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Figure 1: Graphical representation of the deep auto-regressive model in BMBO-DARN. The
output at each fidelity fm(x) (1 ≤ m ≤ M ) is calculated by a (deep) neural network.

1 Synthetic Benchmark Functions
1.1 Branin Function

The input is two dimensional, x = [x1, x2] ∈ [−5, 10]× [0, 15]. We have three fidelities
to evaluate the function, which, from high to low, are given by
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(
−1.275x21

π2
+

5x1
π

+ x2 − 6

)2

−
(
10− 5

4π

)
cos(x1)− 10,

f2(x) = −10
√
−f3(x− 2)− 2(x1 − 0.5) + 3(3x2 − 1) + 1,

f1(x) = −f2
(
1.2(x+ 2)

)
+ 3x2 − 1. (1)

We can see that between fidelities are nonlinear transformations, nonuniform scaling,
and shifts.

1.2 Levy Function

The input is two dimensional, x = [x1, x2] ∈ [−10, 10]2. We have two fidelities,

f2(x) = − sin2(3πx1)− (x1 − 1)2[1 + sin2(3πx2)]− (x2 − 1)2[1 + sin2(2πx2)],

f1(x) = −
√

1 + f22 (x). (2)

2 Details about Physics Informed Neural Networks
Burgers’ equation is a canonical nonlinear hyperbolic PDE, and widely used to charac-
terize a variety of physical phenomena, such as nonlinear acoustics (Sugimoto, 1991),
fluid dynamics (Chung, 2010), and traffic flows (Nagel, 1996). Since the solution can
develop discontinuities (i.e., shock waves) based on a normal conservation equation,
Burger’s equation is often used as a nontrivial benchmark test for numerical solvers and
surrogate models (Kutluay et al., 1999; Shah et al., 2017; Raissi et al., 2017).

We used physics informed neural networks (PINN) to solve the viscosity version of
Burger’s equation,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (3)

1



where u is the volume, x is the spatial location, t is the time, and ν is the viscosity. Note
that the smaller ν, the sharper the solution of u. In our experiment, we set ν = 0.01

π ,
x ∈ [−1, 1], and t ∈ [0, 1]. The boundary condition is given by

u(0, x) = − sin(πx), u(t,−1) = u(t, 1) = 0.

We use an NN uW to represent the solution. To estimate the NN, we collected N
training points in the boundary, D = {(ti, xi, ui)}Ni=1, and M collocation (input) points
in the domain, C = {(t̂i, x̂i)}Mi=1. We then minimize the following loss function to
estimate uW ,

L(W) =
1

N

N∑
i=1

(uW(ti, xi)− ui)2 +
1

M

M∑
i=1

(∣∣ψ(uW)(t̂i, x̂i)
∣∣2) ,

where ψ(·) is a functional constructed from the PDE,

ψ(u) =
∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
.

Obviously, the loss consists of two terms, one is the training loss, and the other is a
regularization term that enforces the NN solution to respect the PDE.
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