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Appendix A Implementation Details

A.1 Training

We use the Pyro library [39] to implement the normalizing flow (NF) used for the refinement. The
NF is trained by maximizing the evidence lower bound using the Adam optimizer [52] and the cosine
learning rate decay [53] for 20 epochs, with an initial learning rate of 0.001. Following [35], we do
not use data augmentation.

For the HMC baseline, we use the default implementation of NUTS in Pyro. We confirm that
the HMC used in our experiments are well-converged: The average Gelman-Rubin R’s are 0.998,
0.999, 0.997, and 1.096—below the standard threshold of 1.1—for the last-layer F-MNIST, last-layer
CIFAR-10, last-layer CIFAR-100, and all-layer F-MNIST experiments, respectively.

For the MAP, VB, and CSGHMC baselines, we use the same settings as Daxberger et al. [6]: We
train them for 100 epochs with an initial learning rate of 0.1, annealed via the cosine decay method
[53]. The minibatch size is 128, and data augmentation is employed. For MAP, we use weight decay
of 5 x 10~%. For VB and CSGHMC, we use the prior precision corresponding to the previous weight
decay value.

For the LA baseline, we use the 1aplace-torch library [6]. The diagonal Hessian is used for CIFAR-
100 and all-layer F-MNIST, while the full Hessian is used for other cases. Following the current
best-practice in LA, we tune the prior precision with post hoc marginal likelihood maximization [6].

Finally, for methods which require validation data, e.g. HMC (for finding the optimal prior precision),
we obtain a validation test set of size 2000 by randomly splitting a test set. Note that, these validation
data are not used for testing.

A.2 Datasets

For the dataset-shift experiment, we use the following test sets: Rotated F-MNIST and Corrupted
CIFAR-10 [54, 55]. Meanwhile, we use the following OOD test sets for each the in-distribution
training set:

* F-MNIST: MNIST, K-MNIST, E-MNIST.

* CIFAR-10: LSUN, SVHN, CIFAR-100.
* CIFAR-100: LSUN, SVHN, CIFAR-10.

Appendix B Additional Results

B.1 Image classification

To complement Table 3 in the main text, we present results for additional metrics (accuracy, Brier
score, and ECE) in Table 5. We see that the trend Table 3 is also observable here. We also show that
the refinem In Table 6, we observe that refining an all-layer posterior improves its predictive quality
further.®

In Table 7, we present the detailed, non-averaged results to complement Table 4. Moreover, we
also present dataset-shift results on standard benchmark problems (Rotated F-MNIST and Corrupted
CIFAR-10). In both cases, we observe that the performance of the refined posterior approaches
HMC’s.

B.2 Weight-space distributions obtained by refinement

To validate that the refinement technique yields accurate posterior approximations, we plot the
empirical marginal densities ¢(w; | D) in Figs. 9 to 11. We validate that the refinement method
makes the crude, base LA posteriors closer to HMC in the weight space.

8The network is a two-layer fully-connected ReLU network with 50 hidden units.
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Table 5: In-distribution calibration performance.

F-MNIST CIFAR-10 CIFAR-100
Methods Acc. T Brier | ECE | Ace. T Brier | ECE | Ace. T Brier | ECE |
MAP 90.4+0.1  0.1445+0.0008 11.740.3 94.840.1 0.0790+0.0004 10.5+£0.2 76.5+0.1 0.3396+0.0012 13.740.2
LA 90.4+0.0 0.1439+0.0008 11.1+0.2 94.8+0.0 0.0785+0.0004 9.840.3  75.6+0.1 0.3529+0.0009  9.7+0.1
LA-Refine-1 90.4+0.1  0.1386+£0.0007 52402 94.7£0.0 0.0776+0.0003 4.3+0.2  75.94+0.1 0.3445+0.0010 8.0+0.2
LA-Refine-5  90.4+0.1 0.1375+0.0009 3.2+0.1 94.840.1 0.0768+0.0004 4.3+0.2 76.2+0.1 0.3311£0.0007 4.5+0.2
LA-Refine-10  90.5£0.1  0.1376+0.0008  3.6+0.1  94.940.1 0.0765+0.0004 4.4+0.2 76.1+£0.1 0.33124+0.0008  4.4+0.1
LA-Refine-30  90.4+0.1 0.1376£0.0009 3.5+0.1 94.940.1 0.0765+0.0004 4.44+0.1 76.1£0.1 0.3315£0.0007 4.2+0.2
HMC 90.4+0.1  0.1375£0.0009 3.4+0.0 94.9+0.1 0.0765+0.0004 4.34+0.1  76.4+0.1 0.3283+0.0007 4.6+0.1

Table 6: Calibration of all-layer BNNs on F-MNIST. The architecture is two-layer ReLLU fully-
connected network with 50 hidden units.

Methods MMD | Acc. T NLL | Brier | ECE |
LA 0.278+0.003 88.04+0.1 0.359740.0009 0.18+£0.0006  7.740.1
LA-Refine-1 0.194+0.006 87.6£0.1 0.356440.0015 0.1807+0.0006 6.1£0.1
LA-Refine-5 0.1940.006 87.6+0.1 0.348340.0012 0.1781+0.0005 4.940.3
LA-Refine-10 0.186+0.006 87.7+0.1 0.3459+0.0008 0.1771£0.0004 4.7+0.3
LA-Refine-30 0.183+£0.006 87.8+0.1 0.343240.0014 0.176£0.0007 4.640.3
HMC - 89.7+0.0 0.2908+0.0002 0.1502+0.0001 4.5+0.1

Table 7: Detailed OOD detection results. Values are FPR95. “LLA-R” stands for “LA-Refine”.

Datasets VB* CSGHMC* LA LA-R-1 LA-R-5 LA-R-10 LA-R-30 HMC
FMNIST
EMNIST 83.410.6 86.51+0.5 84.7+0.7 854+0.8 87.6+£0.6 87.6+£0.6 87.6£0.6 87.24+0.6
MNIST 76.0+1.6 75.84+1.8 77.940.8 77.5£09 79.6+1.0 79.6£1.0 79.6+1.1 79.0£0.9
KMNIST 71.3+0.9 74.440.5 78.5+0.6 78.3+£0.8 79.94+0.9 79.9+09 79.9+09 79.44+0.9
CIFAR-10
SVHN 66.1+1.2 59.8+1.4 38.3+2.9 40.1£3.4 382432 36.54+3.0 3584+29 36.0+3.0
LSUN 53.3+2.5 51.7+1.5 51.1+1.1  469+0.5 46.7+£0.6 46.94+0.7 47.1£0.5 46.7+0.8
CIFAR-100  69.3+0.2 64.6+£0.3 58.2+0.8 56.1£0.6 55.7£0.8 553+0.6 5524+0.5 55.3+0.4
CIFAR-100
SVHN 81.7£0.7 75.9+1.5 82.2+0.8 77.7£1.2 78.1%£1.3 779+£1.5 783%+1.6 78.2%1.6
LSUN 76.6£1.8 79.3£1.8 75.5+1.6  75.1£12 757£14 759412 758413 75.5%1.7
CIFAR-10 84.2+0.4 82.8+£0.3 81.0£0.3 79.1+04 79.5+£04 79.5£04 79.6+0.4 79.7£0.2
Rotated F-MNIST Corrupted CIFAR-10
MAP
1.5 | o
° LA-Refine-1
LA-Refine-5 //
j 1 LA-Refine-10
= LA-Refine-30
= HMC
0.5
i i i 0 - i i i i i
50 100 150 0 1 2 3 4 5

Corruption Intensity

Rotation Angle (Degree)

Figure 8: Calibration under dataset shifts in terms of NLL—Iower is better.
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Figure 9: Empirical marginal posterior densities of some F-MNIST BNNs’ random weights. “LA-R”
is an abbreviation to “LA-Refine”.
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Figure 10: Empirical marginal posterior densities of some CIFAR-10 BNNs’ random weights. “LA-R”
is an abbreviation to “LA-Refine”.
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Figure 11: Empirical marginal posterior densities of some CIFAR-100 BNNs’ random weights.
“LA-R” is an abbreviation to “LA-Refine”.



	Implementation Details
	Training
	Datasets

	Additional Results
	Image classification
	Weight-space distributions obtained by refinement


