556 A Pseudocode of IMPROVISED^E

Algorithm 1 IMPROVISED^E

Definitions:

• b: common public belief of player P_1 and player P_2 • \mathcal{A}_i : action space of P_i • s_i : information state of P_i • $b(s_1)$: belief of P_2 given P_1 's information state s_1 • π : joint blueprint policy • $R(s_1, s_2, \pi, [a_1, a_2])$: reset current game state with s_1, s_2 , rollout until termination following (the optional $[a_1, a_2]$ and then) π , and return the total reward. Method: initialize $q_{\pi}(a_1, a_2, b) = 0$ for $(a_1, a_2) \in \mathcal{A}_1 \times \mathcal{A}_2$ sample *M* private state for $P_1, s_1^{(1)}, \dots, s_1^{(M)} \sim b$ $P_{\pi}(a_1) = \frac{1}{M} \sum_{i=1}^{M} \pi(a_1 | b(s_1^{(i)}))$ for $a_1 \in A_1$ for $s_1^{(i)} \in s_1^{(1)}, \dots, s_1^{(M)}$ do sample N private state for $P_2, s_2^{(1)}, \dots, s_2^{(N)} \sim b(s_1^{(i)})$ $q_{\pi}(b, s_1^{(i)}) = \frac{1}{N} \sum_j R(s_1^{(i)}, s_2^{(j)}, \pi)$ for $(a_1, a_2) \in \mathcal{A}_1 \times \mathcal{A}_2$ do if $P(a_1) = 1$ if $P_{\pi}(a_1) \geq \epsilon_p$ then $q_{\pi}(a_1, a_2, b, s_1^{(i)}) = -\infty$ else $q_{\pi}(a_1, a_2, b, s_1^{(i)}) = \frac{1}{N} \sum_i R(s_1^{(i)}, s_2^{(j)}, \pi, a_1, a_2)$ end if end for end for for $(a_1, a_2) \in \mathcal{A}_1 \times \mathcal{A}_2$ do $q_{\pi}(a_1, a_2, b) = \frac{1}{M} \sum_i \max \left[q_{\pi}(a_1, a_2, b, s_1^{(i)}), q_{\pi}(b, s_1^{(i)}) \right]$ end for for $a_1 \in A_1$ do $\begin{aligned} f(b, a_1) &= \text{softmax}_{a_2} \left[q_{\pi}(a_1, a_2, b) / t \right] \\ q_{\pi}(b, s_1, a_1) &= \mathbb{E}_{s'_2 \sim b(s_1), a_2 \sim f(b, a_1)} R(s_1, s'_2, \pi, a_1, a_2) \end{aligned}$ end for if $\max q_{\pi}(b, s_1, a_1) \ge q_{\pi}(b, s_1) + \epsilon_q$ then return $\operatorname{argmax}_{a_1} q_{\pi}(b, s_1, a_1)$ else **return** a_1^{bp} // the action under blueprint end if

557 **B** Experimental Details for Tiger-Trampoline

batch size 16, 32	Hyper-parameter	Values
	learning rate	0.0005, 0.0001
1	batch size	
ε annealing period 20000, 10000	ε annealing period	20000, 10000
RNN hidden dimension 64, 32, 16	RNN hidden dimension	64, 32, 16

Table 2: Hyper-parameters of QMIX in the Tiger-Trampoline Experiment

In Section 5.1 we show the results of MAPPO and QMIX on the Tiger-Trampoline game. For the

⁵⁵⁹ MAPPO we use the default parameters from the open sourced implementation¹ used for Hanabi,

except with a hidden size of 128, reducing the episode length cap, and reducing the number of threads

⁵⁶¹ by a factor of 2. For QMIX, we use the open sourced implementation² of the algorithm provided as

¹https://github. com/marlbenchmark/on-policy

²https://github.com/oxwhirl/pymarl

part of the PyMARL framework [24]. We used the default agent and training configuration, except for the four hyper-parameters listed in table 2. For those, we tried all combinations of the corresponding values, producing a total of 24 runs, each training for 500k steps, or 250k episodes.

565 C Experimental Details for Finesse in Hanabi

In the Hanabi experiments, we implement IMPROVISED as follows (better viewed together with 566 the pseudocode). The belief b is the common public belief shared by player 1 and player 2 based 567 on common knowledge available to all players and their common private knowledge of *player 3*'s 568 hand. We first draw M Player 2 hands s'_1 from b and compute blueprint actions $a_{\pi} = \pi(b(s'_1))$ 569 and $P_{\pi}(a)$. We then consider joint actions $\mathcal{A}_1 \times \mathcal{A}_2 = \{(a_1, a_2) | P_{\pi}(a_1) \leq 0\}$ for *player 1* and *player 2*. Since our goal is to find finesse style joint deviations, we further restrict a_1 to be a *hint* 570 571 move to player 3 and a_2 to be a play move. Given s'_1 , player 1 can further induce the private 572 belief $b(s'_1)$ over their own hand. For each of s'_1 , player 1 calculates Monte Carlo estimations of 573 $q(a_1, a_2, b, s'_1,)$ for $(a_1, a_2) \in \mathcal{A}_1 \times \mathcal{A}_2$ and $q_{\pi}(\hat{b}, \hat{s'_1})$ with N samples drawn from $b(s'_1)$. So far we 574 have collected all the quantities required to compute the mapping f for IMPROVISED^P and for 575 IMPROVISED^E. Finally, we draw another K samples from the true $b(s_1)$ where s_1 now is the real 576 hand of player 2 to estimate $\delta = \max_{a_1} \mathbb{E}_{a_2 \sim f(b,a_1)} q_{\pi}(b, s_1, a_1) - q_{\pi}(b, s_1)$. Player 1 will deviate to 577 $\operatorname{argmax}_{a_1} \mathbb{E}_{a_2 \sim a_2^*(a_1)} q_{\pi}(b, s_1, a_1, a_2)$ if $\delta \geq 0.05$. In the next turn, *player 2* can carry out the same 578 computation process to get $P_{\pi}(a_1)$ and $f(b, a_1)$ to figure out whether *player 1* has deviated and if so 579 what is the correct response. Player 1 and player 2 do not share the random seed beforehand. 580

In the experiments where we run IMPROVISED on finesse-complete situations only, we set M = 1000, N = 100 and $K = 10000/|A_1|$. It takes roughly 2 hours in total for both *player 1* and *player* 2 to compute the deviations independently using 5 CPU cores and 1 GPU.

In the experiments where we run IMPROVISED on the full game of Hanabi, we reduce M to 400 and share the result of $f(b, a_1)$ between Player 1 and Player 2 instead of computing it twice independently

as we empirically find that the statistic is stable enough against random seeds. A full game then takes

around 10-12 hours using 20 CPU cores and 2 GPUs.