
A Pseudocode of IMPROVISEDE
556

Algorithm 1 IMPROVISEDE

Definitions:
• b: common public belief of player P1 and player P2

• Ai: action space of Pi

• si: information state of Pi

• b(s1): belief of P2 given P1’s information state s1
• ⇡: joint blueprint policy
• R(s1, s2, ⇡, [a1, a2]): reset current game state with s1, s2, rollout until termination following (the optional
[a1, a2] and then) ⇡, and return the total reward.
Method:
initialize q⇡(a1, a2, b) = 0 for (a1, a2) 2 A1 ⇥A2

sample M private state for P1, s(1)1 , . . . , s(M)
1 ⇠ b

P⇡(a1) = 1
M

PM
i=1 ⇡(a1|b(s(i)1)) for a1 2 A1

for s(i)1 2 s(1)1 , . . . , s(M)
1 do

sample N private state for P2, s(1)2 , . . . , s(N)
2 ⇠ b(s(i)1)

q⇡(b, s
(i)
1) = 1

N

P
j R(s(i)1 , s(j)2 ,⇡)

for (a1, a2) 2 A1 ⇥A2 do
if P⇡(a1) � ✏p then

q⇡(a1, a2, b, s
(i)
1) = �1

else
q⇡(a1, a2, b, s

(i)
1) = 1

N

P
j R(s(i)1 , s(j)2 ,⇡, a1, a2)

end if
end for

end for
for (a1, a2) 2 A1 ⇥A2 do

q⇡(a1, a2, b) = 1
M

P
i max

h
q⇡(a1, a2, b, s

(i)
1), q⇡(b, s

(i)
1)

i

end for
for a1 2 A1 do

f(b, a1) = softmaxa2 [q⇡(a1, a2, b)/t]
q⇡(b, s1, a1) = Es02⇠b(s1),a2⇠f(b,a1)R(s1, s

0
2,⇡, a1, a2)

end for
if max q⇡(b, s1, a1) � q⇡(b, s1) + ✏q then

return argmaxa1
q⇡(b, s1, a1)

else
return abp

1 // the action under blueprint
end if

B Experimental Details for Tiger-Trampoline557

Hyper-parameter Values

learning rate 0.0005, 0.0001
batch size 16, 32

" annealing period 20000, 10000
RNN hidden dimension 64, 32, 16

Table 2: Hyper-parameters of QMIX in the Tiger-Trampoline Experiment

In Section 5.1, we show the results of MAPPO and QMIX on the Tiger-Trampoline game. For the558

MAPPO we use the default parameters from the open sourced implementation1 used for Hanabi,559

except with a hidden size of 128, reducing the episode length cap, and reducing the number of threads560

by a factor of 2. For QMIX, we use the open sourced implementation2 of the algorithm provided as561

1https://github. com/marlbenchmark/on-policy
2https://github.com/oxwhirl/pymarl

14

part of the PyMARL framework [24]. We used the default agent and training configuration, except for562

the four hyper-parameters listed in table 2. For those, we tried all combinations of the corresponding563

values, producing a total of 24 runs, each training for 500k steps, or 250k episodes.564

C Experimental Details for Finesse in Hanabi565

In the Hanabi experiments, we implement IMPROVISED as follows (better viewed together with566

the pseudocode). The belief b is the common public belief shared by player 1 and player 2 based567

on common knowledge available to all players and their common private knowledge of player 3’s568

hand. We first draw M Player 2 hands s
0
1 from b and compute blueprint actions a⇡ = ⇡(b(s01))569

and P⇡(a). We then consider joint actions A1 ⇥ A2 = {(a1, a2)|P⇡(a1)  0} for player 1 and570

player 2. Since our goal is to find finesse style joint deviations, we further restrict a1 to be a hint571

move to player 3 and a2 to be a play move. Given s
0
1, player 1 can further induce the private572

belief b(s01) over their own hand. For each of s01, player 1 calculates Monte Carlo estimations of573

q(a1, a2, b, s01,) for (a1, a2) 2 A1 ⇥A2 and q⇡(b, s01) with N samples drawn from b(s01). So far we574

have collected all the quantities required to compute the mapping f for IMPROVISEDP and for575

IMPROVISEDE . Finally, we draw another K samples from the true b(s1) where s1 now is the real576

hand of player 2 to estimate � = maxa1 Ea2⇠f(b,a1)q⇡(b, s1, a1)� q⇡(b, s1). Player 1 will deviate to577

argmaxa1
Ea2⇠a⇤

2(a1)q⇡(b, s1, a1, a2) if � � 0.05. In the next turn, player 2 can carry out the same578

computation process to get P⇡(a1) and f(b, a1) to figure out whether player 1 has deviated and if so579

what is the correct response. Player 1 and player 2 do not share the random seed beforehand.580

In the experiments where we run IMPROVISED on finesse-complete situations only, we set M =581

1000, N = 100 and K = 10000/|A1|. It takes roughly 2 hours in total for both player 1 and player582

2 to compute the deviations independently using 5 CPU cores and 1 GPU.583

In the experiments where we run IMPROVISED on the full game of Hanabi, we reduce M to 400 and584

share the result of f(b, a1) between Player 1 and Player 2 instead of computing it twice independently585

as we empirically find that the statistic is stable enough against random seeds. A full game then takes586

around 10-12 hours using 20 CPU cores and 2 GPUs.587

15

	Introduction
	Background
	Self-Explaining Deviations
	Examining Self-Explaining Deviations

	IMPROVISED
	Defining the Optimization Problem
	An Easier Special Case
	Coordination by Extending Conventions
	Taking Alice's Information State Into Account

	Experiments
	Trampoline Tiger
	Hanabi
	What is a Finesse?
	IMPROVISED in Hanabi

	Related Work
	Public Belief Methods
	Search in Dec-POMDPs

	Conclusions
	Pseudocode of IMPROVISEDE
	Experimental Details for Tiger-Trampoline
	Experimental Details for Finesse in Hanabi

