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Abstract

The impossibility theorem of fairness is a foundational result in the algorithmic1

fairness literature. It states that outside of special cases, one cannot exactly and2

simultaneously satisfy all three common and intuitive definitions of fairness -3

demographic parity, equalized odds, and predictive rate parity. This result has4

driven most works to focus on solutions for one or two of the metrics. Rather5

than follow suit, in this paper we present a framework that pushes the limits of the6

impossibility theorem in order to satisfy all three metrics to the best extent possible.7

We develop an integer-programming based approach that can yield a certifiably8

optimal post-processing method for simultaneously satisfying multiple fairness9

criteria under small violations. We show experiments demonstrating that our10

post-processor can improve fairness across the different definitions simultaneously11

with minimal model performance reduction. We also discuss applications of our12

framework for model selection and fairness explainability, thereby attempting to13

answer the question: who’s the fairest of them all?14

1 Introduction15

While fairness in machine learning has received significant attention in recent years, most existing16

works focus on one of the many fairness criteria [3]. Consequently, practitioners are perhaps left17

with no choice but to use their best judgment to apply a single fairness criterion. We suspect that the18

conflicting nature of existing mathematical definitions of fairness might have led to this undesirable19

practice of narrowing down fairness-related measurement and mitigation to one chosen definition.20

This is somewhat analogous to the trade-off between precision and recall while evaluating model21

performance [7]. Instead of choosing one of precision or recall to evaluate the performance of a22

classification model, practitioners often evaluate the trade-off and choose models that can maintain23

a certain level of precision while optimizing recall or vice-versa [19]. In this paper, we provide24

a framework for explicitly addressing such trade-offs among multiple fairness criteria and model25

performance toward optimal model selection.26

One of the most prolific examples of fairness in machine learning arose from the ProPublica recidivism27

study ([2]), in which a risk assessment tool called COMPAS was found to be biased against black28

defendants. But beyond the immediate implications in criminal justice, the study also prompted29

more general studies in algorithmic fairness and, in particular, led to a key result highlighted in [13],30

[21], and [25] which some colloquially refer to as the "impossibility theorem" in fairness [30, 24].31

This theorem essentially states that three common definitions of algorithmic fairness - demographic32

parity [16], equalized odds [21], and predictive parity [3], cannot be simultaneously satisfied outside33

of pathological situations. Several works following these initial results have therefore focused on34

satisfying one metric ([21, 32]) or proposing adaptable methods for different metrics ([11, 37]). Yet,35

while we do not deny the conclusions of the impossibility theorem, we also believe there have not36

been sufficient efforts to reconcile the conflicting fairness definitions to the best extent possible. We37
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fill this gap in the literature by translating the trade-offs among multiple fairness criteria and model38

performance into a constrained optimization problem and propose a post-processing methodology for39

simultaneously achieving approximate fairness in the conflicting definitions simultaneously.40

We believe our framework would alleviate the practitioner from making the hard choice in choosing a41

particular metric. Instead, if they have a partial ordering of importance amongst the metrics (which42

many possess), our framework would explicitly allow them evaluate such trade-offs. The application43

which we highlight in Section 4 discusses these in detail. Overall, we make three main contributions44

in this work:45

1. We design a flexible optimization framework that returns a post-processing score transformation46

function that can make scores group-wise ✏-fair along three definitions (demographic parity,47

equalized odds, and predictive rate parity) simultaneously. This framework can be applied to48

any binary classifier that produces a continuous score, can be configured for singular or multiple49

metrics of fairness, and also can account for fairness vs. performance trade-offs in terms of50

ROC-AUC.51

2. We present a novel reformulation of this non-convex optimization problem as a Mixed Integer52

Linear Program (MILP) [41]. This reformulation allows us to find provably globally optimal53

solutions. We further show that in practice, we can consistently find better solutions through our54

global optimization method compared to local optimization methods in a reasonable time.55

3. We discuss and extend our framework from a post-processing mechanism to a tool that can aid56

practitioners in better understanding their data and models’ empirical fairness characteristics and57

trade-offs and compare these traits across models.58

The rest of the paper is organized as follows. In Section 2 we mathematically define fairness metrics59

and the multiple fairness optimization problem. We discuss the optimal solution via MILP in Section60

3. We try to answer the question of “who’s the fairest of them all?” through our applications and61

experiments in Section 4. Finally, we conclude with a discussion in Section 5. We wrap up this62

section with a discussion of the related literature.63

Related Work: Early works [13] exploring the conflicts between fairness definitions prove that for a64

binary predictor, predictive rate parity conflicts with equalized odds ([21]) unless base rates are equal65

or the model is perfectly predictive. Chouldechova [13] also considers trade-offs between the fairness66

definitions in the binary prediction case. Kleinberg et al. [25] generalizes this study by showing that67

statistical (i.e., demographic) parity is also inconsistent with predictive rate parity and equalized odds.68

The same paper studies these inconsistencies in a more general bin-wise prediction setting and shows69

that approximate fairness definitions (predictive rate parity, equalized odds) can simultaneously hold70

but only under ✏-approximate equal base rates or ✏-approximate perfect performance. This work71

further proves that there is an inherent trade-off between fairness and loss.72

Beyond impossibility theorem results, several works have focused on trade-offs between fairness and73

model performance [21, 17, 37, 42]. They develop in-processing solutions aimed at reducing one74

metric while maintaining accuracy. A few authors have analyzed trade-offs or attempted to achieve75

multiple fairness. One example is Pleiss et al. [36], which shows that predictive rate parity and a76

relaxed form of equalized odds are reconcilable under a randomized prediction scheme. Another77

notable example is Celis et al. [11], which develops a flexible in-processing approach to achieve78

multiple types of fairness (potentially at the same time). Like Celis et al. [11], the framework we79

develop also aims for a flexible approach to focus on one or many fairness metrics simultaneously.80

However, our method is distinct in that it is a post-processing based solution and also more general as81

it works for continuous scores (rather than binary classification). Our work is most closely related82

to Nandy et al. [32] in terms of the underlying score transformation mechanism, and we leverage83

some of their methods. However, whereas [32] only targets equalized odds, we go further and include84

demographic parity and predictive rate parity in our framework—this posits computational challenges,85

which we address by proposing novel methodology based on integer programming.86

As noted at the end of [25], some open questions are how to optimally assign scores to satisfy87

multiple criteria when base rates are equal and additionally, how to satisfy predictive rate parity and88

either equal TPR or TNR when one cost outweighs the other. To our knowledge, no prior work89

has attempted to reconcile all three fairness conditions (demographic parity, equalized odds, and90

predictive rate parity) simultaneously with model performance through a post-processing framework.91

Although the post-processing methods tend to be less flexible for fairness-performance trade-offs92
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than their in-processing counterparts, they can be much more easily added on top of any existing93

model training pipeline. This makes a post-processing approach modular, and in particular, more94

appealing in complex web-scale recommender systems that use (a combination of) certain prediction95

scores to rank a list of items.96

2 Multiple Fairness Optimization97

We consider a binary classification problem where the i-th observation is characterized by their98

label yi 2 {0, 1}, their group membership gi 2 G, and model predicted probability (also known as99

a risk score [25]) si 2 [0, 1] for i = 1, . . . , N . The corresponding random variables are denoted100

as Y , G and S respectively. To set up the problem, we discretize the scores into nonempty bins101

b 2 B := {1, . . . , |B|} by using, for example, a quantile transformation (we will denote |B| as B).102

Additionally, let N [g]
b+ denote the number of group g positive class (yi = 1) instances in bin b, N [g]

b
103

denote the total number of instances of group g instances in bin b, N [g]
+ (N [g]

� ) be the total number104

of group g positive (negative) instances, and N
[g] be the total number of group g instances. Lastly,105

our approach seeks to achieve fairness by moving instances from one bin to another bin: hence, we106

define variable x
[g]
bb0 as the probability of moving an instance of group attribute g and score in bin b107

into a new bin b
0 1. In other words, for every group g, the collection {x

[g]
bb0}b,b0 can be represented as108

a B ⇥B transition matrix (with additional constraints, as discussed next).109

For the optimization framework and the remainder of this paper, we translate a single fairness110

definition (e.g. equal true positive rate) as a constraint that controls for the worst-case violations111

across all bins. Below, we discuss different fairness constraints that we consider in our framework,112

and describe how they can be represented in terms of the optimization variables {x[g]
bb0}.113

2.1 Fairness Constraints Under Binning Framework114

Demographic Parity (DP): For simplicity, we assume that there are exactly two groups g 2 {1, 2} as
we formulate the fairness metrics, though pairwise constraints can be added to enforce fairness for an
arbitrary number of groups. Starting with demographic or statistical parity from [16], this condition
states that the model’s predicted score is independent of group membership. This is equivalent to

P (S = s | G = 1) = P (S = s | G = 2).

Our version of this constraint uses bins B to empirically approximate the probability P (S = s |115

G = g) and we also relax the equality to an ✏-approximate equality (for some pre-specified ✏ > 0).116

Therefore, after transforming the scores using {x
[g]
bb0}b,b0 the ✏DP -approximate DP can be expressed117

as the following as a linear constraint:118

�����
1

N [1]

X

b2B
x
[1]
bb0N

[1]
b

�
1

N [2]

X

b2B
x
[2]
bb0N

[2]
b

�����  ✏DP 8 b
0
2 B, (1)

where N
[g]
b

denote the number of observations from group g in bin b (before transformation), and119

N
[g] =

P
b2B N

[g]
b

. For reproducibility, ✏DP should be chosen to be larger than the approximation120

error O(1/
p

N [g]) for replacing P (S = s | G = g) with its empirical counterpart.121

122

Equalized Odds (EOdds): The equalized odds condition for binary predictors given in Hardt et al.
21. This is a balance condition where the groups must have equal true positive and false positive rates.
For continuous scores, it translates to having equal score distributions for each group conditional on
their true labels [32]:

P (S = s | Y = y,G = 1) = P (S = s | Y = y,G = 2) for y 2 {0, 1}.

1In applications, we can discretize the scores into B bins with a quantile discretizer and consider how we can
move them across bins. More bins allow for more granular interpretation of the transformed scores at the cost of
us solving a harder problem and vice versa.
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Like demographic parity, our empirical score bin version requires that the distribution of positive or123

negative instances be ✏EOdds-approximately equal between groups in the new bins b0. Both equal124

true positive rate and false positive rate can be expressed as linear constraints, respectively:125
�����

1

N
[1]
+

X

b2B
x
[1]
bb0N

[1]
b+ �

1

N
[2]
+

X

b2B
x
[2]
bb0N

[2]
b+

�����  ✏EOdds 8 b
0
2 B

�����
1

N
[1]
�

X

b2B
x
[1]
bb0N

[1]
b� �

1

N
[2]
�

X

b2B
x
[2]
bb0N

[2]
b�

�����  ✏EOdds 8 b
0
2 B.

(2)

Predictive Rate Parity (PRP): Lastly, we examine the predictive rate parity condition popularized
in [13]. This condition states that the probability of being a positive instance is independent of group
membership when we condition on the score. Formally:

P (Y = 1 | S = s,G = 1) = P (Y = 1 | S = s,G = 2).

Using the empirical score bin framework, an approximate version of the above implies that the126

proportion of positive instances in each bin must be ✏PRP -approximately equal among groups:127

�����

P
b2B x

[1]
bb0N

[1]
b+P

b2B x
[1]
bb0N

[1]
b

�

P
b2B x

[2]
bb0N

[2]
b+P

b2B x
[2]
bb0N

[2]
b

�����  ✏PRP 8 b
0
2 B. (3)

Unlike constraints (1) and (2), which can be expressed as a linear function of the optimization128

variables {x
[g]
bb0}, condition (3) yields bilinear terms and is in general a non-convex constraint. A129

main technical difficulty of our framework arises from this non-convex fairness constraint—Section130

3 presents an integer programming framework to handle this non-convexity, ensuring we can obtain a131

globally optimal solution to the resulting optimization problem.132

Remark. Our definition of fairness as the worst-case violation across all bins aims to resemble133

approximations of the respective probabilistic definitions but we have not found identical definitions134

in other works. We comment on the differences and discuss why it does not contradict the traditional135

impossibility theorem of [25] in Appendix E.136

2.2 MFOpt: Multiple Fairness Optimization Framework137

We use constraints developed in Section 2.1 to state the multiple fairness optimization (MFOpt)138

problem:139

minimize
{x[g]

bb0}b,b0,g

X

g2G

X

b2B

X

b02B

�����
N

[g]
b

N
(s̄b � s̄b0)x

[g]
bb0

����� (4a)

s.t.
X

b2B
x
[g]
bb0 = 1 8 b

0
2 B, g 2 G (4b)

x
[g]
bb

� 1� ⇠ 8 b 2 b
0
2 B, g 2 G (4c)

x
[g]
bb0 = 0 8 b

0
s.t. |b

0
� b| � w, 8g 2 G (4d)

Fairness Constraints: (1), (2), (3) (4e)
P

b2B x
[g]
bb0N

[g]
b+P

b2B x
[g]
bb0N

[g]
b



P
b2B x

[g]
b(b0+1)N

[g]
b+

P
b2B x

[g]
b(b0+1)N

[g]
b

8 b
0
2 {1, ..., B � 1}, g 2 G (4f)

0  x
[g]
bb0  1, 8 b, b

0
, g. (4g)

Above, the optimization variables are the group-specific movement probability x
[g]
bb0 terms and all140

remaining terms are problem data and/or configurable hyperparameters. Starting with (4a), we define141

s̄b as the midpoint score in the bin and hence the objective is the product of the movement distance142

s̄b� s̄b0 weighed by the fraction of total samples moved N
[g]
b
/N and the amount of movement x[g]

bb0 . (4b)143

States that the total movement out of bin b, including the movement back to itself, must sum up to 1144

and along with (4g) ensures that x[g]
bb0 represent probabilities in a transition matrix. (4c) states that the145
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total movement from bin b back to itself must be lower bounded by hyperparameter ⇠. This parameter146

controls how far we allow the new scores to stray from the original and is necessary to prevent147

zero denominators in 3 and 4f. Constraint (4d) represents window constraints to restrict extreme148

movements of scores beyond w bins. Constraint (4e) are the fairness constraints in Section 2.1. (4f)149

ensures that we preserve the rank-ordering of the scores and expected values, which is desirable for150

comparing bins against each other. The predictive rate parity constraint (3) and (4f) both introduce151

non-convexities into Problem (4). These two constraints also require us to assume overlap, or that152

each bin contains at least one member from each group. Without overlap, predictive rate parity153

is undefined since it is not possible to compare expectations across groups for a given bin and154

demographic parity is likely violated as it means one group has 0 probability of landing in a given155

bin.156

We close this section with two major benefits of this framework compared to inprocessing solutions157

such as adding fairness regularization ([42], [17], [37], ) or using an entirely different fairness-based158

model ([11], [43]). First, the number of optimization variables scales in the order of O(|G||B|2).159

This is significant as it entails that all of our solutions (solving the optimization once, or over a160

grid of settings for applications in Section 4) can be applied in arbitrarily large settings as long as161

score-based binning is possible. Applying the transformation is equally tractable, as it only requires162

binning observations and making independent draws from a multinomial distribution with B possible163

outcomes.164

The second benefit of our framework is that it returns a highly interpretable solution as it returns one165

optimized B ⇥B transition matrix per group. Hence given a newly scored instance, several facts can166

be easily read from the corresponding row of the matrix such as the likelihood of moving to a specific167

bin b, moving into any higher or lower bin, etc. These probabilities can also be finely controlled168

via constraints in the optimization as we demonstrate with the window constraints (4d) and max169

movement constraints (4c). This interpretability is not present in model regularization frameworks,170

where it is hard to gauge the amount of regularization needed to achieve a certain fairness effect and171

also difficult to know how an individual’s score might change when switching from the base model to172

a fair model.173

3 Finding Optimal Solutions via Mixed Integer Programming (MIP)174

The primary difficulty of the above optimization problem are the predictive rate parity constraint175

(3) and rank-order constraint (4f) which turn the problem non-convex. Non-convex constrained176

optimization is generally NP-hard and traditional methods that seek locally optimal solutions include177

gradient-based interior point optimization ([40]), sequential quadratic programming ([18]), or algo-178

rithms specific to quadratically-constrainted-quadratic-programs (QCQPs) such as operator splitting179

methods, semidefinite relaxations, etc. (see [33] for an overview).180

Rather than pursuing a locally optimal solution, we propose a novel reformulation of the problem into181

a tractable mixed-integer-linear-program (MILP) which can be solved to global optimality ([10], [9]).182

Our reformulation grants two benefits over traditional locally optimal solvers. First, global strategies183

theoretically enable us to find the best possible solution. Second, since our problem primarily scales184

with the number of bins, it is computationally tractable and allows us to utilize the power of modern185

MIP solvers.186

3.1 Tractable reformulations for computational efficiency187

We first observe that a direct reformulation of the fractional terms into bilinear terms in constraints (3)188

and (4f) will lead to bilinear terms in the order of O(B3). We show that we can reduce this to O(B)189

bilinear terms through a substitution that exploits the problem structure. Next, we take advantage of190

the vastly reduced number of bilinear terms to apply the normalized multiparametric disaggregation191

technique (NMDT, [1]) which we explain in Section 3.1.2. This allows us to approximate products of192

continuous variables as products of integer variables, which can be easily linearized and handled by193

MIP solvers. Importantly, this transformation of xy terms requires upper and lower bounds for x and194

y and we propose a method in 3.1.2 for generating and tightening these bounds by solving fractional195

linear program subproblems ([12]). Taken together, the reduction of bilinear terms combined with196

the bound-tightening procedure enable us to effectively apply the NMDT methodology and transform197

the problem from a non-convex QCQP to an MILP that can be solved to global optimality.198
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3.1.1 Step 1: Reducing number of bilinear variables199

We reduce the number of bilinear variables in our problem by making a substitution for the fraction200

term by introducing new optimization variables v
[g]
b

� 0 (to represent a sum) and t
[g]
b

� 0 (to201

represent the fractional quantity) as additional variables (see Appendix C for more details). We can202

then use them to write equivalent constraints with only O(B) bilinear terms. Let,203

v
[g]
b0 =

X

b2B
x
[g]
bb0N

[g]
b

and t
[g]
b0 v

[g]
b0 =

X

b2B
x
[g]
bb0N

[g]
b+ 8 b

0
2 B.

Then we have the following:204

Constraint (3) ()

���t[1]
b0 � t

[2]
b0

���  ✏PRP 8 b
0
2 B,

Constraint (4f) () t
[g]
b0  t

[g]
b0+1 8 b

0
2 {1, . . . , B � 1}

3.1.2 Step 2: NMDT and bound tightening through fractional LP subproblems205

Linearizing bilinear terms (NMDT): We show how we can model each bilinear term t
[g]
b
v
[g]
b

by
using a binary expansion for the continuous variables t[g]

b
, v

[g]
b

, and by observing that the product of
binary variables can be modeled via integer programming (see [27, 39] for reference). To this end,
we make use of the NMDT transformation [1]. We recap this method below as formulated in [1]2

Given any bounded optimization variable x 2 [xL, xU ], and precision factor p, a negative integer, we
can represent this variable exactly as x = (xU � xL)�+ xL where

� =
X

l2{�p,...,�1}

2lzl +��

where 0  ��  2p is a remainder term and zl 2 {0, 1} are binary optimization variables. Dropping206

the remainder term �� gives us the approximate form and product forms of xy become dot products207

of several integer variables, which can be effectively handled via modern MIP solvers, such as [20].208

Although we are solving an approximation (e.g. precision of 1e�4) this is not a practical problem209

since it is precise enough for reasonable choices of ✏ and we do not expect the constraints to hold210

exactly when we apply the post-processor on the testing data anyways.211

Bounds on v
[g]
b
, t

[g]
b

via Fractional LPs: A key requirement to apply NMDT is that all optimization212

variables in the bilinear terms (t[g]
b

and v
[g]
b

in our case) must be bounded and we need to be able213

to accurately estimate these bounds (i.e., tighter bounds leads to faster runtimes [1]). We propose214

obtaining these lower and upper by minimizing and maximizing respectively, the sub-problems215

while keeping all fairness constraints except the quadratic constraints. Firstly, note that bounds on216

v
[g]
b

can be solved as a simple LP (details in Appendix C). Meanwhile, obtaining a bound on t
[g]
b

217

requires solving a nonlinear problem due to fact that t[g]
b

represents a fractional objective (ratio of two218

affine terms of optimization variables). However, we observe that we can apply the Charnes-Cooper219

transformation [12] to reformulate the nonlinear problem into a simple LP (details in Appendix C).220

3.2 Choice of algorithm: QCQP (heuristic) vs MIP (optimal solution)221

In this section we show the results and benefits of our reformulation from a non-convex QCQP to222

an MILP. In Table 1, we take each dataset and train a grid-searched random forest model and score223

the training data. Next, we discretize the scores into bins, parameterize the problem (# bins, ✏, max224

movement, window size, solve time) and compare our MILP solution solved by Gurobi ([20]) against225

the QCQP problem solved by IPOPT ([28]), which is a generic interior-point log-barrier penalty226

method for nonlinear constrained optimization. We discuss the datasets and problem parameters for227

all experiments in the Appendix D. For each metric such as AUC, we use AUCINT and AUCIP228

to denote the average result of applying the interior-point (INT, for short) or integer programming229

(IP) method, respectively. The metrics used are the objective value, optimality gap (%�), 3 and230

2The open-source implementation can be found in https://github.com/joaquimg/
QuadraticToBinary.jl (MIT License) which we utilize.

3The optimality gap is defined %� = UpperBound�LowerBound
UpperBound where the upper bound is the best feasible

solution and the lower bound is produced by the branch-and-bound method. The INT method does not have the
benefit of providing lower bounds, hence we use the bound produced by the IP method to compute this.

6

https://github.com/joaquimg/QuadraticToBinary.jl
https://github.com/joaquimg/QuadraticToBinary.jl


AUC
4. We also report the statistical significance of the improvement based the p-value from the231

Wilcoxon signed-rank test to determine if %�IP  %�INT is a consistent result. Bold figures232

indicate statistical significance w.r.t. 1 standard deviation5.233

Table 1: Interior Point Solution vs. MIP Solution
Dataset ObjINT ObjIP %�INT %�IP p-value AUCINT AUCIP

ACS Income 2.0809 1.9682 15.076 ± 6.461 10.621 ± 3.402 0.0029 0.9041 0.9044
ACS Insurance 0.9769 0.9599 3.432 ± 0.225 1.715 ± 0.169 0.0010 0.7411 0.7413
ACS Mobility 2.4580 2.3781 5.37 ± 0.803 2.193 ± 0.138 0.0010 0.7971 0.7973
ACS Poverty 2.0693 2.0526 3.756 ± 0.435 2.972 ± 0.324 0.0010 0.8440 0.8440
ACS Coverage 8.9361 1.9665 79.711 ± 0.782 7.878 ± 2.207 0.0010 0.5420 0.8149
ACS Travel 2.3935 2.3859 2.554 ± 0.254 2.242 ± 0.28 0.0010 0.7725 0.7725
Heart Disease 1.8871 1.3035 26.385 ± 17.401 3.81 ± 0.864 0.0010 0.8302 0.8629
COMPAS 7.4551 3.1300 62.88 ± 13.407 17.055 ± 7.482 0.0010 0.5143 0.7378

234

As the results show, the MIP reformulation consistently beats the interior point solver applied on the235

raw optimization problem, even when solving for only 10 minutes. We also observe that in most236

cases, regardless of the method we choose, we can quickly find near optimal solutions that are high237

performing in the sense of keeping an AUC close to the original model. This is a significant result238

as it means that even a locally optimal solution to our optimization problem can yield a practically239

useful post-processing result.240

We conclude this section by reiterating two benefits of the reformulation. First, solving a MIP method241

yields lower bounds that can be used to prove optimality or otherwise gauge the quality of a feasible242

solution. Second, by framing the problem as a MIP, we can always theoretically continue improving243

the solution to optimality based on the acceptable time limits.244

4 Applications245

In this section, we illustrate a few methods of applying our framework and how it can be used to246

help model developers select and understand models from a fairness perspective. To apply these247

procedures, we first require developing an efficient frontier of fairness solutions to understand which248

✏ configurations are feasible for a given model type and dataset. To generate this frontier, we solve249

the problem over a grid of parameters ✏DP , ✏EOdds, ✏PRP . Each feasible solution will yield a point250

s 2 {(AUC, ✏DP , ✏EOdds, ✏PRP )} and the collection of non-dominated points from the solution set251

yields a efficient frontier. We show the 2-d profile shots of our 4-d fairness surface in Figure 1 as an252

example, where the color gradient represents AUC. In theory, we could obtain a true Pareto-optimal253

frontier since we have devised a method of obtaining globally optimal solutions. However, we254

generate this frontier using IPOPT due to practical limitations as we are solving a 7⇥ 7⇥ 7 grid of ✏255

parameters.256

4.1 Understanding fairness tradeoffs257

After the Pareto frontier is generated, the modeler can pick an operating point s based on the258

desired AUC and tolerable fairness violations ✏. However, when communicating fairness properties259

to stakeholders and accounting for potential changes in strategy, it can be helpful to additionally260

understand the cost of further increasing fairness in terms of ✏DP , ✏EOdds, ✏PRP .261

This tradeoff can be understood by looking at the characteristics of points on the frontier near the262

operating point. Suppose we are at an operating point s. If we want to trade AUC for ✏EOdds, then263

we would find a point s0 with at least as good ✏DP , ✏PRP but worse AUC and better ✏EOdds. More264

generally, if we pick trade performance/fairness characteristic c (cost) for characteristic b (benefit),265

4We describe how we computed the AUC for the bin-wise probabilities in Appendix B
5We are limited in the number of trials we can run and actively chose to prioritize the variety of datasets we

apply on rather than a large number of trials for a single dataset. As such, we expect relatively large standard
errors but we reflect the consistency of our method through the p-value.
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Figure 1: Efficient frontier of solutions for ACS West Insurance data

then we hold all other factors constant and find a point with better b and worse c. We illustrate this266

in the Table 2. The first row shows a hypothetical operating point while the following rows show267

other points on the efficient frontier that we could move to when we make a certain trade. Blank rows268

indicate that no such point was found that permits the desired trade-off. This trade-off perspective can269

enable developers to better understand and communicate the costs to performance or other fairness270

metrics when trying to close the disparity in one fairness metric.271

Table 2: Performance Fairness Trade-off Analysis
Trade... For... s

⇤
AUC

s
⇤
✏DP

s
⇤
✏EOdds

s
⇤
✏PRP

Base Base 0.7434 0.0123 0.018 0.0123
AUC ✏DP - - - -
AUC ✏Eodds - - - -
AUC ✏PRP 0.7422 0.0123 0.0180 0.0067
✏DP ✏PRP 0.7436 0.0152 0.0123 0.0067
✏Eodds ✏PRP - - - -
✏Eodds ✏DP 0.7436 0.0152 0.0123 0.006

4.2 Performance Comparison272

Lastly, we compare our framework against two methods and show that we can satisfy fairness con-273

straint(s) just as well if not better, while yielding significantly better performance. When comparing274

against these methods, we first create 20 random splits of the dataset, perform some basic prepro-275

cessing, fit a grid-searched random forest model, and score the training and testing data to get the276

base scores ŷ0. Next, we run the methodology that we are comparing against (i.e. build a model or277

apply the postprocessor) to get method scores ŷm. We then bin the outputs of the base model and278

compared method and compute the AUC along with the fairness metrics (✏0, ✏m). Next, we solve our279

constrained optimization problem where we set the parameters ✏ to 1
2min(✏0, ✏m). After optimizing,280

we can apply the optimal solutions x[g]
bb0 to assign new bins for scored test instances. One method281

of assigning a group g instance with score s 2 b (denote as s[g]
b

) would be to make a random draw282

from a multinomial distribution parameterized by probabilities (x[g]
b1 , x

[g]
b2 , . . . , x

[g]
b|B|). This is a coarse283

method of stochastic assignment and we also propose an alternative method in the Appendix A.284

Finally, we can compute the resulting AUC and fairness metrics on remapped bins for the testing data285

(and do the same for ŷ0 and ŷm on the testing data). These figures are shown in Table 3. We only286

show the results on the test set due to space constraints and have placed the results for the training set287

in Appendix D. Bold figures indicate that a metric is statistically significant to 1 standard deviation.288

First, we compare our framework against the in-processing framework in Rezaei et al. [37], which is a289

robust optimization-based logistic regression model for reducing equality of opportunity violation. We290

found that this method works well compared to standard logistic regression and managed to decrease291

fairness violations while maintaining the similar performance. It improves in ✏Eodds compared to a292

random forest as well. However, its weakness is that the underlying model is still logistic regression293

and therefore has limited expressiveness. In comparison, MFOpt can be applied on top of any model294

class and thus the performance advantages of more flexible models are better maintained.295
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Table 3: Comparison with other fairness methods

Method Metric Test
Base Method MF-Opt

Rezaei

AUC 0.7471 ± 0.003 0.6619 ± 0.0022 0.747 ± 0.003
✏DP 0.0117 ± 0.0014 0.0124 ± 0.0013 0.0088 ± 0.001

✏EOdds 0.0266 ± 0.007 0.0291 ± 0.0059 0.0167 ± 0.0029

✏PRP 0.109 ± 0.0145 0.1091 ± 0.0143 0.0986 ± 0.0133

Pleiss

AUC 0.8319 ± 0.0033 0.8149 ± 0.0087 0.831 ± 0.0032
✏DP 0.0212 ± 0.0016 0.0137 ± 0.0016 0.0106 ± 0.0011

✏EOdds 0.0329 ± 0.0042 0.023 ± 0.0038 0.0142 ± 0.0028

✏PRP 0.1465 ± 0.0178 0.4147 ± 0.1537 0.1547 ± 0.0293

Next, we compare our framework against the post-processing framework in Pleiss et al. [36]. In this296

method, the authors use randomization to maintain the model’s calibration while simultaneously297

satisfying a relaxed equalized odds condition (whereby a linear combination of TPR and TNR are298

satisfied). Again, we see that this method maintains close performance as the base model, successfully299

shrinks equalized odds violations, and even decreases demographic parity violations too. However, it300

results in large violations of predictive rate parity based on our definition in contrast to our method.301

4.3 Who’s the fairest of them all?302

In industry, machine learning model selection is guided by many factors including performance,303

speed, interpretability, among others. Yet, the fairness dimension is commonly overlooked unless304

the developers specifically induce it in their model. Even then, picking a specific fairness metric to305

optimize for can be a nebulous task. Rather than focus on a single metric, we propose a simple and306

intuitive method of gauging a model’s efficiency in trading between different fairness definitions.307

To do so, we propose constructing the frontier for the two models in question and then filtering all308

points on the efficient frontier with tolerable performance AUC � AUCmin. Next, find the point on309

the respective frontiers with minimum Euclidean distance to the origin. The model with the shortest310

distance to their frontier can then be declared as the model that has better tradeoff properties. We do311

not show an example due to lack of space, but remark that this procedure along with the trade-off312

analysis can be useful when a developer is iterating between models that were not designed for313

fairness, but wants a model that can be flexibly made more fair through the postprocessing framework314

that we propose. As fairness requirements may change over time, the model that can yield the best315

tradeoffs between different definitions can offer the most overall utility.316

5 Discussion317

In our study, we have devised a flexible, tractable, and interpretable post-processing method for318

making any binary classifier more fair. We then apply our methodology to push the limits of the319

impossibility theorem and show that while theoretical limitations remain undisputed, there is a path320

forward to practically reconciling the conflicting fairness definitions. Interestingly, our results extend321

the findings of [38], which finds that the trade-off of fairness and accuracy are negligible in practice.322

Our work reinforces this claim but also adds on that trade-offs between fairness definitions can be323

negligible as well. On the technical end, there are other optimization methodologies for solving the324

problem to global optimality such as spatial branch and bound. We considered these solutions during325

our investigation but ultimately opted for a MIP approach due to the maturity and availability of326

solvers (see Appendix F for details). Another potential avenue of further research is to improve the327

consistency of the PRP violation reduction, as we observed the largest standard error in reducing328

this metric. This could be due to us using random forests for all experiments, which is known to329

be an uncalibrated model [6]. One method to address this is therefore first calibrating the model330

through other methodologies such as Platt scaling ([35]) or binning-based calibration ([26]), as331

MFOpt appears to have no issue at least maintaining the level of calibration. We could also consider332

incorporating uncertainty in the training data through principled approaches such as stochastic or333

robust optimization.334
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5. If you used crowdsourcing or conducted research with human subjects...518

(a) Did you include the full text of instructions given to participants and screenshots, if519

applicable? [N/A]520

(b) Did you describe any potential participant risks, with links to Institutional Review521

Board (IRB) approvals, if applicable? [N/A]522

(c) Did you include the estimated hourly wage paid to participants and the total amount523

spent on participant compensation? [N/A]524
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A Mapping from bins to scores525

As mentioned, the most straightforward method of applying the score transformation after solving the
optimization problem is to sample from a multinomial distribution. However, this is a less granular
approach as we are assuming that all observations in the bin are indistinguishable. To overcome
this, we recommend the idea proposed in ([32]) which is a linear projection. This strategy proposes
that if an observation with score s falling into a bin a with upper and lower bounds [al, au] gets
mapped from the random draw into a new bin b1 with bounds [b1l, b1u], then we assign it a linearly
interpolated score given by:

s
0 = b1l +

s� al

au � al
(b1u � b1l)

This allows us to maintain rank-ordering of scores that receive the same assignment from a to b.526

A more deterministic manner of mapping from bin to score would be to take the expected score527

mapping. After solving the optimization problem, we know the transitions probabilities a to {b1, b2,528

. . . , bB} (denoted as P (a �! bi)) based on the optimization variables and from the previous method,529

we also know the score assignment if a were moved into bi (denote as si). Hence, a deterministic530

map would transform score s to s
0 =

P
i2B

siP (a �! bi).531

B Computing AUC from bins and using AUC as an objective532

Another idea we leverage from ([32]) is the Riemann approximation of AUC from the bins. Essentially,533

ROC AUC be approximated by the FPR at bin k and TPR of the cumulative bins b 2 {k, . . . , B}.534

Another consideration is that we could have changed the objective to maximizing AUC rather than535

minimizing score movement. However, in our experience, maximizing AUC (quadratic objective)536

as the objective led to a harder time finding better feasible solutions compared to minimizing score537

movement (linear objective).538

C Details on the fractional LP subproblem for bound tightening539

We elaborate on the methodology in Section 3.1.2. Recall that our goal is to find bounds for:540

v
[g]
b0 =

X

b2B
x
[g]
bb0N

[g]
b

and t
[g]
b0 v

[g]
b0 =

X

b2B
x
[g]
bb0N

[g]
b+ 8 b

0
2 B.

Where t
[g]
b0 is meant to represent the fractional quantity:

t
[g]
b0 =

P
b2B x

[g]
bb0N

[g]
b+P

b2B x
[g]
bb0N

[g]
b

=

P
b2B x

[g]
bb0N

[g]
b+

v
[g]
b0

We will do this by fixing ḡ and b̄ such that we first tighten bounds for vḡ
b̄

and then use the optimal541

solution to tighten bounds for tḡ
b̄
. First, it is easy to see that maximizing/minimizing v

ḡ

b̄
is an LP as542

we have dropped the quadratic constraints, leaving us with a linear objective and linear constraint543

set. Now let vḡ⇤
b̄,min/max

represent the optimal values of the min/max objective for vḡ
b̄

. We now turn544

to bounding t
ḡ

b̄
which has the same linear constraints but a fractional (nonlinear) objective. To deal545

with this, we utilize the Charnes-Cooper transformation ([12]). Essentially, this reformulation trick546

handles the denominator by removing it from the objective and passing it to all constraints while547

maintaining linearity. To illustrate this in detail, we first define new optimization variables:548

⇠
[g]
bb0 =

x
[g]
bb0P

b2B x
[ḡ]
bb̄
N

[ḡ]
b

�
[ḡ]
b̄

=
1

P
b2B x

[ḡ]
bb̄
N

[ḡ]
b

(5)

Using (5), we can express the min/max problem for t[ḡ]
b̄

as problem (6).549

Min or Max
⇠
[g]

bb0 ,�

t
[ḡ]
b̄

=
X

b2B
N

[ḡ]
b+⇠

[ḡ]
bb̄

14



subject to
X

b2B
⇠
[g]
bb̄
N

[ḡ]
b

= 1

⇠
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bb0 � (1�m)� 8 b = b

0
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v
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b0max

 � 
1

v
g⇤
b0min

0  ⇠
[g]
bb0 

1

v
g⇤
b0min

By solving these subproblems and taking the objective value as bounds for t[g]
b

, we can reduce the550

feasible region of the problem and enhance our solutions. The sub-problems are bounded and if any551

of them are infeasible, then it also implies that the MFOpt problem is also infeasible as we drop the552

PRP constraints in these sub-problems:553

D Experiment data descriptions and problem parameters554

We use three primary data sources for our experiments, the more recently developed American555

Community Survey (ACS) data as well as two more classical datasets, Heart Disease and COMPAS.556

We elaborate on each dataset in this section. The ACS data is a dataset made publicly available by557

the US Census Bureau. Specifically, Ding et. al [14] have created an excellent Python package6558

that enables users to pull model-ready data (for a requested year and geographic region) for a559

set of pre-defined binary classification tasks, such as predicting high income, health insurance560

coverage, whether they move or not, among others. The tasks are detailed in the paper and we use561

all of the pre-defined tasks without any additional modification except for Employment. We do562

not use the Employment task because of the assumption detailed in Section 2.2 regarding overlap.563

Experiments with this task occasionally yielded models that did not have overlap which made this564

task unsuitable for demonstrating our methodology. We reiterate that this is not a practical issue if565

one just ignored the non-overlapping bins, but requires a lengthy and technical fairness interpretation566

that we felt were beyond the purpose of our study. In terms of time and geography, we use 2020567

data for all experiments while the geography varies. In the experiments shown on Table 1, we568

use the West Coast US states (California, Oregon, Washington). In 3 we wanted a larger dataset569

as we required a sufficiently large testing split, hence we used the West Coast States (’CA’, ’OR’,570

’WA’, ’NV’, ’AZ’) with the "ACS Mobility" dataset for the inprocessing comparison and East Coast571

States (’ME’,’NH’,’MA’,’RI’,’CT’,’NY’,’NJ’,’DE’,’MD’,’VA’,’NC’,’SC’,’GA’,’FL’) with the "ACS572

Poverty" dataset for the postprocessing comparison. There was no particular reason for selecting573

these geographies aside from obtaining a large enough sample. Though we are using census data574

there is no PII information nor any endangerment to the subjects in the data. However, we note that in575

practice, it is important to exercise caution and equity in picking groups to mitigate for, as selective576

mitigation of favored groups by a malicious practitioner can result in underperformance for unfavored577

groups.578

The Heart Disease Dataset ([23]) is a publicly available dataset where the task is to predict whether579

or not an individual has heart disease. Most applications of this data use the standard processed580

"Cleveland" data and we use sex as the group variable. We could not find a standard and preprocessed581

version of this data and did it ourselves.582

The COMPAS dataset is based on the recidivism study noted in ([2]). We use the preprocessed version583

made available in the publicly available AIF360 package ([4]) 7 without any additional modification.584

6https://github.com/zykls/folktables (MIT License)
7https://github.com/Trusted-AI/AIF360
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Table 4: Experiment Problem Parameters
# Trials Bins ✏ Max Movement Window Size Solve Time Precision

10 50 0.03 0.5 13 600s 1e-5

Table 5: Comparison with other fairness methods

Method Metric Train
Base Method MF-Opt

Rezaei

AUC 0.7471 ± 0.003 0.6619 ± 0.0022 0.747 ± 0.003
✏DP 0.0117 ± 0.0014 0.0124 ± 0.0013 0.0088 ± 0.001

✏EOdds 0.0266 ± 0.007 0.0291 ± 0.0059 0.0167 ± 0.0029
✏PRP 0.109 ± 0.0145 0.1091 ± 0.0143 0.0986 ± 0.0133

Pleiss

AUC 0.8314 ± 0.0045 0.8145 ± 0.0104 0.8306 ± 0.0044
✏DP 0.0208 ± 0.0029 0.0145 ± 0.0023 0.0105 ± 0.0008

✏EOdds 0.0325 ± 0.0062 0.0257 ± 0.005 0.0144 ± 0.0017
✏PRP 0.1405 ± 0.0214 0.4149 ± 0.1824 0.1319 ± 0.0204

In this dataset, the task is to predict whether or not an individual will recidivate and we use ethnicity585

as the group variable.586

We list the problem parameters used to create the results in Table 1 in Table 4. We use the same587

parameters for all tasks.588

All experiments were run on a MacBook Pro with a 2.4GHz 8-Core Intel Core i9 processor with 32589

GB RAM. We did not use the GPU for solving. Data, preprocessing steps, and the random forest590

models utilize Python’s scikit-learn ([34], BDS License) package. The optimization model is coded591

through Julia’s JuMP package ([15] MPL License). We use the Gurobi ([20] Academic License) and592

IPOPT ([28] Eclipse Public License) solvers for all problems.593

Due to lack of space, we only showed the method comparison Table 3 for the testing data. We show594

the results on the training data in Table 5.595

596

597

E Comparison to other fairness definitions598

We compare our bin-wise worst-case fairness definition with other fairness definitions seen in599

literature and explain why it does not contradict previous impossibility theorem results. First, since600

we are considering score bins, our definition is a generalization of the definitions in ([13]), ([21]) and601

([11]), which consider fairness metrics for binary {0, 1} classifiers or assume that there is a threshold602

for mapping probabilities to 0,1 outcomes. In these cases, the overall FPR/FNR can be computed and603

EOdds refers to the equality of those rates. Our framework is a generalization since the same fairness604

metrics for binary classification can be achieved by specifying that all scores be moved into exactly605

one of two bins (representing {0,1} predictions) under our framework.606

Since we are dealing with binned scores, our fairness definitions more resemble those seen in [25],607

which also has a notion of binned "risk assignments". The critical difference in fairness definitions is608

that Kleinberg’s paper utilize the sum of scores in each bin compared against the number of positive609

or negative instances. Under this scheme, predictive rate parity refers to having the sum of scores be610

equal to the number of positive instances and true positive rate refers to the expected score of the611

positive instances in each bin (and analogously with FPR). The key difference is that rather than612

the sum of scores, our definitions are based on the expected number of {0,1} instances moved into613

each bin, irrespective of the instance’s original scores. As such, we are not faced with the same strict614

fairness trade-offs.615
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F Commentary on other solution methods and solvers616

While investigating a solution to our nonconvex problem, we considered another global integer pro-617

gramming based approach known as spatial branch and branch (SBB), which relies on a combination618

of spatial partitioning and solving local partitions using McCormick relaxations ([29], [9]) and other619

outer approximation variants ([8]). In our testing, Gurobi’s nonconvex QCQP solver, which applies620

these SBB heuristics, worked remarkably well despite being relatively new and was sometimes able621

to beat both the interior point solution and the MIP solution. Open-source solver SCIP ([5]) also622

features a gender nonconvex SBB solver that works reasonably well. However, our main goal was to623

provide a widely accessible method of solving the problem to global optimality and as of writing,624

there are significantly more developed open-source MILP solvers, such as SCIP, HiGHS ([22]), and625

CBC ([28]), than SBB solvers. Another reason we opted for the MILP approach is that we saw more626

potential in the NMDT reformulation for taking advantage of our reformulation and bound tightening627

procedure. Nonetheless, our bound tightening procedure is theoretically beneficial for both methods628

and as other open-source algorithms/solvers for SBB become more developed, such as Couenne629

([28]) and Alpine ([31]), we encourage a future re-evaluation of solution methods and comparisons.630

Finally, we note that we chose Gurobi in our experiments for its speed and effectiveness since we631

are repeatedly solving many problems. We acknowledge that Gurobi is a very powerful commercial632

solver and the results solved over 10 minutes may be worse with open source solvers such as HiGHS633

([22]). Nonetheless, the important fact is that all MIP solvers target the global optimum and hence634

even less powerful solvers can yield strong solutions given more time.635

G Additional Experiments636

We list additional experiments focusing on the performance of our method on the testing data in637

Tables 6 to 11. All results are based on 20 trials that are run with a similar procedure in the comparison638

section 4. In each trial, we tune a random forest via grid-search, find the base fairness violations, set639

up the parameters of MFOpt to reduce the violations by a half, and run the results on the testing data640

(using the multinomial sampling methodology without linear interpolation). 1-Standard deviation641

error margins are provided and the p-value corresponds to a one-sided Wilcoxon signed rank test642

which evaluates if the distribution of differences of the Base - MFOpt stats (higher AUC, lower643

fairness violations) is symmetric around zero (null) or instead favors the base (alternative). As644

mentioned in the main text, we prioritize running our method over several datasets rather than trials645

in a single dataset. As such, we expect relatively wide standard errors and have included the p-value646

as an alternative perspective that represents a non-parametric t-test.647

We find that across different datasets, the decrease in AUC is miniscule in terms of both absolute648

amount and variance (less than 1%). We obviously do not expect better AUC from the MFOpt649

solution and thus this result is remarkable as it indicates that some degree of fairness can be afforded650

practically for free under our framework. The second observation is the consistency in reducing DP651

and EOdds violations such that we find p-values below 0.05 in all cases. This demonstrates that652

although we are relying on random assignment, our methodology can still be highly consistent on653

these fairness metrics. Lastly, we observe some inconsistency in reducing PRP. In many cases, we654

do observe near-equal or reduction of the average worst-case PRP violation (except in the Public655

Coverage data). However, the consistency of PRP reduction appears to be a weakness as we do not656

frequently observe statistically significant p-values, which is likely due to the small number of trials657

(20) combined with the fact that the variance of the violation is relatively higher than that of DP658

or EOdds. We noted this in our conclusion Section 5 as an area for future work and provide some659

hypotheses for methods that can address this inconsistency.660

661

662

663

664

665
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Table 6: ACS West Travel
Metric Base MFOpt Wilcoxon p-value

AUC 0.7439 ± 0.0039 0.7437 ± 0.0039 0.999969
DP 0.0313 ± 0.0057 0.0216 ± 0.0045 0.000001

EOdds 0.0404 ± 0.0055 0.0281 ± 0.008 0.000001
PRP 0.1743 ± 0.0326 0.1718 ± 0.027 0.405348

Table 7: ACS West Income
Metric Base MFOpt Wilcoxon p-value

AUC 0.8907 ± 0.0012 0.8906 ± 0.0012 0.999999
DP 0.0172 ± 0.0021 0.013 ± 0.0015 0.000001

EOdds 0.0362 ± 0.006 0.0234 ± 0.0031 0.000001
PRP 0.1994 ± 0.0745 0.173 ± 0.0288 0.044847

Table 8: ACS West Mobility
Metric Base MFOpt Wilcoxon p-value

AUC 0.7413 ± 0.0033 0.7412 ± 0.0033 0.825595
DP 0.0183 ± 0.0057 0.016 ± 0.0034 0.045498

EOdds 0.0469 ± 0.0153 0.0346 ± 0.0076 0.000241
PRP 0.197 ± 0.0318 0.1882 ± 0.0356 0.177335

Table 9: ACS West Insurance
Metric Base MFOpt Wilcoxon p-value

AUC 0.7183 ± 0.0028 0.7183 ± 0.0028 0.434744
DP 0.0603 ± 0.0089 0.0336 ± 0.0044 0.000001

EOdds 0.0676 ± 0.0072 0.0607 ± 0.0073 0.016384
PRP 0.3732 ± 0.11 0.3301 ± 0.1316 0.147126

Table 10: ACS West Poverty
Metric Base MFOpt Wilcoxon p-value

AUC 0.8319 ± 0.0039 0.8317 ± 0.0039 0.999999
DP 0.0246 ± 0.0038 0.0159 ± 0.0021 0.000001

EOdds 0.0396 ± 0.0086 0.023 ± 0.0029 0.000001
PRP 0.1305 ± 0.0172 0.1317 ± 0.02 0.478165

Table 11: ACS West Public Coverage
Metric Base MFOpt Wilcoxon p-value

AUC 0.7932 ± 0.0016 0.7923 ± 0.0017 1.000000
DP 0.03 ± 0.0041 0.0207 ± 0.0026 0.000001

EOdds 0.0403 ± 0.0061 0.0247 ± 0.0025 0.000001
PRP 0.159 ± 0.0245 0.1803 ± 0.0328 0.975780
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