.
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Replacing, we have, for a function with q variables and m operators

E0(q) = 20 + q

E1(q) = (89 + 4q)(20 + q)

(m+ 1)Em(q) = (169 + 8q)(2m� 1)Em�1 � 4(m� 2)Em�2

In the stability problem, we sampled systems of n functions, with n variables, n from 2 to 6.
Functions have between 3 and 2n+ 2 operators. The number of possible systems is

PSst =
6X

n=2

 
2n+2X

m=3

Em(n)

!n

> E14(6)
6 ⇡ 3.10212

(since Em(n) increases exponentially with m and n, the dominant factor in the sum is the
term with largest m and n)

In the autonomous controllability problem, we generated systems with n functions (n between
3 and 6), and n + p variables (p between 1 and n/2). Functions had between n + p and
2n+ 2p+ 2 operators. The number of systems is

PSaut =
6X

n=3

0

@
n/2X

p=1

2(n+p+1)X

m=n+p

Em(n+ p)

1

A
n

> E20(9)
6 ⇡ 4.10310

For the non-autonomous case, the number of variables in n+ p+ 1, n is between 2 and 3
and p = 1, therefore

PSnaut =
3X

n=2

0

@
2(n+2)X

m=n+1

Em(n+ 2)

1

A
n

> E10(5)
3 ⇡ 5.1074

Because expressions with undefinite or degenerate jacobians are skipped, the actual problem
space size will be smaller by several orders of magnitude. Yet, problem space remains large
enough for overfitting by memorizing problems and solutions to be impossible.
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