A Summary of Appendix

We provide more details of theoretical analysis (Appendix B and D), experiment results and settings
(Appendix C) and a brief introduction to our new implementation of LightGBM CUDA version
(Appendix E).

B Theoretical Analysis

For the simplicity of notations, we will use s in place of I, to represent the indices of data instances
in leaf s in this section.

B.1 Existence of v; > 0

Theorem B.1.1 With constant hessian value h, if leaf s has a split gain AL,_,5, 5, > 0, then with
weights |g;| and labels sign(g;), there exists 4 > 0 such that the split s — s1, s2 has a weighted
classification error rate % — s < 5 for Ds.

Proof of Theorem B.1.1 Since
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we have |G, | > 0 or |Gs,| > 0. W.L.O.G., suppose |G, | > 0. Denote s; as the set of indices such
that Vi € s],sign(g;) equals the weighted majority of sign(g;) for all i € s; (weighted by |g;|), and
s =s1 — s;. Then
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Similarly we define s and s, . Then by definition
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B.2 Proof of Theorem 5.3

Definition 5.1 (Weak Learnability of Stumps) Given a binary classification dataset D =
{(xi,c(x:))}Y, where c(x;) € {—1,1}, weights {w;}}¥;, w; > 0 and >, w; > 0, there ex-
ists v > 0 and a two-leaf decision tree with leaf values in {—1, 1} s.t. the weighted classification
error rate on D is % — . Then the dataset D is y-empirically weakly learnable by stumps w.r.t. ¢ and

{wi i]\;r

Assumption 5.2 Let sign(-) be the sign function (with sign(0) = 1). For data subset D, C D in
leaf s, there exists a stump and a v > 0 s.t. Dy is ys-empirically weakly learnable by stumps, w.r.t.
concept ¢(x;) = sign(g;) and weights w; = |g;|, where i € I;.

Theorem 5.3 For loss functions with constant hessian value i > 0, if Assumption 5.2 holds for the
subset D; in leaf s for some s > 0, then with stochastic rounding and leaf-value refitting, for any
€ > 0,and 0 > 0, at least one of the following conclusions holds:
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1. With any split of leaf s and its descendants, the resultant average of absolute values of
prediction values by the tree in current boosting iteration for data in D; is no greater than €/ h.

2. For any split s — s1, s of leaf s, with a probability of atleast 1 — 6,
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Proof of Theorem 5.3 By leaf-wise weak learnability (Assumptlon 5.2), there exists a split s —
sr,srand v > 0 for s s.t. for data in D;, with binary labels c¢(x;) = sign(g;) and weights w; = |g;/,
the split results in a stump with weighted binary-classification error rate is 5 — 7y;. Suppose that
in sz, sJLr is the set of weighted majority samples, and s, is the set of weighted minority samples
(thus sign(g;) = +1,Vi € s} and sign(g;) = —1,Vi € s, orsign(g;) = —1,Vi € s} and
sign(g;) = +1,Vi € s, ) such that Zi@z lg:| > Zz‘@g |g;|. Similarly, we define s}, and s5. Then
we have the weighted error rate
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Since G is for the optimal split in leaf s, we have
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If Zfes‘g d < ¢, then suppose s, ..., s;,, are all descendant leaves of s, then the average prediction

Values by current iteration for data in D in current tree is
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which guarantees that the first conclusion holds.
If Zicsl9 5 ¢ et ¢; = 6,5; — gi, thus |¢;| < 6, and Ele;] = 0. Then
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Note that €;’s are independent variables. Let t;, = 044/2n, ln , then by Hoeffding’s inequality,
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B.3 Loss Functions with Non-constant Hessians

Commonly used loss functions for binary-classification, multi-classification, and ranking have non-

constant hessian values. Note that all these loss functions have non-negative hessian values. We
E?’Es h’i

Ns

analyze the error caused by quantization for these functions in this section. Denote h, = to

be the average of hessian values in leaf s. We have the following theorem.

Theorem B.3.1 For loss functions with non-constant hessian values, if Assumption 5.2 holds for the
subset D; in leaf s for some 7, > 0, then with stochastic rounding and leaf-value refitting, for any
€ > 0and § > 0, at least one of the following conclusions holds:
1. With any split of leaf s and its descendants, the resultant weighted average (weighted by h;)
of absolute values of prediction values by the tree in current boosting iteration for data in
Dq is no greater than e.
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Proof of Theorem B.3.1 By leaf-wise weak learnability (Assumption 5.2), there exists a split

s — sp,sg and v > 0 for s s.t. for data in D;, with binary labels ¢(x;) = sign(g;) and weights
w; = |g;], the split results in a stump with weighted binary-classification error is % — ¥s. Similar to

the case of loss functions with constant hessian, we define s}, s}, sf; and s3, and first derive a lower
bound for G,

and ng, then with a probability of at least 1 — ¢
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Let& = 5hﬁi — h; and €; = §,G; — g, thus |&;] < Iy, |e;| < g, E[¢;] = 0 and E[e;] = 0. We then
bound the error of >, . h;,
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Note that &;’s and ¢;’s are independent variables. Let ¢, = dp4/2n, ln , then by Hoeffding’s
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Thus with probability at least 1 — g we have
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C Experiment Details

In this section, we provide more details about the results, experiment environments, and hyperparam-
eter settings.

C.1 Variance of Quantized Training

In Table [2]the metric values are averaged over 5 random seeds. The seeds are used to generate random
numbers for stochastic rounding. We omit the standard deviation in Table [2 due to limited space.
Here we provide a full table with standard deviation listed in Table 4] Note that we report the metric
on the best iteration in the test sets. As we can see the variance caused by stochastic rounding in
quantization is small, and quantized training is quite stable with different random seeds.

C.2 Accuracy of Quantized Training on GPU

Table[5]shows the accuracy of quantized training on GPU, averaged over 5 random seeds for stochastic
rounding. For the GPU version, we run up to 5 bits for gradient discretization. As we can see, for
most datasets a comparable performance is achieved with quantized training. Note that we report the
metric on the best iteration in the test sets.

C.3 Time for Histogram Construction

Table [6] shows the histogram construction time. The number of bits does not influence the histogram
construction time. This indicates that more acceleration can be achieved for low-bitwidth gradients
like 2-bit or 3-bit, with better hardware support for operations of low-bitwidth integers.

C.4 Experiment Environments

Table [7 lists the experiment environments used in this paper for standalone machines. For CPU
clusters in distributed experiments, we use 16 nodes each with one Intel(R) Xeon(R) CPU E5-2673
v4 or Intel(R) Xeon(R) Platinum 8171M CPU. The nodes are connected by a network of bandwidth
between 7 ~ 8Gbps (tested with ipert”).

*https://iperf.fr/
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Table 4: Accuracy with standard variance, w.r.t. different quantized bits (CPU version).

Bitwidth Binary Classification Regression Ranking
Higgst Epsilonf KitsuneT CriteoT  Bosch?t Year] |Yahoo LTRT LETORT?T
32-bit 0.845694 0.950203 0.950561 0.803791 0.703101 | 8.956278 | 0.793857 (0.524265
+.000162 +.000144 +£.000638 £.000052 4.000544 | £.004803 | £.000198 =£.000622
2-bit SRyugi 0.845587 0.949472 0.952703 0.803293 0.700322 | 8.953388 | 0.788579 0.519268
I 14.000042 £.000166 +.000729 £.000091 £.001102| £+.012679 | £.000357 =+.000628
3-bit SR ugy 0.845725 0.949884 0.951309 0.803768 0.702756 | 8.937374 | 0.791077 0.522220
I 14.000193 £.000095 £.001352 £.000050 £.001704|£+.007487 | 4+.000894 +.000721
4-bit SRty 0.845507 0.950049 0.950911 0.803783 0.703315 | 8.942898 | 0.792664 0.523796
I 14.000127 £.000072 £.001557 £.000073 £.000712| 4+.008327 | +.000467 =+.000514
S-bit SRyeg 0.845706 0.950298 0.949229 0.803766 0.702971 | 8.948542 | 0.793166 0.524673
1 14.000171 £.000108 £.001964 +.000053 £.001020| 4+.003732 | +.000487 =+.000413
2-bit SRy e 0.846713 0.944509 0.952974 0.803750 0.700900 | 9.112302 | 0.764862 0.486193
noreit14.000184 £.000174 £.001024 £.000068 £.001108| £+.014516 | +.000858 =+.001789
3-bit SRy e 0.846040 0.949593 0.951385 0.803922 0.702501 | 8.990034 | 0.780041 0.507689
noreitl4.000178 £.000119 £.001158 £.000064 £.000751| £.009847 | +.000618 =+.001126
4-bit SRy nei 0.845816 0.950127 0.951197 0.803812 0.703327 | 8.955256 | 0.787575 0.515767
ot 4.000304 £.000172 £.001067 £.000074 £.000655| +.003074 | +.001173 £.000448
5-bit SRy e 0.845842 0.950275 0.949794 0.803790 0.703226 | 8.952768 | 0.791631  0.520900
1ol 4.000119 £.000234 £.002275 £.000096 £.001484|4.009403 | +.000590 =+.001087
2-bit RN 0.795991 0.889149 0.962201 0.779906 0.686617 | 9.429014 | 0.765103  0.454894
i 14.000582 4.000856 +.000820 +.000323 +.000405| +.017197 | +.000918 =+.005287
3-bit RN 0.830506 0.944329 0.966606 0.782732 0.688899 | 9.062854 | 0.772364 0.476726
i 14.000495 4+.000319 £.001074 £.000210 +.000285| +.014744 | +.000822 =+.001458
4-bit RNep, 0.840747 0.949946 0.961938 0.795803 0.691469 | 8.968694 | 0.777347  0.487256
14000241 4.000207 £.001970 £.000099 =+.000432| 4+.005092 | +.000969 =+.003072
5-bit RN 0.843820 0.950457 0.962427 0.802438 0.698954 | 8.952418 | 0.784333  0.494951
it 14000073 4.000071 £.001150 4.000083 4.000541|4.003649 | 4.000612 +.001611
2-bit RN res 0.836683 0.925220 0.946016 0.768338 0.704445 |10.685840| 0.632058 0.203732
ottt 4.000468 +.001545 +.005072 +.000202 +.002635| +.001819 | +.005683 =+.005507
3-bit RNy rei 0.843482 0.946850 0.940961 0.791709 0.708724 | 9.377560 | 0.732487 0.350127
ottt +.000306 4.000399 £.006586 +.000379 +.000945 | +.042545 | +.001121 =+.004163
4-bit RN, res 0.845788 0.949676 0.949228 0.802689 0.703718 | 8.969828 | 0.765432 0.437317
ot 4.000176 4.000126 4.002973 +.000096 +.000580 | +.005646 | +.000426 +.001514
5-bit RNoo res 0.845765 0.950307 0.952420 0.803645 0.698419 | 8.965400 | 0.782608 0.485752
ottt 4.000248 +.000150 +.003838 +.000102 +.000502| 4+.002101 | +.000514 =+.001105

Table 5: Accuracy with standard variance, w.r.t. different quantized bits (GPU version, SR.5; mode).

Bitwidth Binary-Class Regression Ranking
Higgst  Epsilont KitsunefT  CriteoT Boscht Year] |Yahoo LTRT LETORT?T
32 bit 0.845729 0.950233 0.955709 0.803792 0.702893 | 8.956202 | 0.795476  0.526287
4.000081 +.000119 =+.001021 =+.000065 =£.000152| £.004722 | +.000387 =£.000337
2-bit 0.846582 0.945205 0.952898 0.803594 0.701775 | 9.107948 | 0.769852  0.492308
£.000159 +£.000255 =+.001554 =+.000077 =£.001065| £.007273 | +.000425 +£.001299
3-bit 0.845877 0.949494 0.951672 0.803847 0.703032 | 8.980230 | 0.784374  0.512684
£.000255 +.000277 £.002186 =+.000059 =£.000939| £.006827 | +.000371 =+£.000529
A-bit 0.845872  0.950176 0.951918 0.803799 0.703067 | 8.962148 | 0.791226  0.519651
4.000199 +.000066 =+.001138 =+.000089 =£.000952| £.016629 | +.000566 +£.001012
S bit 0.845849 0.950177 0.950538 0.803827 0.703823 | 8.953900 | 0.793799  0.524211
+.000238 +.000174 =£.000354 =+.000095 =£.001013 | £.004574 | +.000479 =+£.000409

C.5 Hyperparameter Settings

For all accuracy and training time evaluations in this paper, we use the hyperparameters of LightGBM
listed in Table [8| except for the Bosch dataset. For the Bosch dataset, we use learing_rate 0.015 and
keep other hyperparameters the same as Table[8. For training time comparison with XGBoost and
CatBoost, we use the hyperparameters listed in Table [0 and [T0] except for Bosch. For the Bosch
dataset, we use learing_rate 0.015 for CatBoost and eta 0.015 for XGBoost, max_leaves 45 for
XGBoost, and keep other hyperparameters the same as in the tables. We found that the post-pruning
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Table 6: Time for histogram construction with different number of bits (seconds).

Algorithm Bosch Criteo Epsilon Higgs Kitsune Year Yahoo LTR LETOR
LightGBM+ 17 70 46 11 54 9 11 17
LightGBM+ 2-bit 8 21 11 4 16 4 8 10
GPU Histogram time |LightGBM+ 3-bit 8 21 12 4 16 4 8 10
LightGBM+ 4-bit 8 21 12 4 16 4 8 10
LightGBM+ 5-bit 8 21 13 4 16 4 8 10
LightGBM 98 629 737 94 339 12 108 109
LightGBM 2-bit 72 458 708 68 203 10 67 68
CPU Histogram time | LightGBM 3-bit 75 437 676 62 180 10 73 69
LightGBM 4-bit 76 426 680 65 177 9 74 73
LightGBM 5-bit 73 399 681 63 206 8 78 72
Table 7: Experiment Environments Table 8: Hyperparameters of LightGBM
CPU | 2 x Intel(R) Xeon(R) CPU E5-2673 v4 boosting_type gbdt
GPU 1 x NVIDIA V100 learning_rate 0.1
oS Ubuntu 18.04 min_child_weight | 100
num_leaves 255
max_bin 255
num_iterations 500
num_threads 16

strategy of XGBoost slows down the training much with max_leaves 255 on Bosch. Thus, we adjust
the max_leaves to 45 which is close to the tree size after the pruning, for faster training speed. The
hyperparameters are chosen so that all these algorithms have similar tree sizes for a fair comparison
of training time.

The git commit used for CatBoost is 35552cf8057447262eedd9671f66fd715af34946. And for
XGBoost it is fedce920b250d39133a7f6b1128f80da0d4018c6. For LightGBM, we use the version
provided in our Github link https://github.com/Quantized-GBDT/Quantized-GBDT.

C.6 Data Split and Preprocessing

For most datasets (Higgs, Epsilon, Yahoo, LETOR, Year, Bosch) we use the convention in previous
works or the default split [32} 23} 13]], without additional preprocessing. For Criteo, we encode the
categorical features in the original dataset with target and count encoding. We use the train.txt
file of the Kaggle version of the Criteo dataset, with the first 41, 256, 555 rows as the training set and
the last 4, 584,061 rows as the test set. For Kitsune, we select the first 80% packets in each attack
method to form the training set, and the final 20% packets to form the test set. The datasets can be
freely downloaded from https://pretrain.blob.core.windows.net/quantized-gbdt/dataset.zip.

D Discussion on Loss Functions with Non-constant Hessians

Appendix B.3 provides the theoretical analysis and proof for the error caused by quantization for loss
functions with non-constant hessians. The assumption is a little bit stronger than constant hessian
loss functions in that we are expecting the average hessian values per leaf won’t be too small, so

852 1n8/8 862 1n8/5 . . .
that ng, > %1/ and ng, > %‘/ hold. Figure|7 shows the average hessian values in each

51 Sa
iteration with 3-bit gradients. We first calculate the average hessian values for all leaves in each
iteration. Then we plot the mean of the average hessian values over the leaves in each iteration in
solid blue curves, with the shadow area indicating the range between 10% and 90% percentiles over

the leaves in each iteration. For most leaves, the average hessian values are not too small. And

2
it is easy to meet the condition ng > W with enough training data. For example, suppose

hg = 0.01, then for binary classification, with 3-bit gradients, 0, = 222 = L. Let § = 0.01, then
82 1In8/8 _ 998
89, B8/0 998,

s
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Table 9: Hyperparameters of XGBoost Table 10: Hyperparameters of CatBoost

tree_method hist/gpu_hist thread_count 16
eta 0.1 border_count 255
max_depth 0 iterations 500
max_leaves 255 learning_rate 0.1
num_round 500 grow_policy Lossguide
min_child_weight 100 boosting_type Plain
nthread 16 max_leaves 255
gamma 0 depth 256
lambda 0 min_data_in_leaf 400
alpha 0
0.250
0.225
0.20
§ 0.200 g
1] 17}
0175 & 0.15
£ 0.150 )
g g 0.10
% 0.125 <:E .
0.100
0.05
0.075
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(a) Higgs (b) Criteo
0.225 0.16
0.200 0.14
= 0.175 - 0.12
g g
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= =
= 0.125 © 0.08
= g
- 0.100 £ 0.6
z Z
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0.050
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Figure 7: Average Hessian Values by Iteration with 3-Bit Gradients

In addition, in the first conclusion of Theorem B.3.1 we consider weighted prediction values by
h;. Since with second-order approximation of the loss function, &, influences how much a training
sample contributes to the approximated loss by second-order Taylor expansion [3]]. Thus, considering
the weighted prediction values by h; is meaningful.

Finally, the upper bound in Theorem B.3.1 requires a balanced split to be small. In other words, the
data sizes in child nodes ns,, 15, shouldn’t be significantly smaller than that in parent node n;, so

that the terms —2=— and —2=— can be bounded by a small value.
nsl‘/nsl ’n521/’n52 y

E New CUDA Framework of LightGBM

We implement a new CUDA version for LightGBM. Previous GPU versions of LightGBM only run
histogram construction on GPUs. Our new implementation performs the whole training process
including boosting (calculation of gradients and hessians) and tree learning on GPUs. We denote this
new GPU version of LightGBM as LightGBM+ in our paper.
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