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A Pseudocode of IMPROVISED”

Algorithm 1 IMPROVISED®

Definitions:

* b: common public belief of player P, and player P

» A;: action space of P;

* s;: information state of F;

* b(s1): belief of P> given P;’s information state s1

* 7: joint blueprint policy

* R(s1, s2, m, [a1, az]): reset current game state with s1, s2, rollout until termination following (the optional
[a1, az] and then) 7, and return the total reward.

Method:
initialize g~ (a1, a2,b) = 0 for (a1, a2) € A1 x Az
sample M private state for P, s<11>, RN ng) ~b
Pr(a1) = & M n(al\b(sgw)) for a1 € Ax
for s € sV, ... s() do
. (1) (N) (%)
sample N private state for Pa, s5,...,85 ~ ~ b(s;”)

4r(b,17) = % 3, R(sy, s, m)
for (a1,a2) c A x Asx do
if Pr(a1) > €, then

qr (alv az, b7 851)) = -0
else ] ) ]
qﬂ(alv az, b7 812)) = % Zj R(Sng Sg)v T, a1, a2)
end if
end for

end for
for (a1,az2) € A1 x Az do

qn(a1,a2,b) = 57 >, max |gx(a1, az, b, sgl)), g (b, 512>)]
end for
for a1 € A; do

f(b,a1) = softmaxa, [¢x(a1,a2,b)/t]

qr (ba S1, al) = ]Eslz'\/b(sl),agf\/f(b,al)R(sl’ SIQa T, a1, G‘Q)
end for
if max ¢ (b, s1,a1) > qx (b, s1) + €4 then

return argmax,,, ¢ (b, 51, a1)
else

return a?p // the action under blueprint
end if

B Experimental Details for Tiger-Trampoline

Hyper-parameter \ Values
learning rate 0.0005, 0.0001
batch size 16, 32

€ annealing period 20000, 10000
RNN hidden dimension 64,32, 16

Table 2: Hyper-parameters of QMIX in the Tiger-Trampoline Experiment

In Section we show the results of MAPPO and QMIX on the Tiger-Trampoline game. For the
MAPPO we use the default parameters from the open sourced implementatio used for Hanabi,
except with a hidden size of 128, reducing the episode length cap, and reducing the number of threads
by a factor of 2. For QMIX, we use the open sourced implementatio of the algorithm provided as

"https://github. com/marlbenchmark/on-policy
*https://github.com/oxwhirl/pymarl
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part of the PYMARL framework [24]. We used the default agent and training configuration, except for
the four hyper-parameters listed in table 2] For those, we tried all combinations of the corresponding
values, producing a total of 24 runs, each training for 500k steps, or 250k episodes.

C Experimental Details for Finesse in Hanabi

In the Hanabi experiments, we implement IMPROVISED as follows (better viewed together with
the pseudocode). The belief b is the common public belief shared by player I and player 2 based
on common knowledge available to all players and their common private knowledge of player 3’s
hand. We first draw M Player 2 hands s} from b and compute blueprint actions a, = 7w (b(s}))
and P, (a). We then consider joint actions A; X Ay = {(a1,a2)|Px(a1) < 0} for player 1 and
player 2. Since our goal is to find finesse style joint deviations, we further restrict a; to be a hint
move to player 3 and as to be a play move. Given s}, player 1 can further induce the private
belief b(s)) over their own hand. For each of s}, player I calculates Monte Carlo estimations of
q(a1,az,b,s1,) for (a1,a2) € Ay x As and ¢ (b, s}) with N samples drawn from b(s}). So far we
have collected all the quantities required to compute the mapping f for IMPROVISED? and for
IMPROVISEDZ. Finally, we draw another K samples from the true b(s1) where s1 now is the real
hand of player 2 to estimate § = max,, Eq,~f(5,a,)qx (b, 51,01) — qx (b, 51). Player I will deviate to
argmax,, Eo,~a3(ay)qr (b, 81, a1,a2) if 6 > 0.05. In the next turn, player 2 can carry out the same
computation process to get Py (a1) and f(b, aq) to figure out whether player 1 has deviated and if so
what is the correct response. Player I and player 2 do not share the random seed beforehand.

In the experiments where we run IMPROVISED on finesse-complete situations only, we set M =
1000, N = 100 and K = 10000/|.A;|. It takes roughly 2 hours in total for both player I and player
2 to compute the deviations independently using 5 CPU cores and 1 GPU.

In the experiments where we run IMPROVISED on the full game of Hanabi, we reduce M to 400 and
share the result of f(b, a1) between Player 1 and Player 2 instead of computing it twice independently
as we empirically find that the statistic is stable enough against random seeds. A full game then takes
around 10-12 hours using 20 CPU cores and 2 GPUs.
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