556

557

558
559
560
561

A Pseudocode of IMPROVISED”

Algorithm 1 IMPROVISED®

Definitions:

* b: common public belief of player P, and player P

» A;: action space of P;

* s;: information state of F;

* b(s1): belief of P> given P;’s information state s1

* 7: joint blueprint policy

* R(s1, s2, m, [a1, az]): reset current game state with s1, s2, rollout until termination following (the optional
[a1, az] and then) 7, and return the total reward.

Method:
initialize g~ (a1, a2,b) = 0 for (a1, a2) € A1 x Az
sample M private state for P, s<11>, RN ng) ~b
Pr(a1) = & M n(al\b(sgw)) for a1 € Ax
for s € sV, ... s() do
. (1) (N) (%)
sample N private state for Pa, s5,...,85 ~ ~ b(s;”)

4r(b,17) = % 3, R(sy, s, m)
for (a1,a2) c A x Asx do
if Pr(a1) > €, then

qr (alv az, b7 851)) = -0
else])]
qﬂ(alv az, b7 812)) = % Zj R(Sng Sg)v T, a1, a2)
end if
end for

end for
for (a1,az2) € A1 x Az do

qn(a1,a2,b) = 57 >, max |gx(a1, az, b, sgl)), g (b, 512>)]
end for
for a1 € A; do

f(b,a1) = softmaxa, [¢x(a1,a2,b)/t]

qr (ba S1, al) =]Eslz'\/b(sl),agf\/f(b,al)R(sl’ SIQa T, a1, G‘Q)
end for
if max ¢ (b, s1,a1) > qx (b, s1) + €4 then

return argmax,,, ¢ (b, 51, a1)
else

return a?p // the action under blueprint
end if

B Experimental Details for Tiger-Trampoline

Hyper-parameter \ Values
learning rate 0.0005, 0.0001
batch size 16, 32

€ annealing period 20000, 10000
RNN hidden dimension 64,32, 16

Table 2: Hyper-parameters of QMIX in the Tiger-Trampoline Experiment

In Section we show the results of MAPPO and QMIX on the Tiger-Trampoline game. For the
MAPPO we use the default parameters from the open sourced implementatio used for Hanabi,
except with a hidden size of 128, reducing the episode length cap, and reducing the number of threads
by a factor of 2. For QMIX, we use the open sourced implementatio of the algorithm provided as

"https://github. com/marlbenchmark/on-policy
*https://github.com/oxwhirl/pymarl

14

562
563
564

565

566
567
568
569
570
571
572

574
575
576
577
578
579
580

581
582
583

584
585
586

part of the PYMARL framework [24]. We used the default agent and training configuration, except for
the four hyper-parameters listed in table 2] For those, we tried all combinations of the corresponding
values, producing a total of 24 runs, each training for 500k steps, or 250k episodes.

C Experimental Details for Finesse in Hanabi

In the Hanabi experiments, we implement IMPROVISED as follows (better viewed together with
the pseudocode). The belief b is the common public belief shared by player I and player 2 based
on common knowledge available to all players and their common private knowledge of player 3’s
hand. We first draw M Player 2 hands s} from b and compute blueprint actions a, = 7w (b(s}))
and P, (a). We then consider joint actions A; X Ay = {(a1,a2)|Px(a1) < 0} for player 1 and
player 2. Since our goal is to find finesse style joint deviations, we further restrict a; to be a hint
move to player 3 and as to be a play move. Given s}, player 1 can further induce the private
belief b(s)) over their own hand. For each of s}, player I calculates Monte Carlo estimations of
q(a1,az,b,s1,) for (a1,a2) € Ay x As and ¢ (b, s}) with N samples drawn from b(s}). So far we
have collected all the quantities required to compute the mapping f for IMPROVISED? and for
IMPROVISEDZ. Finally, we draw another K samples from the true b(s1) where s1 now is the real
hand of player 2 to estimate § = max,, Eq,~f(5,a,)qx (b, 51,01) — qx (b, 51). Player I will deviate to
argmax,, Eo,~a3(ay)qr (b, 81, a1,a2) if 6 > 0.05. In the next turn, player 2 can carry out the same
computation process to get Py (a1) and f(b, aq) to figure out whether player 1 has deviated and if so
what is the correct response. Player I and player 2 do not share the random seed beforehand.

In the experiments where we run IMPROVISED on finesse-complete situations only, we set M =
1000, N = 100 and K = 10000/|.A;|. It takes roughly 2 hours in total for both player I and player
2 to compute the deviations independently using 5 CPU cores and 1 GPU.

In the experiments where we run IMPROVISED on the full game of Hanabi, we reduce M to 400 and
share the result of f(b, a1) between Player 1 and Player 2 instead of computing it twice independently
as we empirically find that the statistic is stable enough against random seeds. A full game then takes
around 10-12 hours using 20 CPU cores and 2 GPUs.

15

	Introduction
	Background
	Self-Explaining Deviations
	Examining Self-Explaining Deviations

	IMPROVISED
	Defining the Optimization Problem
	An Easier Special Case
	Coordination by Extending Conventions
	Taking Alice's Information State Into Account

	Experiments
	Trampoline Tiger
	Hanabi
	What is a Finesse?
	IMPROVISED in Hanabi

	Related Work
	Public Belief Methods
	Search in Dec-POMDPs

	Conclusions
	Pseudocode of IMPROVISEDE
	Experimental Details for Tiger-Trampoline
	Experimental Details for Finesse in Hanabi

