
A Summary of Appendix

We provide more details of theoretical analysis (Appendix B and D), experiment results and settings
(Appendix C) and a brief introduction to our new implementation of LightGBM CUDA version
(Appendix E).

B Theoretical Analysis

For the simplicity of notations, we will use s in place of Is to represent the indices of data instances
in leaf s in this section.

B.1 Existence of �s > 0

Theorem B.1.1 With constant hessian value h, if leaf s has a split gain �Ls!s1,s2 > 0, then with
weights |gi| and labels sign(gi), there exists �̂s > 0 such that the split s ! s1, s2 has a weighted
classification error rate 1

2 � �̂s <
1
2 for Ds.
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we have |Gs1 | > 0 or |Gs2 | > 0. W.L.O.G., suppose |Gs1 | > 0. Denote s+1 as the set of indices such
that 8i 2 s
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Setting
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completes the proof.

B.2 Proof of Theorem 5.3

Definition 5.1 (Weak Learnability of Stumps) Given a binary classification dataset D =
{(xi, c(xi))}Ni=1 where c(xi) 2 {�1, 1}, weights {wi}Ni=1, wi � 0 and

P
i
wi > 0, there ex-

ists � > 0 and a two-leaf decision tree with leaf values in {�1, 1} s.t. the weighted classification
error rate on D is 1

2 � �. Then the dataset D is �-empirically weakly learnable by stumps w.r.t. c and
{wi}Ni=1.

Assumption 5.2 Let sign(·) be the sign function (with sign(0) = 1). For data subset Ds ⇢ D in
leaf s, there exists a stump and a �s > 0 s.t. Ds is �s-empirically weakly learnable by stumps, w.r.t.
concept c(xi) = sign(gi) and weights wi = |gi|, where i 2 Is.

Theorem 5.3 For loss functions with constant hessian value h > 0, if Assumption 5.2 holds for the
subset Ds in leaf s for some �s > 0, then with stochastic rounding and leaf-value refitting, for any
✏ > 0, and � > 0, at least one of the following conclusions holds:
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1. With any split of leaf s and its descendants, the resultant average of absolute values of
prediction values by the tree in current boosting iteration for data in Ds is no greater than ✏/h.
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Proof of Theorem 5.3 By leaf-wise weak learnability (Assumption 5.2), there exists a split s !
sL, sR and �s > 0 for s s.t. for data in Ds, with binary labels c(xi) = sign(gi) and weights wi = |gi|,
the split results in a stump with weighted binary-classification error rate is 1
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which guarantees that the first conclusion holds.

If
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Note that ✏i’s are independent variables. Let ts1 = �g
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B.3 Loss Functions with Non-constant Hessians

Commonly used loss functions for binary-classification, multi-classification, and ranking have non-
constant hessian values. Note that all these loss functions have non-negative hessian values. We
analyze the error caused by quantization for these functions in this section. Denote hs =

P
i2s hi

ns
to

be the average of hessian values in leaf s. We have the following theorem.

Theorem B.3.1 For loss functions with non-constant hessian values, if Assumption 5.2 holds for the
subset Ds in leaf s for some �s > 0, then with stochastic rounding and leaf-value refitting, for any
✏ > 0 and � > 0, at least one of the following conclusions holds:

1. With any split of leaf s and its descendants, the resultant weighted average (weighted by hi)
of absolute values of prediction values by the tree in current boosting iteration for data in
Ds is no greater than ✏.
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Proof of Theorem B.3.1 By leaf-wise weak learnability (Assumption 5.2), there exists a split
s ! sL, sR and �s > 0 for s s.t. for data in Ds, with binary labels c(xi) = sign(gi) and weights
wi = |gi|, the split results in a stump with weighted binary-classification error is 1
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Let ⇠i = �h
ehi � hi and ✏i = �gegi � gi, thus |⇠i|  �h, |✏i|  �g, E[⇠i] = 0 and E[✏i] = 0. We then
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Note that ⇠i’s and ✏i’s are independent variables. Let t0
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which guarantees that the first conclusion holds.
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Thus with probability at least 1� �
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C Experiment Details

In this section, we provide more details about the results, experiment environments, and hyperparam-
eter settings.

C.1 Variance of Quantized Training

In Table 2 the metric values are averaged over 5 random seeds. The seeds are used to generate random
numbers for stochastic rounding. We omit the standard deviation in Table 2 due to limited space.
Here we provide a full table with standard deviation listed in Table 4. Note that we report the metric
on the best iteration in the test sets. As we can see the variance caused by stochastic rounding in
quantization is small, and quantized training is quite stable with different random seeds.

C.2 Accuracy of Quantized Training on GPU

Table 5 shows the accuracy of quantized training on GPU, averaged over 5 random seeds for stochastic
rounding. For the GPU version, we run up to 5 bits for gradient discretization. As we can see, for
most datasets a comparable performance is achieved with quantized training. Note that we report the
metric on the best iteration in the test sets.

C.3 Time for Histogram Construction

Table 6 shows the histogram construction time. The number of bits does not influence the histogram
construction time. This indicates that more acceleration can be achieved for low-bitwidth gradients
like 2-bit or 3-bit, with better hardware support for operations of low-bitwidth integers.

C.4 Experiment Environments

Table 7 lists the experiment environments used in this paper for standalone machines. For CPU
clusters in distributed experiments, we use 16 nodes each with one Intel(R) Xeon(R) CPU E5-2673
v4 or Intel(R) Xeon(R) Platinum 8171M CPU. The nodes are connected by a network of bandwidth
between 7 ⇠ 8Gbps (tested with iperf9).

9https://iperf.fr/
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Table 4: Accuracy with standard variance, w.r.t. different quantized bits (CPU version).

Bitwidth Binary Classification Regression Ranking
Higgs" Epsilon" Kitsune" Criteo" Bosch" Year# Yahoo LTR" LETOR"

32-bit 0.845694 0.950203 0.950561 0.803791 0.703101 8.956278 0.793857 0.524265
±.000162 ±.000144 ±.000638 ±.000052 ±.000544 ±.004803 ±.000198 ±.000622

2-bit SRrefit
0.845587 0.949472 0.952703 0.803293 0.700322 8.953388 0.788579 0.519268
±.000042 ±.000166 ±.000729 ±.000091 ±.001102 ±.012679 ±.000357 ±.000628

3-bit SRrefit
0.845725 0.949884 0.951309 0.803768 0.702756 8.937374 0.791077 0.522220
±.000193 ±.000095 ±.001352 ±.000050 ±.001704 ±.007487 ±.000894 ±.000721

4-bit SRrefit
0.845507 0.950049 0.950911 0.803783 0.703315 8.942898 0.792664 0.523796
±.000127 ±.000072 ±.001557 ±.000073 ±.000712 ±.008327 ±.000467 ±.000514

5-bit SRrefit
0.845706 0.950298 0.949229 0.803766 0.702971 8.948542 0.793166 0.524673
±.000171 ±.000108 ±.001964 ±.000053 ±.001020 ±.003732 ±.000487 ±.000413

2-bit SRno refit
0.846713 0.944509 0.952974 0.803750 0.700900 9.112302 0.764862 0.486193
±.000184 ±.000174 ±.001024 ±.000068 ±.001108 ±.014516 ±.000858 ±.001789

3-bit SRno refit
0.846040 0.949593 0.951385 0.803922 0.702501 8.990034 0.780041 0.507689
±.000178 ±.000119 ±.001158 ±.000064 ±.000751 ±.009847 ±.000618 ±.001126

4-bit SRno refit
0.845816 0.950127 0.951197 0.803812 0.703327 8.955256 0.787575 0.515767
±.000304 ±.000172 ±.001067 ±.000074 ±.000655 ±.003074 ±.001173 ±.000448

5-bit SRno refit
0.845842 0.950275 0.949794 0.803790 0.703226 8.952768 0.791631 0.520900
±.000119 ±.000234 ±.002275 ±.000096 ±.001484 ±.009403 ±.000590 ±.001087

2-bit RNrefit
0.795991 0.889149 0.962201 0.779906 0.686617 9.429014 0.765103 0.454894
±.000582 ±.000856 ±.000820 ±.000323 ±.000405 ±.017197 ±.000918 ±.005287

3-bit RNrefit
0.830506 0.944329 0.966606 0.782732 0.688899 9.062854 0.772364 0.476726
±.000495 ±.000319 ±.001074 ±.000210 ±.000285 ±.014744 ±.000822 ±.001458

4-bit RNrefit
0.840747 0.949946 0.961938 0.795803 0.691469 8.968694 0.777347 0.487256
±.000241 ±.000207 ±.001970 ±.000099 ±.000432 ±.005092 ±.000969 ±.003072

5-bit RNrefit
0.843820 0.950457 0.962427 0.802438 0.698954 8.952418 0.784333 0.494951
±.000073 ±.000071 ±.001150 ±.000083 ±.000541 ±.003649 ±.000612 ±.001611

2-bit RNno refit
0.836683 0.925220 0.946016 0.768338 0.704445 10.685840 0.632058 0.203732
±.000468 ±.001545 ±.005072 ±.000202 ±.002635 ±.001819 ±.005683 ±.005507

3-bit RNno refit
0.843482 0.946850 0.940961 0.791709 0.708724 9.377560 0.732487 0.350127
±.000306 ±.000399 ±.006586 ±.000379 ±.000945 ±.042545 ±.001121 ±.004163

4-bit RNno refit
0.845788 0.949676 0.949228 0.802689 0.703718 8.969828 0.765432 0.437317
±.000176 ±.000126 ±.002973 ±.000096 ±.000580 ±.005646 ±.000426 ±.001514

5-bit RNno refit
0.845765 0.950307 0.952420 0.803645 0.698419 8.965400 0.782608 0.485752
±.000248 ±.000150 ±.003838 ±.000102 ±.000502 ±.002101 ±.000514 ±.001105

Table 5: Accuracy with standard variance, w.r.t. different quantized bits (GPU version, SRrefit mode).

Bitwidth Binary-Class Regression Ranking
Higgs" Epsilon" Kitsune" Criteo" Bosch" Year# Yahoo LTR" LETOR"

32-bit 0.845729 0.950233 0.955709 0.803792 0.702893 8.956202 0.795476 0.526287
±.000081 ±.000119 ±.001021 ±.000065 ±.000152 ±.004722 ±.000387 ±.000337

2-bit 0.846582 0.945205 0.952898 0.803594 0.701775 9.107948 0.769852 0.492308
±.000159 ±.000255 ±.001554 ±.000077 ±.001065 ±.007273 ±.000425 ±.001299

3-bit 0.845877 0.949494 0.951672 0.803847 0.703032 8.980230 0.784374 0.512684
±.000255 ±.000277 ±.002186 ±.000059 ±.000939 ±.006827 ±.000371 ±.000529

4-bit 0.845872 0.950176 0.951918 0.803799 0.703067 8.962148 0.791226 0.519651
±.000199 ±.000066 ±.001138 ±.000089 ±.000952 ±.016629 ±.000566 ±.001012

5-bit 0.845849 0.950177 0.950538 0.803827 0.703823 8.953900 0.793799 0.524211
±.000238 ±.000174 ±.000354 ±.000095 ±.001013 ±.004574 ±.000479 ±.000409

C.5 Hyperparameter Settings

For all accuracy and training time evaluations in this paper, we use the hyperparameters of LightGBM
listed in Table 8, except for the Bosch dataset. For the Bosch dataset, we use learing_rate 0.015 and
keep other hyperparameters the same as Table 8. For training time comparison with XGBoost and
CatBoost, we use the hyperparameters listed in Table 9 and 10, except for Bosch. For the Bosch
dataset, we use learing_rate 0.015 for CatBoost and eta 0.015 for XGBoost, max_leaves 45 for
XGBoost, and keep other hyperparameters the same as in the tables. We found that the post-pruning

20



Table 6: Time for histogram construction with different number of bits (seconds).
Algorithm Bosch Criteo Epsilon Higgs Kitsune Year Yahoo LTR LETOR

GPU Histogram time

LightGBM+ 17 70 46 11 54 9 11 17
LightGBM+ 2-bit 8 21 11 4 16 4 8 10
LightGBM+ 3-bit 8 21 12 4 16 4 8 10
LightGBM+ 4-bit 8 21 12 4 16 4 8 10
LightGBM+ 5-bit 8 21 13 4 16 4 8 10

CPU Histogram time

LightGBM 98 629 737 94 339 12 108 109
LightGBM 2-bit 72 458 708 68 203 10 67 68
LightGBM 3-bit 75 437 676 62 180 10 73 69
LightGBM 4-bit 76 426 680 65 177 9 74 73
LightGBM 5-bit 73 399 681 63 206 8 78 72

Table 7: Experiment Environments
CPU 2 x Intel(R) Xeon(R) CPU E5-2673 v4
GPU 1 x NVIDIA V100
OS Ubuntu 18.04

Table 8: Hyperparameters of LightGBM
boosting_type gbdt
learning_rate 0.1

min_child_weight 100
num_leaves 255

max_bin 255
num_iterations 500
num_threads 16

strategy of XGBoost slows down the training much with max_leaves 255 on Bosch. Thus, we adjust
the max_leaves to 45 which is close to the tree size after the pruning, for faster training speed. The
hyperparameters are chosen so that all these algorithms have similar tree sizes for a fair comparison
of training time.

The git commit used for CatBoost is 35552cf8057447262eedd9671f66fd715af34946. And for
XGBoost it is fe4ce920b250d39133a7f6b1128f80da0d4018c6. For LightGBM, we use the version
provided in our Github link https://github.com/Quantized-GBDT/Quantized-GBDT.

C.6 Data Split and Preprocessing

For most datasets (Higgs, Epsilon, Yahoo, LETOR, Year, Bosch) we use the convention in previous
works or the default split [32, 23, 3], without additional preprocessing. For Criteo, we encode the
categorical features in the original dataset with target and count encoding. We use the train.txt
file of the Kaggle version of the Criteo dataset, with the first 41, 256, 555 rows as the training set and
the last 4, 584, 061 rows as the test set. For Kitsune, we select the first 80% packets in each attack
method to form the training set, and the final 20% packets to form the test set. The datasets can be
freely downloaded from https://pretrain.blob.core.windows.net/quantized-gbdt/dataset.zip.

D Discussion on Loss Functions with Non-constant Hessians

Appendix B.3 provides the theoretical analysis and proof for the error caused by quantization for loss
functions with non-constant hessians. The assumption is a little bit stronger than constant hessian
loss functions in that we are expecting the average hessian values per leaf won’t be too small, so
that ns1 � 8�2h ln 8/�

h
2
s1

and ns2 � 8�2h ln 8/�

h
2
s2

hold. Figure 7 shows the average hessian values in each

iteration with 3-bit gradients. We first calculate the average hessian values for all leaves in each
iteration. Then we plot the mean of the average hessian values over the leaves in each iteration in
solid blue curves, with the shadow area indicating the range between 10% and 90% percentiles over
the leaves in each iteration. For most leaves, the average hessian values are not too small. And
it is easy to meet the condition ns � 8�2h ln 8/�

h
2
s

with enough training data. For example, suppose

hs = 0.01, then for binary classification, with 3-bit gradients, �h = 0.25
6 = 1

24 . Let � = 0.01, then
8�2h ln 8/�

h
2
s

⇡ 928.
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Table 9: Hyperparameters of XGBoost
tree_method hist/gpu_hist

eta 0.1
max_depth 0
max_leaves 255
num_round 500

min_child_weight 100
nthread 16
gamma 0
lambda 0
alpha 0

Table 10: Hyperparameters of CatBoost
thread_count 16
border_count 255

iterations 500
learning_rate 0.1
grow_policy Lossguide

boosting_type Plain
max_leaves 255

depth 256
min_data_in_leaf 400

(a) Higgs (b) Criteo

(c) Yahoo (d) LETOR

Figure 7: Average Hessian Values by Iteration with 3-Bit Gradients

In addition, in the first conclusion of Theorem B.3.1 we consider weighted prediction values by
hi. Since with second-order approximation of the loss function, hi influences how much a training
sample contributes to the approximated loss by second-order Taylor expansion [5]. Thus, considering
the weighted prediction values by hi is meaningful.

Finally, the upper bound in Theorem B.3.1 requires a balanced split to be small. In other words, the
data sizes in child nodes ns1 , ns2 shouldn’t be significantly smaller than that in parent node ns, so
that the terms ns

ns1
p
ns1

and ns
ns2

p
ns2

can be bounded by a small value.

E New CUDA Framework of LightGBM

We implement a new CUDA version for LightGBM. Previous GPU versions of LightGBM only run
histogram construction on GPUs. Our new implementation performs the whole training process
including boosting (calculation of gradients and hessians) and tree learning on GPUs. We denote this
new GPU version of LightGBM as LightGBM+ in our paper.
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