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A EXAMPLES OF COMPUTATIONS

A.1 STEP BY STEP EXAMPLE : AUTONOMOUS CONTROL

To measure whether the system

de(t) . 5 atan(ux)
ot sin(x7) + log(1 4+ z2) + ey
dxo(t
(E;t( ) =19 — ew1w2’

is controllable at a point x., with asymptotic control u., using Kalman condition we need to

1. differentiate the system with respect to its internal variables, obtain the Jacobian

Az, u)
u x2) 1 — atan(ux
Az, u) = 221 cos(x?) + —(11;2232% (1+z9)7t — —(tng);)
e —Tpe"1T? 1 —z1e™%

2. differentiate the system with respect to its control variables, obtain a matrix B(z,u)

Bz, u) = (:m((l + uzx%)(l 1 1»2))1)

3. evaluate A and B in z, = [0.5], ue =1

150 0.46 0.27
Al@e,ue) = (—0.64 0.36)’ B(”fe’“e):< 0 )

4. calculate the controllability matrix given by .

e - (7). (48 1) () (5 %)
5. output n —d, with d the rank of the controllability matrix, the system is controllable
ifn—d=0
n —rank(C) =2 —2=0: System is controllable in (z. = [0.5],u, = 1)
6. (optionally) if n — d = 0, compute the control feedback matrix K as in

K = (—228 44.0).

A.2 STEP BY STEP EXAMPLE: STABILITY OF LINEAR PDE

To find the existence and behavior at infinite time of a solution, given a differential operator
D, and an initial condition uy we proceed as follows

1. find the Fourier polynomial f(&) associated to D,
D, =202 +0.502 + 05, — 102, . —1.50,,02

x0,T1 T1"wo)

F(&) = —An&f — m&F + 2m&; + 14m&oly + 3im&r €3

2. find the Fourier transform (&) of ug
up(z) = e—3i12$61 sin(x0)62'5”16_””§,

T0(8) = 721 (am)1 (2m)-11(§0)G0(€1 — 2.5(2m) 1)e ™ (EatB2m)

—1)2

3. find the set F of frequency & for which @ (&) # 0
F=[-2m)~ 2r) Y x {2.5(27) 71} x (—o0, +0)
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4. minimize f(£) on F

minz(f(£)) = —22.6
5. output (0,0) if this minimum is infinite, (1,0) is finite and negative, (1,1) if finite
and positive. (optionally) output F

Out = (1,0) : there exists a solution u ; it does not vanish at ¢ — 400

A.3 EXAMPLES OF INPUTS AND OUTPUTS

A.3.1 LOCAL STABILITY

} Speed of convergence
System at z. = [0.01]
d.. _ x 0.01
atT0 = T atan (Slxoxg) + atan (0.0008)
4 21 = — cos (9z0) + cos (0.09) —1250
d —
T2 = To — V1 + x9 — 0.01 + 01\/5
d _ 2x
E‘TO - 7.’1)0—2.%2(2.%1—5) +0.182
41 = (21 + (22 — 1) (tan (zg) + 3)) (log (3) + i) 0.445
+3.0log (3) + 3.0im -y
4 39 = asin (zo log (—%)) — asin (0.06 + 0.01¢m)
—sin (zg—e? — sin (0.01—¢?
4 gy = grre (07 e 0
4 21 =0.06 — 6z, 6.0 (locally stable)
d _ To+2
dwy = —201 + 2422
%zo = z9e "1 sin(x7) —9.9-107°
d o —4 e”2 atan (atan (z1))
E‘Tl =7.75.10 — W —0.0384
%xz = (z1 — asin (9)) e TE@ T
—(0.01 —asin (9)) e~ Tog (3) Fim
_4 f
Lo = —M — 21 + 0.0178 — 0.00111v/7/4
4o — —0.000379 + e~ cos((m2—9)6a3tan(.7:1))+7
a1 : 3.52.107 ! (locally stable)
d _ 3 T2
JiTo = —xg — o1 + asin (cos (z0) + m—o)
—1.55 +1.32¢
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A.3.2 CONTROLLABILITY: AUTONOMOUS SYSTEMS

Dimension of

Autonomous system uncontrollable space
at ., = [0.5], ue = [0.5]

% — — asin (%1 _ M
— asin (w _ 0.0556)

0 (controllable)
% =u— a9+ log (10 + tan(zl)) —2.36

%:2I1+$2—1.5

dzo =u —asin (rg) — 0.5+ §

% =9 — 21 + 22 + atan (x9) — 1.46 1

dea _ 5
% - cosa(cig) —2.85

4o — Gy + 6o — 521

dt 0

dry _ 2

St =0.75 + 27 — cos (u — x2) 2
dzo

2 — —g% 4+ 2o + log (e™2) — 0.75

2o — 44 (cos (mf%z) + aSi;II("))
—0.5cos (%) - %
0 (controllable)

dxy _mEy _om
dt — 4(xa+4) 36

42 — 2.5 — 108¢%® — 12zgx2 + 71 + 108"

deo — —10sin (2 - 22) — 6.54

don —sin (9+ =2=1) — 1 1

92 = Atan (4£2) — 4tan (4)
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A.3.3 CONTROLLABILITY: NON-AUTONOMOUS SYSTEMS

Local controllability
Non-autonomous system at . = [0.5], u, = [0.5]
d{% = (29 — 0.5) e~ 20 (®) »
% — ott0.5 _ pttan _Ilzﬂ +1—2e False
% = t(xq — 0.5) (asin (6) + +/tan (8))
dzo % — 2atan (@)
dz u
G = T =Umomys T T2+ log (o) False
+1og(2) — 0.5+ (1/(6 — v/2))
L2 — —70t(xo — 0.5)
dzo _ _ @047
dt ~ sin(xzpe*)+3
dt o
% =t + asin (tzg + 4)
dit" = 0.5 — a2 + tan (xzg) — tan (0.5)
dditl = x1 (t+cos Eszl(tjtu))) " 0.5(t+cos (6.5t+0.25)) True
€2 = 2.75 — xo (u+4) — o
ddito = U (u(— Zo )— tan (8)) + 05(tan (8))
| 6t(—2+5
%:—Tf—l%(él—ﬂ) True
% = —7(u —0.5) — 7tan (log (z2))
+7tan (log (0.5))

A.3.4 STABILITY OF PARTIAL DIFFERENTIAL EQUATIONS USING FOURIER TRANSFORM

Existence of a solution,

PDE 0Oiu + D,u =0 and initial condition u—0at t — 400

Dy = 20y, (203,03, + 303, +302))
, False , False
o = 80 (—180) 50 (—6212)e3%iw0—864927+89iw1 —59iz,

D, = —40%, — 593 — 602 02 02, + 302, 0y, — 400,

_ True , False
up = (162zoz2) "1 (ef(~25%0+9622) gin (541¢) sin (32))

Dy = 0y, (4030, + 402, — 904,05,
+203 05, — 403 0, — 20,,)

Ty " T2 Ty T2
True , False

Uy = (331,0)—1 (686110—56z11—1612+87ug sin (331,0))

D, = —65);08% + 05,85, — 903 02 — 903,04,
+702,03, + 403,07, — 602, True , True

—_— ———

Uy = 60(88x1)67210(2312zo+15i)
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B  MATHEMATICAL DEFINITIONS

B.1 NOTIONS OF STABILITY

Let us consider a system

dx(t)
= t)). 7
2~ fa) ™)
Ze is an attractor, if there exists p > 0 such that
|z(0) — x| < p = t_1:+moox(t) = Z.. (8)

But, counter intuitive as it may seem, this is not enough for asymptotic stability to take place.

Definition B.1. We say that z. is a locally (asymptotically) stable equilibrium if the two
following conditions are satisfied:

(i) ze is a stable point, i.e. for every e >0, there exists n > 0 such that

12(0) — zo| < = |2(t) — x| <&, V>0 9)

(i1) xe is an attractor, i.e. there exists p > 0 such that

|2(0) — x| < p = tilgrnoox(t) = . (10)

In fact, the SMT of Subsection deals with an even stronger notion of stability, namely
the exponential stability defined as follows:

Definition B.2. We say that x. is an exponentially stable equilibrium if x. is locally stable
equilibrium and, in addition, there exist p > 0, A > 0, and M > 0 such that

|2(0) = ze| < p = |z(t)| < Me™|(0)].

In this definition, A is called the exponential convergence rate, which is the quantity predicted
in our first task. Of course, if z. is locally exponentially stable it is in addition locally
asymptotically stable.

B.2 CONTROLLABILITY

We give here a proper mathematical definition of controllability. Let us consider a non-
autonomous system

dz(t)
dt

= f(x(t), ult),?), (11)

such that f(x.,ue) = 0.

Definition B.3. Let 7 > 0, we say that the nonlinear system 1s locally controllable at
the equilibrium x. in time T with asymptotic control u. if, for every € > 0, there exists n > 0
such that, for every (zo,x1) € R™ X R™ with |zg — x| < n and |1 — x| < n there exists a
trajectory (x,u) such that

z(0) =z, z(r)=m

u(t) —ue| <&, Vtelo,r]. (12)

An interesting remark is that if the system is autonomous, the local controllability does not
depend on the time 7 considered, which explains that it is not precised in Theorem|[3.2]
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B.3 TEMPERED DISTRIBUTION

We start by recalling the multi-index notation: let a = (a1,...,a,,) € N?, z € R", and
f € C=(R™), we denote

o al PN Qn
Tt =27 X X T,

9o f = ... 90 .

Tn

(13)

a is said to be a multi-index and || = ", |a;|. Then we give the definition of the Schwartz
functions:

Definition B.4. A function ¢ € C* belongs to the Schwartz space S(R™) if, for any
multi-index o and 3,
sup [229%¢| < +oo. (14)
IER”

Finally, we define the space of tempered distributions:

Definition B.5. A tempered distribution ¢ € S'(R™) is a linear form u on S(R™) such that
there exists p > 0 and C > 0 such that

((u. @) <C Y sup [2°07¢], Ve SR (15)

rER™
lal,18l<p €

C ADDITIONAL EXPERIMENTS

C.1 PREDICTION OF SPEED OF CONVERGENCE WITH HIGHER PRECISION

In Section A is predicted with a 10% margin error. Prediction of A to better accuracy
can be achieved by training models on data rounded to 2, 3 or 4 significant digits, and
measuring the number of exact predictions on the test sample. Overall, we predict A with
two significant digits in 59.2% of test cases. Table summarizes the results for different
precisions (for transformers with 6 layers and a dimensionality of 512).

Table 7: Exact prediction of local convergence speed to given precision.

‘ Degree 2 Degree 3 Degree 4 Degree 5 Degree 6 Overall

2 digits 83.5 68.6 55.6 48.3 40.0 59.2
3 digits 75.3 53.2 39.4 33.4 26.8 45.7
4 digits 62.0 35.9 25.0 19.0 14.0 31.3

D PROOFS OF THEOREMS

D.1 ANALYSIS OF PROBLEM 2

The proofs of Theorem of validity of the feedback matrix given by the expression (3),
and of the extension of Theorem to the non-autonomous system given by condition (4]
can be found in|Coron|(2007). We give here the key steps of the proof for showing that the
matrix K given by is a valid feedback matrix to illustrate the underlying mechanisms:

e Setting V(xz(t)) = 2(t)"" C1 x(t), where  is solution to #/(t) = f(z,ue + K.(x —x.)),

and
T
Cr = <6AT [ / eAtBB”eA"tdt] eA”T> . (16)
0

e Showing, using the form of C'r, that

d

S V(@) = =|B"Crla(®) - B e Ot a(t)

17
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e Showing that, if for any ¢ € [0, 7], |B"C z(t)|? = 0, then for any i € {0,...,n — 1},
2'"CL'A'B =0, Yte[0,T).
e Deducing from the controllability condition , that
z(t)"Crt =0, Yte[0,T].
and therefore from the invertibility of C'. 1
x(t) =0, Vtel0,T].

e Concluding from the previous and LaSalle invariance principle that the system is
locally exponentially stable.

D.2 ANALYSIS OF PROBLEM 3
In this section we prove Proposition We study the problem

Oru + Z a,05u =0 on Ry x R™,

(17)
lo| <k
with initial condition
u(0,-) = up € S'(R"), (18)
and we want to find a solution u € C°([0, 7], S’ (R™)).
Denoting u the Fourier transform of u with respect to x, the problem is equivalent to
Outi(t, &) + Y aa(i)*u(t, ) =0, (19)

lal<k
with initial condition %y € S(R™). As the only derivative now is with respect to time, we

can check that
U(t,€) = o (€)e O, (20)

where f(§) = 24 <xaa(i€)¥, is a weak solution fto belonging to the space
CY([0,+00), D'(R™)). Indeed, first of all we can check that for any t € [0,+00), & —
exp (— ( )t) is a continuous function and 7 Ug belongs to S'(R™) C D'(R™), thus u(t, ) be-
longs to D'(R™). Besides, t — e~ /(©? is a C> function whose derivative in time are of
the form P(£)e7(© where P(£) is a polynomial function. % is continuous in time and
u € CY([0,+00), D'(R™)). Now we check that it is a weak solution to with initial
condition up. Let ¢ € C°([0,+00) x R™) the space of smooth functions with compact
support, we have

- <aa at¢> =+ Z aa(ig)a@ja ¢> + <7j07 ¢>

|| <k

— (ti0, Bs(e =T @) — (ito, F(€)e O ) + (g, e TOUF(E)¢) + (tio, )
=0.

Hence, u defined by is indeed a weak solution of in C°([0, +00),D’(R™)). Now,
this does not answer our question as this only tells us that at time ¢ > 0, u(t,-) € D'(R")
which is a less regular space than the space of tempered distribution &'(R™). In other words,
at t = 0, u = up has a higher regularity by being in §’'(R™) and we would like to know if
equation preserves this regularity. This is more than a regularity issue as, if not, one
cannot define a solution u as the inverse Fourier Transform of u because such function might
not exist. Assume now that there exists a constant C' such that

VEER™ |, Wo(€) =0 or Re(f(£)) > C. (22)

(21)

VEER™, 1 eSO < o=Ct, (23)

supp (o)
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This implies that, for any ¢ > 0, u € §’'(R™). Besides, defining for any p € N,

No(¢)= > sup [€°07 (9, (24)
lal,18]<p $SR"
then for ¢1,t5 € [0, 7],
Np((e7 IO — e TOR)4) = N sup [£*Py(€, ¢)), (25)
lal,18]<p SR"

where P3(, ¢) is polynomial with f(&), ¢(€), and their derivatives of order strictly smaller
than p. Besides, each term of this polynomial tend to 0 when ¢; tends to ¢t on supp(ug), the
set of frequency of ug. Indeed, let 51 be a multi-index, k¥ € N, and Q;(£) be polynomials in
&, where i € {0, ..., k}.

k
1supp(uo>3fl¢(£) (Z Qi(&)tie f Ot _ Qi(g)téef(ﬁ)b) |
=0

k
< g max
i=0

(26)

t’ie*f(ﬁ)tl _ tée*f(ﬁ)tz max

EER™

o8 HOQu( ).

— supp(o)

From (22), the time-dependant terms in the right-hand sides converge to 0 when ¢; tends to
to. This implies that v € C°([0,T],S’(R™)). Finally let us show the property of the behavior
at infinity. Assume that C' > 0, one has, for any ¢ € S(R")

(@t,), 8) = (o, Luupp(anye 7 @'6). (27)
Let us set g(§) = e_mtqb(f), one has for two multi-index v and 3
16202 g(€)] < 1€*Q(§)e~ T, (28)

where @ is a sum of polynomials, each multiplied by ¢(£) or one of its derivatives. Thus
£*Q(¢) belongs to S(R™) and therefore, from assumption ,

€208 9(6)| Lsupp(uo) < max €7 Q(&) e~ ", (29)

which goes to 0 when t — +o00. This imply that @(¢,-) — 0 in S'(R™) when ¢ — 400, and
hence u(t,-) — 0. This ends the proof of Proposition

Let us note that one could try to find solutions with lower regularity, where u is a distribution
of D'(R; x R™), and satisfies the equation

Owu + Z aq05u = di—oup on Ry x R™. (30)
|| <K

This could be done using for instance Malgrange-Erhenpreis theorem, however, studying the
behavior at ¢ — 400 may be harder mathematically, hence this approach was not considered
in this paper.

E SIZE OF THE PROBLEM SPACE

Lample and Charton|(2020) provide the following formula to calculate the number of functions
with m operators:

Ey=1L
Ei = (q1 +q2L)L
(m+1)E, = (@1 +2¢L)2m —1)E,—1 —qa(m—2)E,,_»
Where L is the number of possible leaves (integers or variables), and ¢; and ¢o the number

of unary and binary operators. In the stability and controllability problems, we have q; = 9,
g2 = 4 and L = 20 + ¢, with g the number of variables.
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Replacing, we have, for a function with g variables and m operators

Eo(q) =20+¢
E1(q) = (89 +4q)(20 + q)
(m + 1)Em(q) = (169 + 8(])(2m - 1)Em71 - 4(m - 2)Em72

In the stability problem, we sampled systems of n functions, with n variables, n from 2 to 6.
Functions have between 3 and 2n + 2 operators. The number of possible systems is

6 2n+2 n
PSy=> (Z En(n ) > F14(6)% ~ 3.10%!2

n=2

(since E,,(n) increases exponentially with m and n, the dominant factor in the sum is the
term with largest m and n)

In the autonomous controllability problem, we generated systems with n functions (n between
3 and 6), and n + p variables (p between 1 and n/2). Functions had between n + p and
2n + 2p + 2 operators. The number of systems is

6 n/2 2(n+p+1) n

PSeur=3_[D. Y Ean+p)| > Exn(9)°~ 41030

n=3 \p=1 m=n+p

For the non-autonomous case, the number of variables in n + p + 1, n is between 2 and 3
and p = 1, therefore

3 [ 2(n+2) "

Psnaut = Z Z Em(n + 2) > E1()(5)3 ~ 5.1074

n=2 m=n+1

Because expressions with undefinite or degenerate jacobians are skipped, the actual problem
space size will be smaller by several orders of magnitude. Yet, problem space remains large
enough for overfitting by memorizing problems and solutions to be impossible.
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