
A Supplementary material1

A.1 Experiments2

Here we provide additional details on the experiments in the main paper. All of the experiments are3

performed with Pytorch 1.7.0 [1] on Nvidia Titan X GPU with the CUDA version 10.1. The4

results and error bars are reported over 8 fixed random seeds [1-8].5

A.1.1 Retrieving symmetries from synthetic regression6

To fit the regression function we employ the multi-layer perceptron that consists of linear layers7

followed by Swish [2] activations with the following dimensions: (10 × 32) → 3 ∗ (32 × 32) →8

(32× 1). The network takes the input coordinates and outputs the predicted function value. We use a9

mean squared error loss to supervise the model. We utilize Adam optimizer [3] with the learning rate10

of 10−3 and train the network for a total of min(900000/N, 1000) epochs, where N is the size of11

the training dataset. We found such a training schedule is enough for convergence.12

To compute the mean symmetry variance per training set size, we average the last 10 singular values13

of the network polarization matrix.14

A.1.2 Retrieving symmetries from rotation-MNIST15

We employ two models: shallow (2-layer) and deep (6-layer) perceptrons with 40000 and 16000016

parameters respectively. The hidden dimensions for shallow and deep networks are 47 and 11617

respectively. Both models are trained for 300 epochs with Adam optimizer with the learning rate set18

to 10−3.19

The symmetries are extracted from the models with the highest validation accuracy over 300 training20

epochs. Additionally, to account for a possible difference in the magnitudes of the network outputs,21

we normalize the network output logits to be unit L2 norm.22

A.1.3 Symmetries in networks with different configurations23

To evaluate networks with various configurations (width, depth, number of parameters), we consider24

the following family of architectures: (784× hdim) → p ∗ (hdim× hdim) → (hdim× 10), where25

p stands for a number of hidden layers and hdim is a dimension of a hidden layer. Given the required26

number of parameters and the number of hidden layers, we can calculate the hidden dimension of the27

network. By varying the number of parameters and number of hidden layers we create wide and deep28

networks.29

We follow the same procedure as in A.1.2 to train the models and extract the symmetries.30

A.2 LieGG implementation31

We provide the PyTorch implementation of the network polarization matrix computation used in the32

synthetic regression and rotation-MNIST experiments. The symmetries are retrieved by performing a33

singular-value decomposition of the network polarization matrix as described in the Method section34

of the paper.35

▶ synthetic regression:36

def polarization_matrix(model, data, dim = 5):
data: torch.FloatTensor(B, 2*dim)

B = data.shape[0]

data.requires_grad = True
data.retain_grad()

compute network grads
model.eval()

1

y_pred = model(data)
y_pred.backward(gradient=torch.ones_like(y_pred))

get grads and data per input dimension
dF_1 = data.grad[...,:dim].view(B, dim, 1)
data_1 = data[...,:dim].view(B, 1, dim)

dF_2 = data.grad[...,dim:].view(B, dim, 1)
data_2 = data[...,dim:].view(B, 1, dim)

collect into the network polarization matrix
C = torch.bmm(dF_1, data_1) + torch.bmm(dF_2, data_2)

return C

▶ rotation-MNIST:37

def polarization_matrix_R2(model, data):
LieGG implementation with the groups acting on R^2
data: torch.FloatTensor(B, 28, 28)

B, H, W = data.shape

compute image grads
data_grad_x = data[:, 1:, :-1] - data[:, :-1, :-1]
data_grad_y = data[:, :-1, 1:] - data[:, :-1, :-1]
dI = torch.stack([data_grad_x, data_grad_y], -1)

compute network grads
data = data.reshape(B, -1)
data.requires_grad = True
data.retain_grad()

output = model(data)
output.backward(torch.ones_like(output))

dF = data.grad.reshape(B, H, W)
dF = dF[:, :-1, :-1]

coordinate mask
xy = torch.meshgrid(torch.arange(0, H-1), torch.arange(0, H-1))
xy = torch.stack(xy, -1)
xy = xy / (H // 2) - 1

collect into the network polarization matrix
C = dF[..., None, None] * dI[..., None] * xy[None, :, :, None, :]
C = C.view(B, -1, 2, 2).sum(1)

return C

References38

[1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,39

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas40

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,41

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-42

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,43

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages44

8024–8035. Curran Associates, Inc., 2019.45

2

[2] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2017.46

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.47

3

	Supplementary material
	Experiments
	Retrieving symmetries from synthetic regression
	Retrieving symmetries from rotation-MNIST
	Symmetries in networks with different configurations

	LieGG implementation

