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Abstract

Weak supervision (WS) is a rich set of techniques that produce pseudolabels1

by aggregating easily obtained but potentially noisy label estimates from various2

sources. WS is theoretically well-understood for binary classification, where simple3

approaches enable consistent estimation of pseudolabel noise rates. Using this4

result, it has been shown that downstream models trained on the pseudolabels have5

generalization guarantees nearly identical to those trained on clean labels. While6

this is exciting, users often wish to use WS for structured prediction, where the7

output space consists of more than a binary or multi-class label set: e.g. rankings,8

graphs, manifolds, and more. Do the favorable theoretical properties of WS for9

binary classification lift to this setting? We answer this question in the affirmative10

for a wide range of scenarios. For labels taking values in a finite metric space,11

we introduce techniques new to weak supervision based on pseudo-Euclidean12

embeddings and tensor decompositions, providing a nearly-consistent noise rate13

estimator. For labels in constant-curvature Riemannian manifolds, we introduce14

new invariants that also yield consistent noise rate estimation. In both cases, when15

using the resulting pseudolabels in concert with a flexible downstream model, we16

obtain generalization guarantees nearly identical to those for models trained on17

clean data. Several of our results, which can be viewed as robustness guarantees in18

structured prediction with noisy labels, may be of independent interest.19

1 Introduction20

Weak supervision (WS) is an array of methods used to construct pseudolabels for training supervised21

models in label-constrained settings. The standard workflow [RSW+16, RBE+18, FCS+20] is to22

assemble a set of cheaply-acquired labeling functions—simple heuristics, small programs, pretrained23

models, knowledge base lookups—that produce multiple noisy estimates of what the true label24

is for each unlabeled point in a training set. These noisy outputs are modeled and aggregated25

into a single higher-quality pseudolabel. Any conventional supervised end model can be trained26

on these pseudolabels. This pattern has been used to deliver excellent performance in a range of27

domains in both research and industry settings [DRS+20, RNGS20, SLB20], bypassing the need to28

invest in large-scale manual labeling. Importantly, these successes are usually found in binary or29

small-cardinality classification settings.30

While exciting, users often wish to use weak supervision in structured prediction (SP) settings, where31

the output space consists of more than a binary or multiclass label set [BHS+07, KL15]. In such32

cases, there exists meaningful algebraic or geometric structure to exploit. Structured prediction33

includes, for example, learning rankings used for recommendation systems [KAG18], regression in34

metric spaces [PM19], learning on manifolds [RCMR18], graph-based learning [GS19], and more.35
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An important advantage of WS in the standard setting of binary classification is that it yields models36

with nearly the same generalization guarantees as their fully-supervised counterparts. Indeed, the37

penalty for using pseudolabels instead of clean labels is only a multiplicative constant. This is a38

highly favorable tradeoff since acquiring more unlabeled data is easy. This property leads us to39

ask the key question for this work: does weak supervision for structured prediction preserve40

generalization guarantees? We answer this question in the affirmative, justifying the application of41

WS to settings far from its current use.42

Generalization results in WS rely on two steps [RHD+19, FCS+20]: (i) showing that the estimator43

used to learn the model of the labeling functions is consistent, thus recovering the noise rates for these44

noisy voters, and (ii) using a noise-aware loss to de-bias end-model training [NDRT13]. Lifting these45

two results to structured prediction is challenging. The only available weak supervision technique46

suitable for SP is that of [SLV+22]. It suffers from several limitations. First, it relies on the availability47

of isometric embeddings of metric spaces into Rd—but does not explain how to find these. Second, it48

does not tackle downstream generalization at all. We resolve these two challenges.49

We introduce results for a wide variety of structured prediction problems, requiring only that the50

labels live in some metric space. We consider both finite and continuous (manifold-valued) settings.51

For finite spaces, we apply two tools that are new to weak supervision. The approach we propose52

combines isometric pseudo-Euclidean embeddings with tensor decompositions—resulting in a nearly-53

consistent noise rate estimator. In the continuous case, we introduce a label model suitable for the54

so-called model spaces—Riemannian manifolds of constant curvature—along with extensions to55

even more general spaces. In both cases, we show generalization results when using the resulting56

pseudolabels in concert with a flexible end model from [CRR16, RCMR18].57

Contributions:58

• New techniques for performing weak supervision in finite metric spaces based on isometric59

pseudo-Euclidean embeddings and tensor decomposition algorithms,60

• Generalizations of weak supervision for regression to manifold-valued regression in constant-61

curvature manifolds,62

• Finite-sample error bounds for noise rate estimation in each scenario,63

• Generalization error guarantees for training downstream models on pseudolabels.64

2 Background and Problem Setup65

Our goal is to theoretically characterize how well we can learn with pseudolabels (built with weak66

supervision techniques) in structured prediction settings. Specifically, we seek to understand the67

interplay between the noise in WS sources and the generalization performance of the downstream68

structured prediction model. We provide a brief background on structured prediction and weak69

supervision, then introduce our problem and some useful notation.70

2.1 Structured Prediction71

Structured prediction (SP) involves predicting labels in spaces with rich structure. Denote the label72

space by Y . Conventionally Y is a set, e.g., Y = {−1,+1} for binary classification. In the SP setting,73

Y has some additional algebraic or geometric structure. In this work we assume that Y is a metric74

space with metric (distance) dY . This covers many types of problems, including75

• Rankings, where Y = Sρ, the symmetric group on {1, . . . , ρ}, i.e. labels are permutations,76

• Graphs, where Y = Gρ, the space of graphs with vertex set V = {1, . . . , ρ},77

• Riemannian manifolds, where Y = Sd, the sphere, or Hd, the hyperboloid.78

In conventional supervised learning we have a dataset {(x1, y1), . . . , (xn, yn)} of i.i.d samples drawn79

from some distribution ρ over the space X × Y .80
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Learning and Generalization in SP As usual, we seek to learn a model that generalizes well to81

points not seen during training. Let F = {f : X 7→ Y} be a family of functions from X to Y . Define82

the risk R(f) for f ∈ F and f∗ as83

R(f) =

∫
X×Y

d2Y(f(x), y)dρ(x, y) f∗ ∈ argmin
f∈F

R(f). (1)

For a large class of settings (including all of those we consider in this paper), [CRR16, RCMR18]84

have shown that the estimator f̂ defined below approaches f∗:85

f̂(x) = argmin
y∈Y

F (x, y) F (x, y) :=
1

n

n∑
i=1

αi(x)d
2
Y(y, yi), (2)

where α(x) = (K+ νI)−1Kx. Here, K is the kernel matrix for a p.d. kernel k : X × X → R, so86

that Ki,j = k(xi, xj), (Kx)i = k(x, xi), and ν is a regularization parameter. Thus it is necessary to87

first learn the weights α and then to perform the optimization in (2) to make a prediction.88

When there is no label noise, an exciting contribution of [CRR16, RCMR18] is the generalization89

bound90

R(f̂) ≤ R(f∗) +O(n− 1
4 ),

that holds with high probability. The key question we tackle is does the use of pseudolabels instead91

of true labels yi affect the generalization rate? Note that even having access to the kernel and thus92

knowing the weights α is insufficient to ensure this; the presence of noise when replacing yi with a93

pseudolabel could ostensibly ruin the generalization bound.94

2.2 Weak Supervision95

In WS, we cannot access any of the ground-truth labels yi. Instead we observe for each xi the noisy96

votes λa,i, . . . , λm,i. These are m weak supervision outputs provided by labeling functions (LFs) sa,97

where sa : X → Y and λa,i = sa(xi). A two step process is used to construct pseudolabels. First,98

we learn a noise model (also called a label model) that determines how reliable each source sa is. That99

is, we must learn θ for Pθ(λ1, λ2, . . . , λm|y)—without having access to any samples of y. Second,100

the noise model is used to infer a distribution (or its mode) for each point: Pθ(yi|λ1,i, . . . , λm,i).101

We adopt the noise model from [SLV+22], which is suitable for our SP setting:102

Pθ(λ1, . . . , λm|Y = y) =
1

Z
exp

(
−

m∑
a=1

θad
2
Y(λa, y)

)
. (3)

This is an exponential family model, where Z is the normalizing partition function and θ =103

[θ1, . . . , θm]T > 0 are the canonical parameters. The model can also be described in terms of104

the mean parameters E[d2Y(λa, y)]. Intuitively, if θa is large, then the typical distance from λa to y105

must be small.In this case the LF is reliable. Conversely, if θa is small, the LF is unreliable.106

Our goal is to form estimates θ̂ in order to construct pseudolabels. One way to build such pseudolabels107

is to compute ỹ = argminz∈Y 1/m
∑m

a=1 θ̂ad
2
Y(z, λa). Observe how the estimated parameters are108

used to weight the labeling functions θa, ensuring that more reliable votes receive a larger weight.109

The extreme cases are θa = 0, so that λa is independent of y, and so gets no weight, and θa =∞, so110

that θa = y and should get all of the weight.111

We are now in a position to state the main research question for this work:112

Do there exist estimation approaches yielding θ̂ that produce pseudolabels ỹ that maintain the113

same generalization error rate O(n−1/4) when used in (2), or a modified version of (2)?114

3 Noise Rate Recovery in Finite Metric Spaces115

In the next two sections we will handle finite metric spaces. Afterwards we tackle continuous116

(manifold-valued) spaces. We first discuss learning the noise parameters θ, then the use of pseudola-117

bels in training.118
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Figure 1: Illustration of our weak supervision pipeline for the finite label space setting.

Roadmap For finite metric spaces with |Y| = r, we apply two tools new to weak supervision.119

First, we embed Y into a pseudo-Euclidean space [Gol85]. These spaces generalize Euclidean space,120

enabling isometric (distance-preserving) embeddings for any metric space. Using pseudo-Euclidean121

spaces make our analysis slightly more complex, but we gain the isometry property, which is critical.122

Second, we form three-way tensors from embeddings of observed labeling functions. Applying tensor123

product decomposition algorithms [AGH+14], we can recover estimates of the mean parameters124

Ê[d2Y(λa, y)] and ultimately θ̂a. Finally, we reweight the model (2) to preserve generalization.125

3.1 Pseudo-Euclidean Embeddings126

Working directly with the label space Y is challenging due to its potentially large cardinality. A127

standard way to address this challenge is to embed Y into a vector space. For example, multi-128

dimensional scaling (MDS) [KW78] embeds Y into Rd. The downside of MDS is that only some129

metric spaces embed (isometrically) into Euclidean space. In particular, it is necessary that the square130

distance matrix D is positive semi-definite.131

A simple and elegant way to overcome this difficulty is to instead use pseudo-Euclidean spaces for132

embeddings. These pseudo-spaces do not require a p.s.d. inner product. As an outcome, any finite133

metric space can be embedded into a pseudo-Euclidean space with no distortion [Gol85]—so that134

distances are exactly preserved. We shall need only a few properties of these spaces: A vector u135

in a pseudo-Euclidean space Rd+,d−
has two parts u+ ∈ Rd+

and u− ∈ Rd−
. The dot product136

and the squared distance between any two vectors u,v in a pseudo-Euclidean space Rd+,d−
are137

⟨u,v⟩ϕ = ⟨u+,v+⟩ − ⟨u−,v−⟩ and d2ϕ(u,v) = ||u+ − v+||22 − ||u− − v−||22.138

Example: To see why such embeddings are advantageous, we compare using a one-hot vector139

representation (whose dimension is |Y|) versus an embedding. Consider a tree with a root node and140

three branches, each of which is a path with t nodes. Let Y be the nodes in the tree with the shortest-141

hops distance as the metric. It can be shown (using [BS16]) that the pseudo-Euclidean embedding142

dimension is just d = 3. The one-hot embedding dimension is d = |Y| = 3t+ 1—arbitrarily larger!143

Now we are ready to apply these embeddings to our problem. Abusing notation, we write λa and144

y for the pseudo-Euclidean embeddings of λa, y. We have that d2Y(λa, y) = d2ϕ(λa,y), so that145

there is no loss of information from working with these spaces. In addition, we write the mean as146

µa,y = E[λa|y] and the covariance as Σa,y . It is easy to see that µa,y can be used to obtain the mean147

parameters E[d2Y(λa, y)] — due to the isometric distances and nice form of distance function in the148

pseudo-Euclidean spaces we can use µa,y to bound E[d2ϕ(λa,y)]. Thus our goal is to get an accurate149

estimate µ̂a,y = Ê[λa|y]. If we could observe y, it would be easy to form an empirical estimate150

of µ̂a,y—but we do not have access to it. Our approach will be to apply tensor decomposition151

approaches for multi-view mixtures.152

3.2 Multi-View Mixtures and Tensor Decompositions153

In a multi-view mixture model, multiple views {λa}ma=1 of a latent variable Y are observed. These154

views are independent when conditioned on Y . We treat the positive and negative components155

λ+
a ∈ Rd+

and λ−
a ∈ Rd−

of our pseudo-Euclidean embedding as separate multi-view mixtures:156

λ+
a |y ∼ µ+

a,y + σ
√
d+ · ϵ+a and λ−

a |y ∼ µ−
a,y + σ

√
d− · ϵ−a ∀a ∈ [m]. (4)

where µ+
a,y = E[λ+

a |y], µ−
a,y = E[λ−

a |y] and ϵ+a , ϵ
−
a are mean zero random vectors with covariances157

1
d+ Id+ , 1

d− Id− respectively. Here σ2 is a proxy variance for the noise model in (3).158
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Algorithm 1 Algorithm for Pseudolabel Construction
Input: Labeling function outputs L = {(λa,i, λm,i)}ni=1, Label Space Y = {y0, . . . yr−1}
Output: Pseudolabels for each data point Z = {z̃i}ni=1

▷ Step 1: Compute pseudo-Euclidean Embeddings
1: Compute pairwise distance matrix D ∈ Rr×r with Dij = d2Y(yi, yj)

2: Construct matrix M ∈ Rr×r with Mij =
1
2 (D

2
0i +D2

0j −D2
ij)

3: Compute eigendecomposition of M and let M = UCUT

4: Let l+, l− be the list of indices of positive and negative eigenvalues sorted by their magnitude.
5: Let d+ = |l+|, d− = |l−|
6: Construct permutation matrix Iperm ∈ Rr×(d++d−) by concatenating l+, l− in order
7: C̄ = CIperm, Ū = UIperm
8: Y = ŪT C̄

1
2 ∈ Rr×(d++d−) and let this define the mapping g : Y 7→ Y

▷ Step 2: Parameter Estimation Using Tensor Decomposition
9: for a← 1 to m− 3 do

10: Obtain embeddings λa,i = g(λa,i),λa+1,i = g(λa+1,i),λa+2,i = g(λa+2,i) ∀i ∈ [n]

11: Construct tensors T̂+ and T̂− as defined in (5) for triple (a, a+ 1, a+ 2)

12: µ̂+
a,y, µ̂

+
a+1,y, µ̂

+
a+2,y = TensorDecomposition(T̂+)

13: µ̂−
a,y, µ̂

−
a+1,y, µ̂

−
a+2,y = TensorDecomposition(T̂−)

14: end for

▷ Step 3: Infer Pseudo-Labels
15: Z̃(i) = z̃i ∼ Y |λa = λ

(i)
a , . . . λm = λ

(i)
m ; θ̂

16: return {z̃i}ni=1

We cannot directly estimate these parameters from observations of λa, due to the fact that y is not159

observed. However, we can observe various moments of the outputs of the LFs. In particular we can160

observe tensors of outer products of LF triplets:161

T+ := E[λ+
a ⊗λ+

b ⊗λ+
c ] =

∑
y∈SY

wyµ
+
a,y⊗µ+

b,y⊗µ+
c,y and T̂+ :=

1

n

n∑
i=1

λ+
a,i⊗λ+

b,i⊗λ+
c,i.

(5)
Here wy are the mixture probabilities (prior probabilities of Y ) and SY = {y : wy > 0}. We162

can similarly define T− and T̂−. This allows us to obtain estimates µ̂+
a,y, µ̂

−
a,y using the tensor163

decomposition algorithm of [AGH+14] with minor modifications arising from the fact that we work164

with pseudo-Euclidean rather than Euclidean space. The overall approach is shown in Algorithm 1.165

We have one key assumption,166

Assumption 1. Assume that the support of PY , i.e., k = |{y : wy > 0}| satisfies k ≤ d.167

Our first theoretical result shows that we have near-consistency in estimating the mean parameters in168

(3). We use standard notation Õ that is O but ignoring the logarithmic factors.169

Theorem 1. Let µ̂+
a,y, µ̂

−
a,y be the estimates of µ+

a,y,µ
−
a,y returned by Algorithm 1 with input170

T̂+, T̂− constructed using isometric pseudo-Euclidean embeddings (in Rd+,d−
) of n (suff. large)171

i.i.d observations drawn from the models in 3, k = |SY |, then ∃ constant C0 > 0 such that with high172

probability ∀a ∈ [m] and y ∈ SY ,173

|θa − θ̂a| ≤ C0

∣∣∣Eλa|y[d
2
Y(λa, y)]− Êλa|y[d

2
Y(λa, y)]

∣∣∣ ≤ ϵ(d+) + ϵ(d−),

where174

ϵ(d) :=

Õ
(
k
√

d
n

)
+ Õ

(√
k
d

)
if σ2 = Θ(1),

Õ
(√

k
n

)
+ Õ

(√
k
d

)
if σ2 = Θ( 1d ).

(6)
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175

Now we interpret Theorem 1. We first note that it is a nearly direct application of [AGJ14]. There176

are two noise cases for σ. In the high-noise case, σ is independent of dimension d (and thus |Y|).177

Intuitively, this means the average distance balls around each LF begin to overlap as the number178

of points grows—explaining the multiplicative k term. If the noise scales down as we add more179

embedded points, this problem is removed, as in the low-noise case. In both cases, the second error180

term comes from using the algorithm of [AGH+14] and is independent of the sampling error. Since181

k = Θ(d), this term goes down with d. The first error term is due to sampling noise and goes to182

zero in the number of samples n. Note the tradeoffs of using the embeddings. If we used one-hot183

encoding, d = |Y|, and in the high-noise case, we would pay a very heavy cost for
√

d/n. However,184

while sampling error is minimized when using a very small d, we pay a cost in the second error term.185

This leads to a tradeoff in selecting the appropriate embedding dimension.186

We briefly sketch the proof. We show that µ̂+
a,y, µ̂

−
a,y are accurate estimates of µ+

a,y and µ+
a,y , leading187

to accurate estimates of Eλa|y[d
2
ϕ(λa,y)]. The first of these is done by adapting the requirements188

from [AGJ14] and running the result twice for the two embedding components.189

4 Generalization Error for SP in Finite Metric Spaces190

We have access to labeling function outputs λ(i)
a , . . . , λ

(i)
m and noise rate estimates θ̂a. How can we use191

these to replace true (but unobserved) labels y in (2)? Our approach is based on [NDRT13, vRW18].192

These works deal with noisy labels by modifying the underlying loss function. Analogously, we show193

that it is possible to modify (2) in such a way that the generalization guarantee is nearly preserved.194

4.1 Prediction with Pseudolabels195

First, we construct the posterior distribution Pθ̂(Y = y|λ). We use our estimated noise model196

Pθ̂(λ|Y ) and the prior P (Y = y), which we assume is known. We create pseudo-labels for each197

data point by drawing a random sample from the posterior distribution conditioned on the output of198

labeling functions:199

Z̃(i) = z̃i ∼ Y |λa = λ(i)
a , . . . λm = λ(i)

m ; θ̂. (7)

We thus observe (x1, z̃1), . . . (xn, z̃n) where z̃i. To overcome the effect of noise we create a perturbed200

version of the distance function using the noise rates, generalizing [NDRT13]. Let Ym denote the201

m-fold Cartesian product of Y and let Λu = (λ
(u)
1 , . . . , λ

(u)
m ) denote its uth entry.202

Pij = Pθ(Z̃ = yi|Y = yj) =

|Ym|∑
u=1

Pθ(Y = yi|Λ = Λ(u)) · Pθ(Λ = Λ(u)|Y = yj). (8)

Similarly define Qij = Pθ̂(Z̃ = yi|Y = yj) as above but using the estimated parameters θ̂ instead.203

Note that P is the true noise distribution introduced by running the inference procedure with the true204

parameters θ of the noise model and Q is an approximation of the noise distribution obtained by205

performing inference with the estimated parameters θ̂.206

With this terminology, we can define the perturbed version of the distance function and a correspond-207

ing replacement of (2):208

d̃q(T, Ỹ = yi) :=

k∑
j=1

(Q−1)ijd
2
Y(T, Y = yj) ∀yi ∈ Y (9)

209

F̃q(x, y) :=
1

n

n∑
i=1

αi(x)d̃q(y, z̃i) f̂q(x) = argmin
y∈Y

F̃q(x, y) (10)

Similarly define, d̃p, F̃p, f̂p using the true noise distribution P. It can be easily shown that the210

perturbed distance function d̃p is an unbiased estimator of the true distance function. However we do211

6



not know the true noise distribution P hence we cannot use it for prediction. Instead we use d̃q based212

on the estimated noise distribution Q. Note that d̃q is no longer an unbiased estimator w.r.t to the213

true noise distribution. However, we can control its bias as a function of the parameter recovery error214

bound in Theorem 1.215

4.2 Bounding the Generalization Error216

A natural question to ask is whether the predictor f̂q will generalize to new data. More concretely,217

what can we say about the excess risk R(f̂q)−R(f∗)? Note that compared to the prediction based218

on clean labels, there are two additional sources of error. One is the noise in the labels (i.e., even219

if we know the true P, the quality of the pseudolabels is imperfect). The other is our estimation220

procedure for the noise distribution. We must address both sources of error.221

We make the following assumptions on the minimum and maximum singular values σmin(P) ,222

σmax(P) and the condition number κ(P) of true noise matrix P and the function F . Additional223

detail is provided in the Appendix.224

Assumption 2. (Noise model is not arbitrary) Assume that the true parameters θ are such that225

σmin(P) > 0, and the condition number κ(P) is sufficiently small.226

Assumption 3. (Normalized features) Assume that |α(x)| ≤ 1 ∀x ∈ X .227

Assumption 4. (Proxy strong convexity) Assume that the function F in (2) satisfies the following228

property with some β > 0, i.e. as we move away from the minimizer of F , the function increases and229

the rate of increase is proportional to the distance between the points.230

F
(
x, f(x)

)
≥ F

(
x, f̂(x)

)
+ β · d2Y

(
f(x), f̂(x)

)
∀x ∈ X ,∀f ∈ F . (11)

231

With these assumptions, we provide a generalization result for prediction with pseudolabels,232

Theorem 2. (Generalization Error ) Let f̂ be the minimizer as defined in (2) over the clean labels233

and let f̂q (defined in (10)) be the minimizer over the noisy labels obtained from weak supervision234

inference in Algorithm 1. Suppose assumptions 2,3,4 hold. Then there exist constants C1, C2 > 0235

dependent on σmax(P), σmin(P) and k such that w.h.p.,236

R(f̂q) ≤ R(f∗) +O(n− 1
4 ) + Õ

(C1

β
n− 1

2

)
+ Õ

(C2

β
(ϵ(d+) + ϵ(d−))

)
. (12)

237

Implications and Tradeoffs: We interpret each term in the bound. The first term is present even238

with access to the clean labels and hence unavoidable. The second term is the additional error we239

incur if we learn with the knowledge of the true noise distribution. The third term is due to the use240

of the estimated noise model. It is dominated by the noise rate recovery result in Theorem 1. If241

the third term goes to 0, i.e. if we have perfect recovery of the true noise, then we obtain the rate242

O(n−1/4), the same as in the case of access toclean labels. The third term is introduced by our noise243

rate recovery algorithm and has two terms: one dominated by Õ(n−1/2) and the other on Õ(
√
k/d)244

(see discussion of Theorem 1). Thus we see that we only pay an extra additive factor O(
√
k/d) in245

the excess risk when using pseudolabels. This extra term is negligible for large d≫ k.246

We briefly sketch the proof. The result follows by first bounding the risk gap between the model247

learned with the knowledge of noise distribution and the model learned with clean labels i.e. |R(f̂p)−248

R(f̂)| and then combining it with risk gap between |R(f̂q)−R(f̂p)|. To obtain the first bound, we249

use the assumptions (2,3) to argue that Fp is a good approximation of F , i.e. the gap between them is250

uniformly bounded over all x, y. This fact allows us to show that the minimizers of Fp and F (i.e.251

f̂p, f̂ ) cannot be far off if the assumption 4 holds. To show the latter, we follow a similar argument252

to first show a uniform convergence bound for Fp, Fq using the noise rate recovery result and then253

show a proximity result for their minimizers f̂p, f̂q and finally using triangle inequality argue that f̂q254

cannot be too far from f∗ if, f̂p and f̂ are close to f∗.255
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5 Manifold-Valued Label Spaces: Noise Recovery and Generalization256

We introduce a simple recovery method for weak supervision in constant-curvature Riemannian257

manifolds. First we briefly introduce some background notation on these spaces, then provide our258

estimator and consistency result, then the downstream generalization result. Finally, we discuss259

extensions to symmetric Riemannian manifolds, an even more general class of spaces.260

Background on Riemannian manifolds The following is necessarily a very abridged background;261

more detail can be found in [Lee00, Tu11]. A smooth manifold M is a space where each point is262

located in a neighborhood diffeomorphic to Rd. Attached to each point p ∈ M is a tangent space263

TpM ; each such tangent space is a d-dimensional vector space enabling the use of calculus.264

A Riemannian manifold equips a smooth manifold with a Riemannian metric: a smoothly-varying265

inner product ⟨·, ·⟩p at each point p. This tool allows us to compute angles, lengths, and ultimately,266

distances dM(p, q) between points on the manifold as shortest-path distances. These shortest paths267

are called geodesics and can be parametrized as curves γ(t), where γ(0) = p, or by tangent vectors268

v ∈ TpM . The exponential map operation exp : TpM→M takes tangent vectors to manifold points.269

It enables switching between these tangent vectors: expp(v) = q implies that dM(p, q) = ∥v∥.270

Invariant Our first contribution is a simple invariant that enables us to recover the error parameters.271

Note that the finite metric-space case is insufficient: the support is infinite. Nor do we need an272

embedding—we have a continuous representation as-is. Instead, we propose a simple idea based273

on the law of cosines. Essentially, on average, the geodesic triangle formed by the latent variable274

y ∈M and two observed LFs λa, λb, is a right triangle. This means it can be characterized by the275

(Riemannian) version of the Pythagorean theorem:276

Lemma 1. For Y =M, a hyperbolic manifold, y ∼ P for some distribution P onM and labeling277

functions λa, λb drawn from (3),278

E cosh dY(λ
a, λb) = E cosh dY(λ

b, y)E cosh dY(λ
b, y),

while for Y =M a spherical manifold,279

E cos dY(λ
a, λb) = E cos dY(λ

b, y)E cos dY(λ
b, y).

These invariants enable us to easily learn by forming a triplet system. Suppose we construct the280

equation in Lemma 1 for three pairs of labeling functions. The resulting system can be solved to ex-281

press E[cosh(dY(λa, y))] in terms of E cosh(dY(λ
a, λb)),E cosh(dY(λ

a, λc)),E cosh(dY(λ
b, λc)).282

Specifically,283

E cosh(dY(λ
a, y)) =

√
E cosh dY(λa, λb)E cosh dY(λa, λc)

(E cosh(dY(λb, λc))2
.

Note that we can estimate Ê via the empirical versions of terms on the right , as these are based284

on observable quantities. This is a generalization of the binary case in [FCS+20] and the Gaussian285

(Euclidean) case in [SLV+22] to hyperbolic manifolds. A similar estimator can be obtained for286

spherical manifolds by replacing cosh with cos.287

Using this tool, we can obtain a consistent estimator for θa for each of a = 1, . . . ,m. Let C0288

satisfy E|Ê cosh(dY(λ
a, λb))− E cosh(dY(λ

a, λb))| ≥ C0E|Êd2Y(λa, λb))− Ed2Y(λa, λb)|; that is,289

C0 reflects the pushforward of concentration between the distributions cosh(d) and d2. Then,290

Theorem 3. Let M be a hyperbolic manifold. Fix 0 < δ < 1 and let ∆(δ) =291

minρ Pr(∀i, dY(λa(i), λb(i) ≤ ρ)) ≥ 1− δ. Then, there exists a constant C1 so that with probability292

at least 1− δ,293

E|Êd2Y(λa, y))− Ed2Y(λa, y)| ≤ C1 cosh(∆(δ))3/2

C0

√
2n

.

As we hoped, our estimator is consistent. Note that we pay a price for a tighter bound: ∆(δ) is large294

for smaller probability δ. It is possible to estimate the size of ∆(δ) (more generally, it is a function of295

the curvature). We provide more details in the Appendix.296
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Next, we adapt the downstream model predictor (2) in the following way. Let µ̂2
a = Ê[d2Y(λa, y)].297

Let β = [β1, . . . , βm]T be such that
∑

a βa = 1 and β minimizes
∑

a β
2
aµ̂

2
a. Then, we set298

f̃(x) = argmin
y∈Y

1

n

n∑
i=1

αi(x)

m∑
a=1

β2
ad

2
Y(y, λa,i).

We simply replace each of the true labels with a combination of the labeling functions. With this, we299

can state our final result. First, we introduce our assumptions.300

Let q = argminz∈Y E[α(x)(y)d2Y(z, y)], where the expectation is taken over the population level301

distribution and α(x)(y) denotes the kernel at y.302

Assumption 5. (Bounded Hugging Function c.f. [Str20]) Let q be defined as above. For all a, b ∈M,303

the hugging function at q is given by kbq(a) = 1− (∥ logq(a)− logq(b)∥2 − d2Y(a, b))/d
2
Y(q, b). We304

assume that kbq(a) is lower bounded by kmin.305

Assumption 6. (Kernel Symmetry) We assume that for all x and all v ∈ TqM, α(x)(expq(v)) =306

α(x)(expq(−v)).307

The first condition provides control on how geodesic triangles behave; it relates to the curvature.308

We provide more details on this in the Appendix. The second assumption restricts us to kernels309

symmetric about the minimizers of the objective F . Finally, suppose we draw (x, y) and (x′, y′)310

independently from PXY . Set σ2
o = α(x)(y)Ed2Y(y, y′).311

Theorem 4. LetM be a complete manifold and suppose the assumptions above hold. Then, there312

exist constants C3, C4313

E[d2Y(f̂(x), f̃(x))] ≤
C3σ

2
o

nkmin
+

C4

∑m
a=1 β

2
aµ̂

2
a

mnkmin
.

Note that as both m and n grow, as long as our worst-quality LF has bounded variance, our estimator314

of the true predictor is consistent. Moreover, we also have favorable dependence on the noise rate.315

This is because the only error we incur is in computing suboptimal β coefficients. We comment on316

this suboptimality in the Appendix.317

A simple corollary of Theorem 5 provides the generalization guarantees we sought,318

Corollary 1. LetM be a complete manifold and suppose the assumptions above hold. Then, with319

high probability,320

R(f̃) ≤ R(f∗) +O(n− 1
4 ).

Extensions to Other Manifolds First, we note that all of our approaches almost immediately lift to321

products of constant-curvature spaces. For example, we have thatM1 ×M2 has metric d2Y(p, q) =322

d2M1
(p1, q1) + d2M2

(p2, q2), where pi, qi are the projections of p, q onto the ith component.323

We can go beyond products of constant-curvature spaces as well. To do so, we can build generaliza-324

tions of the law of cosines (as needed for the invariance in Lemma 1). For example, it is possible to325

do for symmetric Riemannian manifolds using the tools in [AH91].326

6 Conclusion327

We studied the theoretical properties of weak supervision applied to structured prediction. Our328

focus was on two general scenarios: label spaces that are finite metric spaces or continuous spaces329

given by constant-curvature manifolds. In both scenarios, we introduced ways to estimate the noise330

rates of labeling functions, achieving consistency or near-consistency. Using these estimators, we331

established that, after suitable modifications, downstream structured prediction models maintain their332

generalization guarantees. Future directions include extending these results to even more general333

manifolds and removing some of the assumptions that limit our results to particular models.334
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Appendix415

The Appendix is organized as follows. First, we provide a glossary that summarizes the notation we416

use throughout the paper. Afterwards, we provide the proofs for the finite-valued metric space cases.417

We continue with the proofs and additional discussion for the manifold-valued label spaces. Finally,418

we give some additional explanations for pseudo-Euclidean spaces.419

A Glossary420

The glossary is given in Table 1 below.

Symbol Definition

X feature space
Y label metric space
SY support of prior distribution on true labels
dY label metric (distance) function
x1, x2, . . . , xn unlabeled datapoints from X
y1, y2, . . . , yn latent (unobserved) labels from Y
s1, s2, . . . , sm labeling functions / sources
λ1, λ2, . . . , λm output of labeling functions (LFs)
λ1,λ2, . . . ,λm pseudo-Euclidean embeddings of LFs outputs
λ
(i)
a output of ath LF on ith data point xi

λ
(i)
a pseudo-Euclidean Embedding of output of ath LF on ith data point xi

n number of data points
m number of LFs
k size of the support of prior on Y i.e. k = |SY |
r size of Y for the finite case
λ
(i)
a output of ath labeling function applied to ith sample xi

θa, θ̂a true and estimated canonical parameters of model in (3)
θ, θ̂ true and estimated canonical parameters arranged as vectors.
E[d2Y(λa, y)] mean parameters in (3)
g pseudo-Euclidean embedding mapping
P true noise model Pij = Pθ(Ỹ = yi|Y = yj) with true parameters θ
Q estimated noise model with parameters θ̂, Qij = Pθ̂(Ỹ = yi|Y = yj)
Λ a random element in Ym the m-fold Cartesian product of Y .
Λ(u) uth element in Ym

µ+
a,y,µ

−
a,y means of distributions in (4) corresponding to Rd+

,Rd−

ϵ(d+), ϵ(d−) error in recovering the mean parameters, (6)
σ noise variance in (4)
F (x, y) the score function in (2) with true labels
F̃p(x, y), F̃q(x, y) the score function in (10) with noisy labels from distributions P and Q

f̂ minimizer of F defined in (2)
f̂p, f̂q minimizers of F̃p, F̃q as defined in (2)
σmax(P) maximum singular value of P
σmin(P) minimum singular value of P
κ(P) the condition number of matrix P

Table 1: Glossary of variables and symbols used in this paper.

421

We introduce results leading to the proofs of the theorems for the finite-valued metric space case.422

Lemma 2. ([AGJ14]) Let T̂+, T̂− be the third order observed moments for labeling functions triplet423

(a, b, c), as defined in 5 over n (suff. large) i.i.d observations drawn from models in equation 4, and424

µ̂+
a,y, µ̂

+
b,y, µ̂

+
c,y and µ̂−

a,y, µ̂
−
b,y, µ̂

−
c,y be the estimated parameters returned by the algorithm 1. Let425

12



ϵ(d) be defined as above in equation 6, then the following holds with high probability for all triplets426

(a, b, c) of labeling functions,427

||µ+
s,y − µ̂+

s,y||2 ≤ O(ϵ(d+)) and ||µ−
s,y − µ̂−

s,y||2 ≤ O(ϵ(d−)) ∀s ∈ (a, b, c)∀y ∈ Y (13)

428

Proof. The result in [AGJ14] is in terms of the following distance function,

dist(u,v) = sup
z⊥u

⟨z,v⟩
||z||2||v||2

= sup
z⊥v

⟨z,u⟩
||z||2||u||2

.

The proof follows by translating the result to the euclidean distance. for u,v ∈ Rd with ||u||, ||v|| =
1,

min
z∈{−1,+1}

||zu− v||2 ≤
√
2 dist(u,v).

This notion of distance is oblivious to sign recovery. However if the sign recovery is possible then we
have,

||u− v||2 ≤
√
2 dist(u,v).

We are assuming that sign recovery is possible, ( in the worst case by doing brute-force over the the429

signs for each LF.) And further with appropriate normalization we have ||µ+
a || = 1, ||µ̂+

a || = 1 and430

||µ−
a || = 1, ||µ̂−

a || = 1,431

This gives us
||µ+

a,y − µ̂+
a,y||2 ≤ O(dist(µ+

a,y,µ
−
a,y)) ≤ O(ϵ(d+)).

and similarly for µ−
a,y. Further with n, d be suff. large such that ϵ(d+), ϵ(d−) ≤ 1 , then the result432

holds for squared distances.433

Theorem 1. Let µ̂+
a,y, µ̂

−
a,y be the estimates of µ+

a,y,µ
−
a,y returned by Algorithm 1 with input434

T̂+, T̂− constructed using isometric pseudo-Euclidean embeddings (in Rd+,d−
) of n (suff. large)435

i.i.d observations drawn from the models in 3, k = |SY |, then ∃ constant C0 > 0 such that with high436

probability ∀a ∈ [m] and y ∈ SY ,437

|θa − θ̂a| ≤ C0

∣∣∣Eλa|y[d
2
Y(λa, y)]− Êλa|y[d

2
Y(λa, y)]

∣∣∣ ≤ ϵ(d+) + ϵ(d−),

where438

ϵ(d) :=

Õ
(
k
√

d
n

)
+ Õ

(√
k
d

)
if σ2 = Θ(1),

Õ
(√

k
n

)
+ Õ

(√
k
d

)
if σ2 = Θ( 1d ).

(6)

Proof. Using the tensor decomposition result from lemma 2 we get, estimate µ̂a,y such that

||µ̂+
a,y − µ+

a,y||22 ≤ O(ϵ(d+)) and ||µ̂−
a,y − µ−

a,y||22 ≤ O(ϵ(d−)).

Using the definition of euclidean distance and the fact that E[λa[i]
2]− µa,y[i]

2 = σ2
i , we get439

Eλ+
a |y[d

2
ϕ(λ

+
a ,y)] = Eλ+

a |y

[
||λ+

a ||22 + ||y+||22 − 2⟨λ+
a ,y

+⟩
]
,

= ||µ+
a,y||22 +

d+∑
i=1

σ2
i + ||y+||22 − 2⟨µ+

a,y,y
+⟩.

Plugging in the estimate of µ+
a,y we get,440

Êλ+
a |y[d

2
ϕ(λ

+
a , y)] = ||µ̂+

a,y||22 +
d+∑
i=1

σ2
i + ||y+||22 − 2⟨µ̂+

a,y,y
+⟩.
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Thus,441 ∣∣∣Eλ+
a |y[d

2
ϕ(λ

+
a ,y)]− Êλ+

a |y[d
2
ϕ(λ

+
a ,y)]

∣∣∣ ≤ (||µ+
a,y||22 − ||µ̂+

a,y||22
)
+ 2||y+||2

(
||µ+

a,y − µ̂+
a,y||2

)
,

≤ O(ϵ(d+)) +O(ϵ(d+)),
= O(ϵ(d+)).

Here we used ||µ+
a,y − µ̂+

a,y||2 ≤ O(ϵ(d+)) and ||µ+
a,y||2, ||µ̂+

a,y||2 = 1, ||y+||2 ≤ 1, which allows442

us to bound,443

||µ+
a,y||22 − ||µ̂+

a,y||22 =
〈(

µ̂+
a,y − µ+

a,y

)
,
(
µ̂+

a,y + µ+
a,y

)〉
,

≤ ||µ̂+
a,y − µ+

a,y||2 · ||µ̂+
a,y + µ+

a,y||2,
≤ O(ϵ(d+)).

Doing the same calculations for λ−
a , we get444 ∣∣∣Eλ−

a |y[d
2
ϕ(λ

−
a ,y)]− Êλ−

a |y[d
2
ϕ(λ

−
a ,y)]

∣∣∣ ≤ O(ϵ(d−)).
Thus overall error in mean parameters is445 ∣∣∣Eλa|y[d

2
ϕ(λa,y)]− Êλa|y[d

2
ϕ(λa,y)]

∣∣∣ ≤ ∣∣∣Eλ+
a |y[d

2
ϕ(λ

+
a ,y)]− Êλ+

a |y[d
2
ϕ(λ

+
a ,y)]

∣∣∣+∣∣∣Eλ−
a |y[d

2
ϕ(λ

−
a ,y)]− Êλ−

a |y[d
2
ϕ(λ

−
a ,y)]

∣∣∣,
≤ O(ϵ(d+)) +O(ϵ(d−)).

Next, we use a known relation between the mean and the canonical parameters of the exponential
model to get the result in terms of the canonical parameters. In particular the result says the following,

|θa − θ̂a| ≤
1

emin(Aa(θ))

∣∣E[d2Y(λa, y)− Ê[d2Y(λa, y)]
∣∣.

where Aa(θ) is the log partition function of the label model in (3) and emin(Aa) = infθ∈Θ
d2

dθ2Aa(θ)446

over the parameter space Θ. For more details see Lemma 8 from [FCS+20] and Theorem 4.3 in447

[SLV+22]. Letting C0 = maxa∈[m] emin(Aa) gives us the result.448

449

Finding σ for distribution in (4)450

u(θ) = E[d2Y(λ, y)] = E[d2ϕ(λ,y)] =
d+∑
i=1

E[(λ[i]− y[i])2]−
d∑

i=d++1

E[(λ[i]− y[i])2],

=
( d+∑

i=1

E[(λ[i]− µy[i])
2]− (µy[i]− y[i])2

)
−

( d∑
i=d++1

E[(λ[i]− µy[i])
2]− (µy[i]− y[i])2

)
,

=

d+∑
i=1

σ2
i −

d∑
i=d++1

σ2
i + d2ϕ(µy,y),

≤ dσ2
max + d2ϕ(µy,y).

σ2
max ≥ 1

d

(
E[d2ϕ(λ,y)]− d2ϕ(µy,y)

)
= 1

d

(
u(θ)− d2ϕ(µy,y)

)
, u(θ) is inversely proportional to θ.451

High θ implies that there is low variance in (3), thus it implies for low variance in (3) we have low452

σmax.453
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B Proofs for Generalization Error454

B.1 When True Noise Distribution is Available455

Lemma 3. Let the distribution Ỹ |Y be given by P a k × k transition probability matrix with456

Pij = P(Ỹ = yi|Y = yj) and let P be invertible matrix. Let the pseudo-distance d̃p be defined as457

in equation 9 then,458

EỸ |Y=yj

[
d̃p(T, Ỹ )

]
= d2Y(T, yj). (14)

459

Proof. It is easy to see it in terms of vectors, denote d̃p ∈ Rk with ith entry given by d̃p(T, Ỹ = yi)

and similarly define d̃. Then we can see that d̃ satisfies the following with P being a symmetric
matrix.

d̃p = (P)−1d =⇒ EỸ |Y [d̃p] = P(P)−1d = d.

460

Lemma 4. Let F and F̃p be defined as in equations (10) and 2 over n i.i.d. samples, then the461

following holds for any x ∈ X , y ∈ Y w.h.p.462

|F (x, y)− F̃p(x, y)| ≤ Õ
((1 + σmax(P)

σmin(P)

)√ 1

n

)
. (15)

where σmax(P), σmin(P) are the maximum and minimum singular values of P.463

Proof. Recall the definitions, Let yini=1 be the true labels of points xi
n
i=1 and let the pseudo-label for464

ith point drawn from noise model P be ỹi.465

F (x, y) :=
1

n

n∑
i=1

αi(x)d
2
Y(y, yi), F̃p(x, y) :=

1

n

n∑
i=1

αi(x)d̃p(y, ỹi).

466

F̃p(x, y)− F (x, y) =
1

n

n∑
i=1

αi(x)
(
d̃p(y, ỹi)− d2Y(y, yi)

)
,

=
1

n

n∑
i=1

αi(x)ξ(y, yi, ỹi).

Here y, yi are fixed and the randomness is over ỹi, thus we can think of ỹi as random variable Ỹi467

and take the expectation of ξ over the distribution P. We can see that from Lemma 3 we have468

EỸ∼P[:,yi]
[ξ(y, yi, Ỹ )] = 0 this implies E[F̃p(x, y)− F (x, y)] = 0.469

Moreover, αi(x) · ξ(y, yi, Ỹi) are independent r.v. and αi(x) ≤ 1, but we don’t know if ξ(y, yi, Ỹi)
are bounded. It would be misleading to think of d̃p as distance and use the same upper bound as of
d2Y on it – due to the fact that d̃p is obtained by multiplying by inverse of P and the true distances and
the entries of the inverse can have magnitude large than 1. However we can see that ξ are bounded as
following as long as the spectral decomposition of P is not arbitrary,

||d̃p − d||∞ = ||P−1dp − d||∞ ≤ ||P−1||2||I−P||2||d||∞ ≤
1 + σmax(P)

σmin(P)
=: c1.

Thus using Hoeffding’s inequality,

|F̃p(x, y)− F (x, y)| ≤ Õ
(
c1

√
1

n

)
.

470
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Lemma 5. Let f̂ be the minimizer as defined in equation 2 over the clean labels and let f̂p (defined471

in eq. 10) be the minimizer over the noisy labels obtained from conditional distribution Ỹ |Y i.e. P472

such that lemma 3, 4 hold, and let the risk function be defined as in equation 1, then w.h.p.473

d2Y
(
f̂p(x), f̂(x)

)
≤ Õ

(c1
β

√
1

n

)
. (16)

474

Proof. Recall the definitions,475

f̂(x) = argmin
y∈Y

F (x, y) f̂p(x) = argmin
y∈Y

F̃p(x, y)

Let d2Y(f1, f2) = supx∈X d2Y
(
f1(x), f2(x)

)
and let B(f̂ , r) = {f : d2Y(f̂ , f) ≤ r} denote the ball476

of radius r around f̂ .477

From lemma 4 we know for t = Õ
(( 1+σmax(P)

σmin(P)

)√
1
n

)
,478

F
(
x, f(x)

)
− t ≤ F̃p

(
x, f(x)

)
≤ F

(
x, f(x)

)
+ t.

From assumption 4 we have,479

F
(
x, f(x)

)
≥ F

(
x, f̂(x)

)
+ β · d2Y(f(x), f̂(x)).

Combining the two we get a lower bound on F̃p,480

F̃p(x, f(x)) ≥ F
(
x, f̂(x)

)
+ β · d2Y(f(x), f̂(x))− t.

We want to find a suff. large ball around f̂ such that the minimizer of F̃p does not lie outside this ball.481

To see this let LB and UB denote the above mentioned lower and upper bounds on F̃p,482

LB(F̃p, f, x) := F
(
x, f̂(x)

)
+ β · d2Y(f(x), f̂(x))− t.

UB(F̃p, f, x) := F
(
x, f(x)

)
+ t.

For f ∈ B(f̂ , 2t
β ) and some f ′ such that,483

UB(F̃p, f, x) ≤ LB(F̃p, f
′, x) ∀x,

F
(
x, f(x)

)
+ t ≤ F

(
x, f̂(x)

)
+ β · d2Y(f ′(x), f̂(x))− t,

F
(
x, f(x)

)
− F

(
x, f̂(x)

)
+ t ≤ β · d2Y(f ′(x), f̂(x))− t,

βd2Y(f(x), f̂(x)) + t ≤ β · d2Y(f ′(x), f̂(x))− t,

d2Y(f
′(x), f̂(x)) ≥ 2t/β + d2Y(f(x), f̂(x)).

Thus considering the greatest lower bound, any f ′ with d2Y(f
′(x), f̂(x)) ≥ 4t

β cannot be the minimizer484

of F̃p, since there exists some other f with smaller distance from f̂ that has smaller value compared485

to f ′. The β dependence is expected, because if β is too small, i.e. F is sort of flat so the minimizer486

of F̃ might be far off from f̂ .487

B.2 When True Noise Distribution is not Available488

Lemma 6. Let Q, P be the distributions defined in equation (8), and d̃q(T, Ỹ ) be the distance489

function as in equation 9, if maxij |Pij −Qij | = ϵ then,490

EỸ ,Z̃∼P[:,y]

[∣∣d̃q(T, Z̃)− d̃p(T, Ỹ )
∣∣] ≤ O(k2(σmax(P) +

κ(P)

σmin(P)

)
· ϵ
)

∀y ∈ Y. (17)

491
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Proof. Let d̃q ∈ Rk be a vector such that its ith entry is given as d̃q[i] = d̃q(T, Z̃ = yi), and492

similarly, let dp ∈ Rk with dp[i] = d̃p(T, Ỹ = yi), and d ∈ Rk with d[i] = d2Y(T, Y = yi). It is493

easy to see that, d̃q = Q−1d and d̃p = P−1d. Now consider the following expectation w.r.t P,494

EP[d̃q − d̃p] = EP[Q
−1d−P−1d] = P

(
Q−1d−P−1d

)
= P

(
Q−1 −P−1

)
d.

Let ∆P = P−Q, and using standard matrix inversion results for small perturbations, [Dem92], and495

||d||∞ ≤ 1 we get496

Since, maxij(∆P)ij ≤ ϵ, we have ||∆P||2 ≤ ||∆P||F ≤ ϵk497

||EP[d̃p − d̃q]||∞ ≤ ||P||2||(P+∆P)−1 −P−1||2||d||∞,

≤ ||P||2
(
κ(P)||P−1||2

||∆P||2
||P||2

+O(||∆P||22)
)
,

=
(
κ(P)||P−1||2||∆P||2

)
+O(||∆P||22),

≤ ϵk · κ(P)||P−1||2 +O(ϵ2k2),

≤ O
(
k2
(
1 +

κ(P)

σmin(P)

)
· ϵ
)
.

498

Lemma 7. For F̃p and F̃q defined in (10) w.r.t. noise distributions P and Q respectively, and let499

maxij |Pij −Qij | ≤ ϵ then we have w.h.p.500

|F̃p(x, y)− F̃q(x, y)| ≤ Õ
(
c2

√
1

n

)
+ c3ϵ ∀y ∈ Y. (18)

with c2 = k2
(
1 + κ(P)

σ2
min(P)

)
and c3 = k2

(
σmax(P) + κ(P)

σmin(P)

)
.501

Proof. Recall the definitions,502

F̃p(x, y) :=
1

n

n∑
i=1

αi(x)d̃p(y, ỹi), F̃q(x, y) :=
1

n

n∑
i=1

αi(x)d̃q(y, z̃i).

503

F̃p(x, y)− F̃q(x, y) =
1

n

n∑
i=1

αi(x)
(
d̃p(y, ỹi)− d̃q(y, z̃i)

)
=

1

n

n∑
i=1

αi(x)ξ(y, ỹi, z̃i).

αi(x) · ξ(y, ỹi, z̃i) are independent r.v. and αi(x) ≤ 1, but we don’t know if the ξ(y, ỹi, z̃i) are504

bounded. To see that ξ(y, ỹi, z̃i) are bounded by ||Q−1 − P−1||2||d||∞ ≤ c2 (see lemma 6 ) and505

from lemma 6, E[ξ(y, ỹi, z̃i)] ≤ c3ϵ, thus using Hoeffding’s inequality gives the result.506

Lemma 8. Let f̂p be the minimizer as defined in equation 10 over the noisy labels drawn from P, and507

let f̂q (defined in eq. 10) be the minimizer over the noisy labels obtained from conditional distribution508

Q then w.h.p.509

d2Y
(
f̂q(x), f̂(x)

)
≤ Õ

( 1
β

(
c1 + c2

)√ 1

n
+

c3
β
ϵ
)

∀x ∈ X . (19)

510

Proof. let t1 = O
(
c1

√
1
n log

(
|Y|
δ

))
and t2 = O

(
c2

√
1
n log

(
|Y|
δ

))
+ c3ϵ, then combining lemma511

7 and 4 we have,512

F
(
x, f(x)

)
− t1 − t2 ≤ F̃q

(
x, f(x)

)
≤ F

(
x, f(x)

)
+ t1 + t2.

Then following same argument as in lemma 5, we get the result.513
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Theorem 2. (Generalization Error ) Let f̂ be the minimizer as defined in (2) over the clean labels514

and let f̂q (defined in (10)) be the minimizer over the noisy labels obtained from weak supervision515

inference in Algorithm 1. Suppose assumptions 2,3,4 hold. Then there exist constants C1, C2 > 0516

dependent on σmax(P), σmin(P) and k such that w.h.p.,517

R(f̂q) ≤ R(f∗) +O(n− 1
4 ) + Õ

(C1

β
n− 1

2

)
+ Õ

(C2

β
(ϵ(d+) + ϵ(d−))

)
. (12)

Proof. Recall the definition of risk function,518

R(f) = Ex,y

[
d2Y
(
f(x), y

)]
.

519

R(f̂q) = Ex,y

[
d2Y
(
f̂q(x), y

)]
,

≤ Ex,y

[
d2Y
(
f̂q(x), f̂(x)

)
+ d2Y(f̂(x), y) + 2dY(f̂q(x), f̂(x)) · dY(f̂(x), y)

]
,

= Ex[d
2
Y
(
f̂q(x), f̂(x)

)
] +R(f̂) + Õ(n−1/4),

≤ Õ
( 1
β

(
c1 + c2

)√ 1

n
+

c2
β
ϵ
)
+R(f̂) + Õ(n−1/4).

Using the result from [CRR16],

R(f̂) ≤ R(f∗) +O(n−1/4).

Combining the two we get

R(f̂q) ≤ R(f∗) + Õ(n−1/4) + Õ
( 1
β

(
c1 + c2

)√ 1

n
+

c3
β
ϵ)
)
.

We get the end result by plugging in the bound on ϵ = maxij ||P −Q|| from lemma 11 and the520

bound on parameter recovery error ||θ − θ̂||∞ from Theorem 1.521

522

Lemma 9. The posterior distribution function Pθ(Y = y|Λ = Λu) is (2, ℓ∞)−Lipshcitz continuous
in θ for any y ∈ Y and Λu ∈ Ym.

|Pθ1(Y = y|Λ = Λu)− Pθ2(Y = y|Λ = Λu)| ≤ 2||θ1 − θ2||∞ ∀θ1,θ2 ∈ Rm.

523

Proof. Recall the definition of the posterior distribution,524

Pθ(Y = y|Λ = Λu) =
p(Y = yi)Pθ(Λ = Λu|Y = yi)∑

yj∈Y p(Y = yj)Pθ(Λ = Λu|Y = yj)
.

For convenience let d(u,i) ∈ Rm be such that its ath entry d
(u,i)
a = d2Y(Λ

u
a , yi)525

Pθ(Y = y|Λ = Λu) =
P (Y = yi) exp(−θTd(u,i))∑

yj∈Y P (Y = yj) exp(−θTd(u,j))
.

Let Z2(θ) =
∑

yj∈Y P (Y = yj) exp(−θTd(u,j)), then526

−∇θ log(Z2(θ)) =

∑
yj∈Y d(u,j)P (Y = yj) exp(−θTd(u,j))

Z2(θ)
= EY |Λ[d].

Since distances are upper bounded by 1, ||d||∞ ≤ 1, so ||EY |Λ[d]||∞ ≤ 1.527

Now,528

∇θ log
(
Pθ(Y = y|Λ = Λu)

)
= −d(u,i) −∇θ log(Z2(θ)).
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Thus ||∇θ log
(
Pθ(Y = y|Λ = Λu)

)
||∞ ≤ 2.

=⇒ | log
(
Pθ1(Y = y|Λ = Λu)

)
− log

(
Pθ2(Y = y|Λ = Λu)

)
| ≤ 2||θ1 − θ2||∞.

Using the fact that for any t1, t2 ∈ [0, 1] |t1 − t2| ≤ | log(t1)− log(t2)|, gives us the result.529

530

Lemma 10. The distribution function Pθ(Λ = Λu|Y = y) is (2, ℓ∞)−Lipshcitz continuous in θ for
any y ∈ Y and Λu ∈ Ym.

|Pθ1
(Λ = Λu|Y = y)− Pθ2

(Λ = Λu|Y = y)| ≤ 2||θ1 − θ2||∞ ∀θ1,θ2 ∈ Rm.

531

Proof. Doing the same steps as in the proof of lemma 9 gives the result.532

Lemma 11. For the noise distributions P,Q in (8) with parameters θ, θ̂ respectively and Y restricted
only to the elements with non-zero prior probability, Y ′ = {y ∈ Y : P (Y = y) > 0} the following
holds,

max
ij
|Pij −Qij | ≤ 4 · km||θ − θ̂||∞ .

533

Proof. It is easy to see that for any two bounded functions f1, f2 with |f1(x)| ≤ 1, |f2(x)| ≤ 1 and
Lipschitz continuous with constants L1, L2, the product of them is also Lipschitz continuous but with
constant L1 + L2. Using this fact along with lemma 9 and lemma 10 gives the result,

|Pij −Qij | ≤
∑

Λu∈Y′

|Pθ(yi|Λu)Pθ(Λ
u|yj)− Pθ̂(yi|Λ

u)Pθ̂(Λ
u|yj)| ≤ 4 · km||θ − θ̂||∞.

534

It is important to note that we are restricting the values of y and λ to Y ′ which is the set of y with535

non-zero prior probability and by our assumption it is small.536

C Proofs for Continuous Label Spaces537

Next we present the proofs for the results in the continuous (manifold-valued) label spaces. We538

restate the first result on invariance:539

Lemma 1. For Y =M, a hyperbolic manifold, y ∼ P for some distribution P onM and labeling540

functions λa, λb drawn from (3),541

E cosh dY(λ
a, λb) = E cosh dY(λ

b, y)E cosh dY(λ
b, y),

while for Y =M a spherical manifold,542

E cos dY(λ
a, λb) = E cos dY(λ

b, y)E cos dY(λ
b, y).

Proof. We start with the hyperbolic law of cosines, which states that543

cosh d(λa, λb) = cosh d(λa, y) cosh d(λb, y) + sinh d(λa, y) sinh d(λb, y) cosα,

where α is the angle between the sides of the triangle formed by (y, λa) and (y, λb. We can rewrite544

this as follows. Let va = logy(λ
a), vb = logy(λ

b be tangent vectors in TyM . Then,545

cosh d(λa, λb) = cosh d(λa, y) cosh d(λb, y) + (sinh ∥va∥ sinh ∥vb∥)⟨ va

∥va∥
,

vb

∥vb∥
⟩.
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Next, we take the expectation conditioned on y. The right-most term is then546

E[(sinh ∥va∥ sinh ∥vb∥)⟨ va

∥va∥
,

vb

∥vb∥
⟩|y]

= E[(sinh ∥va∥ sinh ∥vb∥)|y]E[⟨ va

∥va∥
,

vb

∥vb∥
⟩|y]

= 0,

where the last equality follows from the fact that va and vb are independent conditioned on y. This547

leaves us with the cosh product terms. Taking expectation again with respect to y gives the result.548

The spherical version of the result is nearly identical, replacing hyperbolic sines and cosines with549

sines and cosines, respectively.550

Note, in addition, that it is easy to obtain a version of this result for curvatures that are not equal to551

−1 in the hyperbolic case (or +1 in the spherical case).552

We will use this result for our consistency result, restated below.553

Theorem 3. Let M be a hyperbolic manifold. Fix 0 < δ < 1 and let ∆(δ) =554

minρ Pr(∀i, dY(λa(i), λb(i) ≤ ρ)) ≥ 1− δ. Then, there exists a constant C1 so that with probability555

at least 1− δ,556

E|Êd2Y(λa, y))− Ed2Y(λa, y)| ≤ C1 cosh(∆(δ))3/2

C0

√
2n

.

Proof. First, we will condition on the event that the observed outputs have maximal distance (i.e.,557

diameter) ∆. This implies that our statements hold with high probability. Then, we use McDiarmid’s558

inequality. For each pair of distinct LFs a, b, we have that559

P

(
1

n
|

n∑
i=1

cosh(d(λa(i), λb(i)))− E cosh(d(λa, λb))| ≥ t

)
≤ 2 exp

(
− 2nt2

cosh(∆)

)
,

Integrating the expression above in t, we obtain560

E|Ê cosh(d(λa, λb))− E cosh(d(λa, λb))| ≤
√
π cosh(∆)√

2n
. (20)

Next, we use this to control the gap on our estimator. Recall that using the triplet approach, we561

estimate562

Ê cosh(d(λa, y)) =

√
Ê cosh d(λa, λb)Ê cosh d(λa, λc)

(Êd(λb, λc))2
.

For notational convenience, we write ν(a) for E(cosh(d(λa, y))), ν̂(a) for its empirical counterpart,563

and ν(a, b) and ν̂(a, b) for the versions between pairs of LFs a, b. Then, the above becomes564

ν̂(a) =

√
ν̂(a, b)ν̂(a, c)

(ν̂(b, c))2
.

Note that cosh(x) ≥ 1, so that ν̂(a, b) ≥ 1 and similarly for the empirical versions. We also have565

that ν̂(a, b) ≤ cosh(∆). With this, we can begin our perturbation analysis. Applying Lemma 1, we566

20



have that567

E|ν̂(a)− ν(a)| = E

∣∣∣∣∣
√

ν̂(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
= E

∣∣∣∣∣
√

ν̂(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν̂(a, c)

ν̂(b, c)2
+

√
ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤ E

∣∣∣∣∣
√

ν̂(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν̂(a, c)

ν̂(b, c)2

∣∣∣∣∣+ E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
= E

∣∣∣∣∣
√

ν̂(a, c)

ν̂(b, c)2
(
√

ν̂(a, b)−
√
ν(a, b))

∣∣∣∣∣+ E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤
√
π cosh(∆2)√

2n
+ E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣ .
To see why the last step holds, note that

√
ν̂(a, c) ≤

√
cosh(∆), while ν̂(b, c) ≥ 1. Next, for568

α, β ≥ 1,
√
α−
√
β = α−β√

α−
√
β
≤ α− β. This means that E|

√
ν̂(a, b)−

√
ν(a, b)| ≤ E|ν̂(a, b)−569

ν(a, b)| ≤
√

π cosh(∆)

√
2n

using (20).570

Now we can continue, adding and subtracting as before. We have that571

E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤ E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν̂(b, c)2

∣∣∣∣∣+ E

∣∣∣∣∣
√

ν(a, b)ν(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤
√
π cosh(∆)√

2n
+ E

∣∣∣∣∣
√

ν(a, b)ν(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤
√
π cosh(∆)√

2n
+

√
π cosh(∆)3/2√

2n
.

Putting it all together, with probability at least 1− δ,572

E|Ê cosh(d(λa, y))− E cosh(d(λa, y))| ≤ 2
√
π cosh(∆) +

√
π cosh(∆)3/2√

2n
. (21)

Next, recall that C0 satisfies E|Ê cosh(d(λa, λb)) − E cosh(d(λa, λb))| ≥ C0E|Êd(λa, λb)) −573

Ed(λa, λb)|. Thus,574

E|Êd2(λa, y)− Ed2(λa, y)| ≤ 2
√
π cosh(∆) +

√
π cosh(∆)3/2

C0

√
2n

.

This concludes the proof.575

Next, we will prove a simple result that is needed in the proof of Theorem 5. Consider the distribution576

P of the quantities α(x)(y)d2Y(z, y) for some fixed z ∈M. We can think of this as the population-577

level version of sample distances that are observed in the supervised version of the problem. We do578

not have access to it in our approach; it will be used only as an object in our proof. Recall we set579

q = argminz∈Y E[α(x)(y)d2Y(z, y)] to be the population-level minimizer. Here we use the notation580

α(x)(y) to denote the corresponding kernel value at a point y. Finally, let us denote P ′ to be the581

distribution over the quantities α(x)(y)
∑m

a=1 β
2
ad

2
Y(z, λa,i).582
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Lemma 12. Let the distributions P and P ′ be defined as above, with q the minimizer of583

EP [α(x)(y)d
2
Y(z, y)]. Suppose that Assumptions 5 and 6 hold. Then, q is also the minimizer584

of E′
P [α(x)(y)

∑m
a=1 β

2
ad

2
Y(z, λa,i)].585

Proof. We will use a simple symmetry argument. First, note that we can write q in the following way,586

q = argmin
z∈Y

∫
TqM

α(x)(logq(v))d
2
Y(z, expq(v))dP.

SinceM is a symmetric manifold, if v ∈ TqM, there is an isometry sending v to −v ∈ TqM. Using587

this isometry and Assumption 6, we can also write588

q = argmin
z∈Y

∫
TqM

α(x)(logq(−v))d2Y(z, expq(−v))dP.

Our approach will be to formulate similar symmetric expressions for the minimizer, but this time589

for the loss over the distribution P ′. We will then be able to show, using triangle inequality, that q590

remains the minimizer.591

We can similarly express the minimizer of the loss for P ′ as592

argmin
z∈Y

∫
TqM

∫
(Texpq(v)M)⊗m)

α(x)(logq(v))

m∑
a=1

β2
ad

2
Y(z, expexpq(v)

(va))dP ′.

Here we have broken down the expectation over P ′ by applying the tower law; the inner expectation593

is conditioned on point expq(v) and runs over the labeling function outputs λ1, . . . , λm.594

Again using Assumption 6, we can write the minimizer for the loss over P ′ as argminz∈Y F ′(z),595

where596

F ′(z) =

∫
TqM

∫
(Texpq(−v)M)⊗m)

α(x)(logq(−v))
m∑

a=1

β2
ad

2
Y(z, expexpq(−v)(−va))dP ′.

Thus we can also write the minimizer as argminz∈Y F ′(z), where597

F ′(z) =

∫
TqM

∫
(Texpq(−v)M)⊗m)

α(x)(logq(−v))
m∑

a=1

β2
ad

2
Y(z, expexpq(−v)(−va))dP ′.

With this, we can write598

F ′(z) =
1

2

(∫
TqM

∫
(Texpq(v)M)⊗m)

α(x)(logq(v))

m∑
a=1

β2
ad

2
Y(z, expexpq(v)

(va))dP ′

+

∫
TqM

∫
(Texpq(−v)M)⊗m)

α(x)(logq(−v))
m∑

a=1

β2
ad

2
Y(z, expexpq(−v)(−va))dP ′

)

=
1

2

(∫
TqM

∫
(Texpq(v)M)⊗m)

α(x)(logq(v))

m∑
a=1

β2
ad

2
Y

(
(z, expexpq(v)

(va))

+ d2Y(z, expexpq(−v)(PTexpq(v)→expq(−v)(−va)))
)
dP ′
)
,

where PTp→s denotes parallel transport from p to s.599

Note that q is on the geodesic between expexpq(v)
(va) and expexpq(−v)(PTexpq(v)→expq(−v)(−va)).600

We exploit this fact by applying the following squared-distance inequality. For three points p, s, z,601

from the triangle inequality,602

dY(p, z) + dY(s, z) ≥ dY(p, s).

Squaring both sides and applying603

d2Y(p, z) + d2Y(s, z) ≥ 2dY(p, z)dY(s, z),
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we obtain that604

2(d2Y(p, z) + d2Y(s, z)) ≥ d2Y(p, s),

so that605

d2Y(p, z) + d2Y(q, z) ≥
1

2
d2Y(p, q).

Setting p to be expexpq(v)
(va) and s to be expexpq(−v)(PTexpq(v)→expq(−v)(−va)) in the above606

gives607

F ′(z) ≥ 1

2

(∫
TqM

∫
(Texpq(v)M)⊗m)

α(x)(logq(v))

m∑
a=1

β2
a

1

2
d2Y(expexpq(v)

(va), expexpq(−v)(PTexpq(v)→expq(−v)(−va)))dP ′
)
.

Now we can apply the fact that q is on the geodesic to rewrite this as608

F ′(z) ≥ 1

2

(∫
TqM

∫
(Texpq(v)M)⊗m)

α(x)(logq(v))

m∑
a=1

β2
a

1

2
4d2Y(q, expexpq(v)

(va))dP ′

)
.

This is because the length of the geodesic connecting expexpq(v)
(va) and609

expexpq(−v)(PTexpq(v)→expq(−v)(−va)) is twice that of the geodesic connecting expexpq(v)
(va) to610

q.611

Thus, we have612

F ′(z) ≥ F ′(q),

and we are done.613

Finally, this enables us to prove our main result, Theorem 5, restated below:614

Theorem 5. LetM be a complete manifold and suppose the assumptions above hold. Then, there615

exist constants C3, C4616

E[d2Y(f̂(x), f̃(x))] ≤
C3σ

2
o

nkmin
+

C4

∑m
a=1 β

2
aµ̂

2
a

mnkmin
.

Proof. We use Lemma 12 and compute a bound on the expected distance from the empirical estimates617

to the common center. In both cases, the approach is nearly identical to that of [Str20] (proof of618

Theorem 3.2.1); we include these steps for clarity. Suppose that the minimum and maximum values619

of α are αmin and αmax, respectively.620

Then, letting we have that, using the hugging function assumption621

∥ logq(f̂(x))− logq(yi)∥2 ≤ kmind
2
Y(q, f̂(x)) + d2Y(f̂(x), yi).

We also have that622

∥ logq(f̂(x))− logq(yi)∥2 = d2Y(q, f̂(x))− 2⟨logq(f̂(x)), logq(yi)⟩+ d2Y(q, yi).

Then,623

(1− kmin)d
2
Y(q, f̂(x)) ≤ 2⟨logq(f̂(x)), logq(yi)⟩+ d2Y(f̂(x), yi)− d2Y(q, yi).

Now, multiply each of the equations by αi and sum over them. In that case, the different on the right624

side is non-positive, as f̂(x) is the empirical minimizer. This yields625

n∑
i=1

α(x)i(1− kmin)d
2
Y(q, f̂(x)) ≤

n∑
i=1

α(x)i2⟨logq(f̂(x)), logq(yi)⟩.
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Using the minimum and maximum values of α, and setting q̄ =
∑n

i=1 logq(yi), we get626

αmin(1− kmin)d
2
Y(q, f̂(x)) ≤ 2αmax⟨logq(f̂(x)), q̄⟩.

We can apply Cauchy-Schwarz, simplify, then square, obtaining627

α2
min(1− kmin)

2d2Y(q, f̂(x)) ≤ 4α2
max∥q̄∥2.

What remains is to take expectation and use the fact that the tangent vectors summed up to form q̄ are628

independent. This yields629

α2
min(1− kmin)

2Ed2Y(q, f̂(x)) ≤ 4α2
max

σ2
o

n
.

Thus we obtain630

α2
min(1− kmin)

2Ed2Y(q, f̂(x)) ≤ 4α2
max

σ2
o

n
,

or631

Ed2Y(q, f̂(x)) ≤ 4
α2
max

α2
min

σ2
o

nkmin
. (22)

We use the same approach, but this apply it to the m × n points given by the LFs drawn from632

distribution P ′. This yields633

α2
min(1− kmin)

2Ed2Y(q, f̃(x)) ≤ 4α2
max

∑m
i=1 β

2
aσ

2
a

mn
,

where σ2
a corresponds to the expected squared distance for LF a to q. We bound this with triangle634

inequality, obtaining σ2
a ≤ 2σ2

o + 2µ̂2
a, so that635

α2
min(1− kmin)

2Ed2Y(q, f̃(x)) ≤ 8α2
max

∑m
i=1 β

2
a(σo + µ̂2

a

mn
,

or,636

Ed2Y(q, f̃(x)) ≤ 8
α2
max

α2
min

∑m
i=1 β

2
a(σo + µ̂2

a

mnkmin
. (23)

Now, again using triangle inequality,637

Ed2Y(f̂(x), f̃(x)) ≤ 2Ed2Y(q, f̂(x)) + 2Ed2Y(q, f̃(x)).

Plugging (23) and (22) into this bound produces the result.638

D Additional Continuous Label Space Details639

We provide some additional details on the continuous (manifold-valued) case.640

Computing ∆(δ) In Theorem 3, we stated the result in terms of ∆(δ), a quantity that trades off the641

probability of failure δ for the diameter of the largest ball that contains the observed points. Note that642

if we fix the curvature of the manifold, it is possible to compute an exact bound for this quantity by643

using formulas for the sizes of balls in d-dimensional manifolds of fixed curvature.644

Hugging number Note that it is possible to derive a lower bound on the hugging number as a645

function of the curvature. The way to do so is to use comparison theorems that upper bound triangle646

edge lengths with those of larger-curvature triangles. This makes it possible to establish a concrete647

value for kmin as a function of the curvature.648

We note, as well, that an upper bound kmax on the hugging number can be obtained by a simple649

rearrangement of Lemma 6 from [ZS16]. This result follows from a curvature lower bound based on650

hyperbolic law of cosines; the bound we describe follows from the opposite—an upper bound based651

on spherical triangles.652
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β Weights and Suboptimality An intuitive way to think of the estimator we described is the653

following simple Euclidean version. Suppose we have labeling functions λ1, . . . , λm that are equal654

to y + εa, where εa ∼ N (0, σ2
a). In this case, if we seek an unbiased estimator with lowest variance,655

we require a set of weights βa so that
∑

a βa = 1 and Var[ 1m
∑m

a=1 βaλa] is minimized. It is not656

hard to derive a closed-form solution for the βa coefficients as a function of the terms σ2
a.657

Now, suppose we use the same solution, but with noisy estimates σ̂2 instead. Our weights β̂ will658

yield a suboptimal variance, but this will not affect the scaling of the rate in terms of the number of659

samples n.660

E Extended Background on Pseudo-Euclidean Embeddings661

Finally, we provide some additional background on pseudo-metric spaces and pseudo-Euclidean662

embedding.663

E.1 Pseudo-metric Spaces664

Pseudo-metric spaces generalize metric spaces by removing the requirement that pairs of points at665

distance zero must be identical:666

Definition 1. (Pseudo-metric Space) A set Y along with a distance function dY : Y × Y 7→ R+ is667

called pseudo-metric space if dY satisfies the following conditions,668

∀y, z ∈ Y dY(y, z) = dY(y, z) (24)
(Symmetry)

∀y ∈ Y dY(y,y) = 0 (25)
(Reflexivity)

A finite pseudo-metric space has |Y| <∞.669

E.2 Pseudo-Euclidean Spaces670

The following definitions are for finite-dimensional vector spaces defined over the field R.671

Definition 2. (Symmetric Bilinear Form / Generalized Inner Product) For a vector space Y over672

the field R, a symmetric bilinear form is a function ϕ : Y×Y 7→ R satisfying the following properties673

∀y1, y2, z, y ∈ Y, c ∈ R:674

P1) ϕ(y1 + y2, y) = ϕ(y1, y) + ϕ(y2, y),675

P2) ϕ(cy, z) = cϕ(y, z),676

P3) ϕ(y, z) = ϕ(z, y).677

Definition 3. (Squared Distance w.r.t. ϕ) Let V be a real vector space equipped with generalized
inner product ϕ, then the squared distance w.r.t. ϕ between any two vectors y, z ∈ V is defined as,

||y − z||2ϕ := ϕ(y − z,y − z)

This definition also gives a notion of squared length for every y ∈ V ,

||y||2ϕ := ϕ(y,y)

The inner product can also be expressed in terms of a basis of the vector space V . Let the dimension of
Y be d, and {bi}di=1 be a basis of Y , then for any two vectors y = [y1, . . . yd], z = [z1, . . . zd] ∈ V ,

ϕ(y, z) =

d∑
i=1

d∑
j=1

yiziϕ(bi,bj)
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The matrix M(ϕ) := [ϕ(bi,bj)]1≤i,j≤d is called the matrix of ϕ w.r.t the basis {bi}di=1 It gives a678

convenient way to express the inner product as ϕ(y, z) = yTM(ϕ)z. A symmetric bilinear form ϕ679

on a vector space of dimension d, is said to be non-degenerate if the rank of M(ϕ) w.r.t to some basis680

is equal to d.681

Example: For the d− dimensional euclidean space with standard basis and ϕ as dot product we get682

M(ϕ) = Id683

Definition 4. (Pseudo-euclidean Spaces) A real vector space Rd+,d−
of dimension d = d+ +

d−, equipped with a non-degenerate symmetric bilinear form ϕ is called a pseudo-euclidean (or
Minkowski) vector space of signature (d+, d−) if the matrix of ϕ w.r.t a basis {bi}di=1 of Rd+,d−

, is
given as,

M(ϕ) =

(
Id+ 0
0 −Id−

)
d×d

Lastly, the tool that we used to ensure we have access to isometric embeddings is684

Proposition 1. ([Gol85]) Let Y = {y0, . . . yk} be a finite pseudo-metric space equipped with685

distance function dY , and let V = {vi, . . . ,vk} be a collection of vectors in Rd+,d−
. Then Y is686

isometrically embedable in Rd+,d−
if and only if,687

⟨vi,vj⟩ϕ =
1

2

(
d2Y(yi, y0) + d2Y(yj , y0)− d2Y(yi, yj)

)
∀i, j ∈ [k] (26)
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