o

CodeRL: Mastering Code Generation through
Pretrained Models and Deep Reinforcement Learning
Supplementary

Anonymous Author(s)
Affiliation
Address

email

A Overview of Critic Model

FigureE] shows an overview of our critic model. In our CodeRL framework, besides the actor LM
network 6, we introduce a critic model that is trained as an error predictor and parameterized as
a neural network with parameters ¢. The critic receives as inputs a problem description D and
a corresponding synthetic program W* sampled from the actor. The critic is required to output
a prediction of the unit test outcome of the input program. We define 4 possible outcomes u:
CompileError, RuntimeError, FailedTest, and PassedTest. The critic model is trained by minimizing
the following loss:

Accritic(d)) = —IOngé(U‘WSaD) (1)

The ground-truth outcome of a synthetic sample is obtained by passing it to the unit tests correspond-
ing to the problem. Note that since our critic model is applied in a supervised learning environment
with available ground truth, we also use the training samples from the original dataset with ground
truth output u = PassedTest to train the critic.

The learned hidden state representations of program tokens when passed through the critic are then
used to measure their return estimates for our RL optimization objective. The return estimates are

incorporated as intermediate returns at decoding steps to compute the expected gradient of the actor
network Vo L,.(0).

[Linear & Softmax } { Max Pooling J | Return Estimation

[Sequence-to-Sequence Model J Ecritic((b) vﬁﬁrl (‘9)

Problem wi, w3, ..., wp Unit \ Sample Test Results

b Tests |

wlf, wg, cony Wi Baseline Test Results

Sampled/Baseline/Ground-truth Programs

Figure 1: Overview of the critic model learning

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

17

26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52

53
54
55
56
57
58
59
60
61

62
63

B Additional Experimental Setup Details

Pretraining Setup For CodeT5, we adopt the code-specific tokenizer as described by |Wang et al.
[2021]]. Note that we employ 6 programming languages (PLs) in CodeSearchNet [[Husain et al., 2019]
(CSN) instead of 8 PLs in CodeT5 as C/C# datasets are not publicly available. We employ only the
pretraining task of masked span prediction (MSP) in CodeT5 and hence, we do not have to parse
programs into abstract syntax trees (ASTSs) to obtain the identifier information. This preprocessing
step was required in other original pretraining tasks like masked identifier prediction [Wang et al.}
2021]]. To further speed up training, we concatenate data samples to batch size 512 for pretraining
with MSP and the resulting number of tokens is 1.1B.

APPS Benchmark We follow the same preprocessing step as Hendrycks et al.|[2021] to formu-
late the input sequences from problem descriptions. APPS consists of 10,000 coding problems
with a 50-50 train-test split. Each problem is accompanied by 23.2 correct Python programs and
21.2 unit tests on average. The average length per problem is 293.2 words and the average length
per program is 18.0 lines. The dataset is categorized into three levels of difficulty: Introduc-
tory (3639, train/test=2639/100), Interview (5000, train/test=2000/3000), and Competition (1361,
train/test=361/1000). Similar to [Hendrycks et al.| 2021]], we employ the strict accuracy to evaluate
the functional correctness of a program, where it is counted as correct if it can pass all the unit tests
corresponding to the problem.

MBPP Benchmark We additionally include another smaller and simpler Python program synthesis
dataset called MBPP [Austin et al.,[2021]] (Mostly Basic Programming Problems) for evaluation. The
dataset contains 974 instances with 374/90/500 instances for training/validation/testing respectively
and 10 reserved for few-shot learning. The problems are typically short, usually one sentence of
natural language descriptions each. Each problem is accompanied by 1 correct solution (6.8 lines
of code on average) and 3 unit tests in the form of assert statements for validating the functional
correctness. Unlike APPS, unit tests in MBPP are not hidden and are explicitly incorporated into the
source sequences for program synthesis models. This might encourage models to be overfitting to
these assert statements via hard-coding an if-expression very occasionally. However, for a fair
comparison with the baselines, we construct the source sequences in the same way as prior work.
Specifically, we adopt the same prompt format as|Austin et al.| [2021]] to prepare the input sequence
as: problem descriptions + ““Your code should satisfy these tests:” + 3 assert statements.

Finetuning Setup Following [Bahdanau et al.l [2016], since our RL method is applied in a su-
pervised learning task, in addition to synthetic programs, we also use the ground-truth programs
of training samples to train the critic. These samples are considered perfect programs and always
have a label of PassedTest. To optimize the LM actor network, in practice, following previous work
[Bahdanau et al.l 2016} Rennie et al., 2017, |Wang et al., 2018]], in each training optimization step, we
can simply approximate the expected gradient with a single sample W ~ py:

VoL(0) ~ —(r(W*) = r(W")) D ds(wf) Ve log pe(w]wi,_y. D) 2
t

Configurations For pretraining, we perform our experiments on a kubernetes with 16 A100-40G
GPUs on Google Cloud Platform and the total pretraining duration is around 21 days. In the first
pretraining stage with MSP, we employ a corruption rate of 15%, a peak learning rate (LR) of 2e-4,
and a batch size of 2048. We pretrain on CSN for 150 epochs (10 days) and then on GCPY for
10 epochs (5 days). For the second stage pretraining with NTP, we adopt a peak LR of le-4 and a
batch size of 256, and pretrain for 10 epochs (6 days). We set the maximum length to 768 and 600
for source and target sequences respectively for this objective. For all experiments, we employ an
AdamW optimizer [Loshchilov and Hutter, [2019] with a 0.05 weight decay and a linear decay LR
scheduler with a warmup step of 1000.

For finetuning on APPS, we adopt a batch size of 64 and warmup LR from 0 to 2e-5 for the first 500
steps and polynomially (power=0.5) decay to le-5 until the end of 10 epochs, which takes around 30

64
65
66
67

68

69

70
71
72
73
74
75
76
77

Table 1: Code-to-Text generation results (smoothed BLEU-4) on CodeXGLUE

Model Ruby JavaScript Go Python Java PHP | Overall
RoBERTa 11.17 11.90 17772 18.14 1647 24.02 | 16.57
CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 | 17.83
DOBF - - - 18.24 19.05 - -
PLBART 14.11 15.56 1891 1930 1845 23.58 | 18.32
CoTexT 14.02 14.96 1886 19.73 19.06 24.58 | 18.55
CodeT5-small | 14.87 15.32 19.25 20.04 1992 2546 | 19.14
CodeT5-base | 15.24 16.16 1956 20.01 2031 26.03 | 19.55
CodeT5-large | 15.58 16.17 19.69 20.57 20.74 2649 | 19.87

Table 2: Text-to-Code generation results on CodeXGLUE

Model EM BLEU-4 CodeBLEU
GPT-2 17.35 25.37 29.69
CodeGPT-2 18.25 28.69 32.71
CodeGPT-adapted | 20.10 32.79 35.98
PLBART 18.75 36.69 38.52
CoTexT 20.10 37.40 40.14
UniXcoder 22.60 38.23 -
CodeT5-small 21.55 38.13 41.39
CodeT5-base 22.30 40.73 43.20
CodeT5-large 22.65 42.66 45.08

Table 3: Code-to-Code generation results on CodeXGLUE

Model Java to C# C# to Java Refine Small Refine Medium
BLEU-4 EM BLEU-4 EM BLEU-4 EM BLEU-4 EM
Naive copy 18.54 0.00 18.69 0.00 78.06 0.00 90.91 0.00
Roborta (code) 77.46 56.10 71.99 57.90 77.30 15.90 90.07 4.10
CodeBERT 79.92 59.00 72.14 58.00 77.42 16.40 91.07 5.20
GraphCodeBERT 80.58 59.40 72.64 58.80 80.02 17.30 91.31 9.10
PLBART 83.02 64.60 78.35 65.00 77.02 19.21 88.50 8.98
CoTexT - - - - 77.79 21.03 88.40 13.11
NSEdit - - - - 71.06 24.04 85.72 13.87
CodeT5-small 82.98 64.10 79.10 65.60 76.23 19.06 89.20 10.92
CodeT5-base 84.03 65.90 79.87 66.90 77.43 21.61 87.64 13.96
CodeT5-large 83.56 66.00 79.77 67.00 77.38 21.70 89.22 14.76

hours on one A100 GPU. We set the maximum source and target sequence length to 600 and 512
respectively. For MBPP, due to its small training set, we finetune it for 60 epochs with a constant
LR of 2e-5 and a batch size of 32, which takes less than 30 mins on one A100. We set its maximum
source and target length to 382 and 306 respectively.

C Additional Experimental Results

C.1 CodeXGLUE Benchmark Results

To validate the effectiveness of our simplified pretraining strategies of CodeT5-large, we extensively
evaluate it on a variety of generation tasks in CodeXGLUE [Lu et al., 2021]], including code-to-text
generation (i.e. summarization, see Table , text-to-code generation (see Table E]) and code-to-code
generation (i.e., code translation and code refinement, see Table E]) Different from APPS [Hendrycks
et al., |2021]] and MBPP [Austin et al., [2021]], we follow the default similarity-based evaluation
metrics in the CodeXGLUE benchmark, including BLEU [Papineni et al., [2002]] and CodeBLEU
[Ren et al.,2020], and exact match (EM) scores. Table and show that our simplified pretrained
CodeT5-large sets new SOTA results on a large majority of the tasks, and hence, can be served as a

78
79
80

81

82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98

99
100
101
102
103
104
105

107
108

Table 4: Ablation results of CodeRL with different CodeT5 model variants with different sizes,
pretraining data and objectives on MBPP. CodeRL is finetuned on APPS and evaluated on MBPP in a
zero-shot setting.

Model Size | Data Objective | pass@80 pass@1000

GPT finetuned results
GPT 224M | Web Doc LM 7.2 -
GPT 422M | Web Doc LM 12.6 -
GPT 1B Web Doc LM 224 -
GPT 4B Web Doc LM 33.0 -
GPT 8B Web Doc LM 40.6 -
GPT 68B Web Doc LM 53.6 -
GPT 137B | Web Doc LM 61.4 -
CodeTS5 finetuned results
CodeT5 60M CSN MSP 19.2 36.2
CodeT5 220M CSN MSP 24.0 42.8
CodeT5 770M CSN MSP 324 47.8
CodeT5 770M | +GCPY MSP 34.6 51.6
CodeT5 770M | +GCPY +NTP 46.8 66.2
CodeRL zero-shot results
CodeRL 770M [+GCPY +NTP [63.0 81.8

better foundation model for other code-related generation tasks. Note that in these experiments, we
employ the conventional finetuning objective with L., and there might be potential to improve the
performance further with our CodeRL framework.

C.2 MBPP Benchmark Results

Following |Austin et al.| [2021]], we adopt temperature sampling to generate multiple candidate
solutions. We empirically find that CodeT5 benefits from a higher temperature of 1.2 (less greedy
decoding or more diverse) than their GPT’s temperature of 0.5 on this benchmark.

Table [reports the pass @80 and pass@ 1000 results for both finetuned and zero-shot settings. For
baselines, we compared with GPT models with sizes ranging from 224M to 137B [Austin et al.,
2021]], which are pretrained on 2.93B web documents (13.8M containing source code) using standard
language modeling objective. Results of GPT models are obtained from the original authors. From the
comparison among various CodeT5 variants, we again confirm that larger model sizes and pretraining
data, and better pretraining objective of NTP all lead to a performance boost. Particularly, our
CodeT5-770M yields a pass@80 of 46.8%, surpassing GPT-8B’s 40.6% with a much smaller model
size. In addition, we find the CodeT5 model finetuned on APPS can achieve a surprisingly good
zero-shot performance on MBPP with a pass@80 of 60.2% and further improved to 63.0% with
the help of CodeRL, which even outperforms the largest GPT-137B’s performance of 61.4%. This
indicates APPS is a comprehensive benchmark for program synthesis evaluation, and our CodeRL
models trained on it are able to generalize to other simpler coding tasks. If we further increase the
budget of attempts up to 1000, all models witness a consistent and significant boost of solving rate,
especially our CodeRL model yielding over 80% pass@ 1000.

A common concern about transfer learning is that the source (APPS) and target (MBPP) tasks might
have overlap in their training data, which could result into the source model tending to memorize
these substantially similar data when applied to the target task. To address this concern, we analyze
how many lines of code appear in both training set of APPS and programs of MBPP following|Austin
et al. [2021]]. For this analysis, we discard code comments and normalize the whitespaces for each
line, and then exclude lines that appear more than twice anywhere in MBPP, as these are likely to be
common Python keywords such as return and break.

Figure [2]illustrates the number of absolute duplicated lines (Left) and relative fraction of duplicated
lines (Right) in the MBPP programs. As can be seen, the overlap between APPS and MBPP seems to
be minimal. Only 12.6% MBPP programs have more than half of their lines matched somewhere in

109
110
111

112

113
114
115
116
17
118
119
120
121
122
123

124

125
126
127
128
129

600 600

o 450 o 450
X X
8 8
© 300 ° 300
[} [9]
o Qo
€ £
=3 3
Z 150 Z 150
0 0
01234586 78 910111318 Sy EONTHF S~
QO © © © © © © © © r~
Number of duplicated lines QO = o o Y W o N o o
Seeedses 88 <
Fraction of lines duplicated
Figure 2: Analysis of duplicated lines between MBPP and APPS
A GPT-J +CodeRL
8.00 3.00 6.00
el | oo SIETES A
§ 600 e L 225 e L 450 e
g 4.00 i © 150 -+ S ® 300 |
Q 2.00 x 0.75 & 1.50 "'
0.00 0.00 0.00
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
4 CodeT5 +CodeRL
8.00 3.00 | 6.00
T.--A | o U A ..-A
§ 6.00 A-’k.—.“.‘ o 225 A A o 450 A e
a 4.00 o © 1.50 |, A 9 3.00 =4
Q 2.00 | & 0.75 1.50 ¢
0.00 £ 0.00 * - - - - 0.00
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
k k k

Figure 3: Results on APPS competition-level test samples of CodeRL+CodeT5 and CodeRL+GPT-J

the APPS training data. Besides, more than half (514 out of 974) of programs have a zero overlap and
90.9% have only no more than 3 lines overlapped with the APPS training set. If we further require
the lines to be consecutive, there are no more than 2 consecutive duplicated lines.

C.3 APPS Benchmark Results on Competition-level Tasks

Figure shows the results of pass@k and n@k with k ranging from 1 to 200 and n = {1, 5}, for
CodeRL+CodeT5 and CodeT5 only. We choose to investigate a subset of the APPS test split, which
contains the test samples of the highest difficulty level (i.e. competition programming tasks). Since
CodeRL is model-agnostic, we also integrate it with GPT-J [Wang and Komatsuzakil, 2021]] and report
the results. To focus on the impact of our RL optimization, during test time, we compare models
using only nucleus sampling and without the CS procedure. Figure [3]shows that the performance
gains are quite consistent on both GPT-J and CodeT5. In particular, as k increases, the performance
gain of CodeRL is more significant on both GPT-J and CodeT5 models. We attribute these gains to
the CodeRL learning objective L, that encourages models to explore code solutions drawn from the
model’s sampling distribution. During test time with an increasing k& sampling budget, models are
allowed to generate diverse code solutions and the impact of £,.; becomes more significant.

C.4 CodeT5 Ablation by Training Epochs

Figure [shows the performance of CodeT5 model variants by finetuning epochs and by difficulty
levels of programming tasks. Note that in these experiments, we only need to compare among
CodeT5 model variants by pretraining strategies, and hence, only engage L., (imitation learning)
in the finetuning stage on APPS. Consistent with our prior analysis (See §4.3 of the main paper),
enhancing both pretraining data (with larger data of GCPY) and pretraining objectives (with NTP

130
131
132
133

134

135
136
137
138

140
141
142
143
144
145
146

- CSN, SD CSN+GCPY, SD # CSN+GCPY, SD+NTP

Introductory Interview Competition All
7.00 140 - 030 ; 220 -
=\ R - r \ /’\ A .
_ 525 /\ / =, _ 105 /\ VR e _ 023 R ——— s 165 /N / -
& W A & | oZ %] | e N I N .
g as0 |) N g1z § 070 LA o gos i VRN AN g 110 1 v
/ A A F o A \ - s
Sars | NAL Ty 2035 S 008 |\ A ;/ ; S o5 A
000 % 0.00 000 il b i 000 —*
0 2 4 6 8 10 12 0 02 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
9.00 < 2.00 0.70 ; " 3.00 - ~
N A R e
A e n o I\ A -
o 675 A o 180 /N i 053 | M 225 -/ /
] 8 W ALt e [\, = /o \/./ .
2 450 p ¢ z % 100 | Aau/ Qs A [5" Q150 /) AL
g 450 | N U Aty g o / _//\H | g 180y L Ea
Soo5 | ALY e 2050 ¢ 018 1A/ Mo 075 ok
E) Xk AR e ¢
000 I * - R 0.00 : e 0.00 &N aa-aa” 0.00 !
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Epoch Epoch Epoch Epoch

Figure 4: Ablation results by finetuning epochs of CodeT5-770M model variants on APPS

M CodeT5 +CodeRL
CompileError RuntimeError
5 314 |
2 €
g © 3.75 31.1 |
= QO
g’g_ 25 30.8
Q .
<8 1.25 30.5 |
0 30.2
Example tests Hidden tests Example tests Hidden tests
FailedTest PassTest
64 14 |
2 €
g © 615 10.5 |
= Q
gg_ 59 7
Q .
g 56.5 3.5 . |
54 0
Example tests Hidden tests Example tests Hidden tests

Figure 5: Qualitative results of CodeT5 and CodeT5+CodeRL: We generate 200 programs per test
sample and report the % programs per sample by their unit test signals, including CompileError,
RuntimeError, FailedTest, and PassedTest.

objective) improves model performance across training epochs in general. Moreover, as noted by our
analysis of learning objectives, only using L. often leads to overfitting performance, typically after
epoch 10 in our case. Hence, to further finetune large-scale LMs, we recommend adopting our RL.
objective L, to utilize synthetic training samples and avoid overfitting models.

C.5 Impacts of CodeRL on Program Quality by Unit Test Signals

Figure[5|demonstrates the average percentages of generated programs by their test signals. Specifically,
we use CodeT5 or CodeRL+CodeT5 to generate programs and randomly select 200 generated
programs per test sample in the APPS test split. We pass programs to either example unit tests or
hidden unit tests corresponding to the problem and group the output programs by their output signals,
including CompileError, RuntimeError, FailedTest, and PassedTest. We observe that integrating
CodeRL can increases the likelihood that a program can pass unit tests, and reduces the likelihood
that it fails one or more unit tests, or whether it contains compiling or runtime errors. However, we
note that there are significant gaps in performance by test signals between example unit tests and
hidden unit tests. This observation suggests that example tests are not as comprehensive as hidden
tests and hence, applying our CS procedure might lead to false positive samples for regeneration. We
recommend additional methods to improve example unit tests, such as through data augmentation by

mutating input/output pairs [Austin et al., 2021].

147

148
149
150
151
152
153
154
155
156
157
158

159
160
161
162
163
164

165

166
167
168

169
170

Input: 5 12 13
Output: 30

QUESTION: Input: 345
There is a right triangle ABC with ZABC=90°. Output: 6 Input: 24 7 25

Given the lengths of the three sides, |AB|,|BC| and |CA|, find the Output: 84
area of the right triangle ABC. S
It is guaranteed that the area of the triangle ABC is an integer.

- 1\leq |AB|,|BC|,|CA| \leq 100 L = list(map(int, input().split()))
- All values in input are integers. sortL = sorted(L)
- The area of the triangle ABC is an integer. ans = L[0] = LI[1]
4 print(int(ans))

----- Input-----
Input is given from Standard Input in the following format:
|AB| [BC| |CA| CodeT5 Output Program
————— Output-—--— 1 ab, bc, ca = map(int, input().split()) FAILED
Print the area of the triangle ABC. print((abxbcxca)) TESTS
;;_Sample Input-— CodeRL+CodeT5 Output Program (before CS)

a,b,c = map(int,input().split())

————— Sample Output----- X (a+b+c) FAILED
6 print(x) TESTS

This triangle has an area of 6. CodeRL+CodeT5 Output Program (after CS)
Use Standard Input format a,b,c map(int,input().split())

_ x = (a+b+c) PASSED
ANSWER: y = (a+b—c) TESTS
4 print((xxy))

Figure 6: An example of an introductory-level program from the APPS benchmark and corresponding
programs generated by CodeT5 variants

C.6 Example Generated Programs and Qualitative Analysis

Figure[6]to[§]show examples of programming problems from the APPS benchmark and corresponding
programs generated by CodeT5 variants. Specifically, based on the same foundation pretrained
CodeTS5 (pretrained with GCPY data and NTP objective), we compare the CodeT5 model that is
finetuned by L. only and another model that follows our CodeRL framework. In CodeRL+CodeT?5,
we further show programs before and after applying the CS procedure. The example programs
show that applying CodeRL can improve the quality of generated programs and the CS procedure
further improves the functional correctness of the programs. For instance, in Figure[§] CodeT5 model
misunderstands the problem and focuses on finding the greatest common divisor between a and b
only. Instead, the CodeRL model avoids this mistake and tackles the problem based on the factorials
of a and b. In Figure (7| we note that the CS procedure improves the program by reordering the e11if
code blocks. The resulting program is more correct and is able to pass all hidden unit tests.

We also found that CodeRL can improve the efficiency of the programs, an important quality in
complex programming problems. For instance, in the interview-level programs in Figure|8| we note
that without applying CS, the generated program is functionally correct but fails during execution due
to a timeout error. Applying the CS procedure can condition models on parts of the prior program and
(re)generates new tokens to produce a more efficient program. Hence, the resulting final program is
able to pass all hidden unit tests (including tests with extremely large values) without timeout errors.

References

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An
actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086, 2016.

171
172

173
174

175
176

177
178
179
180

181
182
183

Input: 125 Input: 74
QUESTION: Output: 3 Output: 8
Allen has a LOT of money. He has n dollars in the bank. For
security reasons, he wants to withdraw it in cash (we will not Input: 43 Input: 82655
disclose the reasons here). The denominations for dollar bills are Output: 5 Output: 830
$18, $5%, $108, $203, 100. What is the minimum number of e L.
bills Allen could receive after withdrawing his entire balance?
CodeT5 Output Program
..... Input-—--- n int(input()) n int(input())
The first and only line of input contains a single integer n ($1 3 ans = a = defaultdict(int)
\le n \le 10798). toans n)
> N %= :
ans (n)
Outout n FAILED
P ans n TESTS
Output the minimum number of bills that Allen could receive. . n Aok
10 ans n i range(1,)iz
11 n n < alil:
_____ Examples— 12 ans n 12 ans alil
Input 13 n alil
125 14 print(ans)
print(ans)
Output
3 CodeRL+CodeT5 Output Program CodeRL+CodeT5 Output Program
Input (before CS) (after CS)
43 ():
2 n = int(input())
Output cnt
5 n
Input nn nn =
1000000000 ent cnt
Output nn nn
10000000 ent ent
1 n n
n n
cnt 3 cnt
----- Note----— 1 i 1 i
In the first sample case, Allen can withdraw this with a 100 = n " 2 Znt
dollar bill, a 20 dollar bill, and a $5% dollar bill. There is no way = cn = S ;
for Allen to receive 125 dollars in one or two bills. . nn n
In the second sample case, Allen can withdraw two 20 dollar £ o rint ony 50 print((t:r;t
bills and three 1 dollar bills. print{cnt) printicn
In the third sample case, Allen can withdraw 100000000 (ten o . ’ y " 0O:
milliont) 100 dollar bills. — ‘ O: 2 _sta i
Use Standard Input format z5 main() main()
ANSWER: 26 _ starting_point() 26 __starting_point(

TESTS
Figure 7: An example of an interview-level program from the APPS benchmark and corresponding
programs generated by CodeT5 variants

PASSED
TESTS

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He,
D. Song, and J. Steinhardt. Measuring coding challenge competence with apps. NeurIPS, 2021.

H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt. Codesearchnet challenge:
Evaluating the state of semantic code search. CoRR, abs/1909.09436, 2019.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In ICLR (Poster). OpenRe-
view.net, 2019.

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang,
D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan,
S. K. Deng, S. Fu, and S. Liu. Codexglue: A machine learning benchmark dataset for code
understanding and generation. In NeurIPS Datasets and Benchmarks, 2021.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting on association for computational linguistics,
pages 311-318. Association for Computational Linguistics, 2002.

Input: 10 399603090

QUESTION: Output: 3628800
Holidays have finished. Thanks to the help of the hacker Leha, Input: 43

Noora managed to enter the university of her dreams which is Output: 6 Input: 55
located in a town Pavlopolis. It's well known that universities Output: 120

provide students with dormitory for the period of university
studies. Consequently Noora had to leave Vickopolis and move
to Pavlopolis. Thus Leha was left completely alone in a quiet
town Vickopolis. He almost even fell into a depression from

boredom! 1 a, b = map(int, input().split())
2 a min(a, b)
Leha came up with a task for himself to relax a little. He chooses 3 ans =
two integers A and B and then calculates the greatest common : L range(1, a):
divisor of integers "A factorial" and "B factorial". Formally the = ; m??:ns) L
hacker wants to find out GCD(A!, B!). It's well known that the o
factorial of an integer x is a product of all positive integers less
than or equal to x. Thus x! = 1-2-3-...-(x - 1)-x. For example 4! =
1-2-3-4 = 24. Recall that GCD(x, y) is the largest positive integer
q that divides (without a remainder) both x and y. CodeT5 Output Program
. . 1 math gcd
Leha has Iearn'ed'how to solve thlsltask very effective. You are 2 a, b = map(int, input().split()) FAILED
able to cope with it not worse, aren't you? 3 ¢ = math.gcd(a,b) TESTS
4 print(c)
————— Input-——-
The first and single line contains two integers Aand B (1 <A, B <
1019, min(A, B) < 12). CodeRL+CodeT5 Output Program (before CS)
math ged
2 a, b list(map(int, input().split()))
""" Output-——-- 3 gcd =) Ve X y = gcd(y, x % y)
Print a single integer denoting the greatest common divisor of ‘,‘ a_prod
integers Al and B!. 6 b_prod RUNTIME
or i range(1, a):s E.RROR
8 a_prod *= i (timeout)
————— Example----- i range(1, b):
Input 10 b_prod *= i
43 12 print(gcd(a_prod, b_prod))
Output
6
CodeRL+CodeT5 Output Program (after CS)
math gcd
_____ Note--—— 2 a, b = list(map(int, input().split()))

3 gcd SV X y gcd(y, X % y)
Consider the sample. “ :

e PASSED
4!1=1-2-3-4 =24. 3! = 1-2:3 = 6. The greatest common divisor of P i Fhge (1 Wnintiab)): TESTS
integers 24 and 6 is exactly 6. g 5 prod(=1 @ '

Use Standard Input format b_prod i
ANSWER: : print(gcd(a_prod, b_prod))

Figure 8: An example of an interview-level program from the APPS benchmark and corresponding
programs generated by CodeT5 variants

184 S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A. Blanco, and S. Ma.
185 Codebleu: a method for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297,
186 2020.

187 S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training for image
188 captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
189 pages 7008-7024, 2017.

190 B. Wang and A. Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
191 https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

192 X. Wang, W. Chen, J. Wu, Y.-F. Wang, and W. Y. Wang. Video captioning via hierarchical rein-
193 forcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
194 Recognition, pages 4213-4222, 2018.

https://github.com/kingoflolz/mesh-transformer-jax

195 Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi. Codet5: Identifier-aware unified pre-trained
196 encoder-decoder models for code understanding and generation. In EMNLP (1), pages 8696—8708.
197 Association for Computational Linguistics, 2021.

10

	Overview of Critic Model
	Additional Experimental Setup Details
	Additional Experimental Results
	CodeXGLUE Benchmark Results
	MBPP Benchmark Results
	APPS Benchmark Results on Competition-level Tasks
	CodeT5 Ablation by Training Epochs
	Impacts of CodeRL on Program Quality by Unit Test Signals
	Example Generated Programs and Qualitative Analysis

