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Abstract

Conditional gradient methods (CGM) are widely used in modern machine learn-1

ing. CGM’s overall running time usually consists of two parts: the number of2

iterations and the cost of each iteration. Most efforts focus on reducing the num-3

ber of iterations as a means to reduce the overall running time. In this work, we4

focus on improving the per iteration cost of CGM. The bottleneck step in most5

CGM is maximum inner product search (MaxIP), which requires a linear scan6

over the parameters. In practice, approximate MaxIP data-structures are found to7

be helpful heuristics. However, theoretically, nothing is known about the combi-8

nation of approximate MaxIP data-structures and CGM. In this work, we answer9

this question positively by providing a formal framework to combine the locality10

sensitive hashing type approximate MaxIP data-structures with CGM algorithms.11

As a result, we show the first sublinear time algorithm for many fundamental opti-12

mization algorithms, e.g., Frank-Wolfe, Herding algorithm, and policy gradient.13

1 Introduction14

Conditional gradient methods (CGM), such as Frank-Wolfe and its variants, are well-known opti-15

mization approaches that have been extensively used in modern machine learning. For example,16

CGM has been applied to kernel methods [1, 2], structural learning [3] and online learning [4, 5, 6].17

18 Running Time Acceleration in Optimization: Recent years have witnessed the success of large-19

scale machine learning models on vast amounts of data. In this learning paradigm, the overhead20

of most successful models is dominated by the optimization process [7, 8]. Therefore, reducing21

the running time of the optimization algorithm is of practical importance. The total running time22

in optimization can be decomposed into two components: (1) the number of iterations towards23

convergence, (2) the cost spent in each iteration. Reducing the number of iterations requires a24

better understanding of the geometric proprieties of the problem at hand and how to create better25

potential functions to analyze the progress of the algorithm [9, 10, 11, 12, 13, 14, 15]. Reducing26

the cost spent per iteration usually condenses to design problem-specific discrete data-structures. In27

the last few years, we have seen a remarkable growth of using data-structures to reduce iteration28

cost [16, 17, 18, 19, 20, 21, 22, 23, 24].29

MaxIP Data-structures for Iteration Cost Reduction: A well-known strategy in optimization,30

with CGM, is to perform a greedy search over the weight vectors [9, 10, 13, 16, 25] or training sam-31

ples [26, 27] in each iteration. In this situation, the cost spent in each iteration is linear in the number32

of parameters. In practical machine learning, recent works [28, 29, 30, 31, 32] formulate this lin-33

ear cost in iterative algorithms as an approximate maximum inner product search problem (MaxIP)34

and speed up the amortized cost per iteration via efficient data-structures from recent advances in35

approximate MaxIP [33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. In approximate MaxIP data-structures,36
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locality sensitive hashing (LSH) achieves promising performance with efficient random projection37

based preprocessing strategies [33, 34, 35, 36]. Thus, it is widely used in practice for cost reduc-38

tion in optimization. [28] proposes an LSH based gradient sampling approach that reduces the total39

empirical running time of the adaptive gradient descent. [29] formulates the forward propagation of40

deep neural network as a MaxIP problem and uses LSH to select a subset of neurons for backprop-41

agation. Therefore, the total running time of neural network training could be reduced to sublinear42

in the number of neurons. [31] extends this idea with system-level design for further acceleration,43

and [30] modifies the LSH with learning and achieves promising acceleration in attention-based44

language models. [32] formulates the greedy step in iterative machine teaching (IMT) as a MaxIP45

problem and scale IMT to large datasets with LSH.46

Challenges of Sublinear Iteration Cost CGM: Despite the practical success of cost-efficient47

iterative algorithms with approximate MaxIP data-structure, the theoretical analysis of its combina-48

tion with CGM is not well-understood. In this paper, we focus on this combination and target at49

answering the following questions: (1) how to transform the iteration step of CGM algorithms into50

an approximate MaxIP problem? (2) how does the approximate error in MaxIP affect CGM in the51

total number of iterations towards convergence? (3) how to adapt approximate MaxIP data structure52

for iterative CGM algorithms?53

Our Contributions: We propose a theoretical formulation for combining approximate MaxIP and54

convergence guarantees of CGM. In particular, we start with the popular Frank-Wolfe algorithm over55

the convex hull where the direction search in each iteration is an approximate MaxIP problem. Next,56

we propose a sublinear iteration cost Frank-Wolfe algorithm using LSH type MaxIP data-structures.57

We then analyze the trade-off of approximate MaxIP and its effect on the number of iterations needed58

by CGM to converge. We show that the approximation obtained via LSH results in only a constant59

multiplicative factor increase in the number of iterations. As a result, we retain the sub-linearly of60

LSH, with respect to the number of parameters, and at the same time retain the same asymptotic61

convergence as CGMs.62

We summarize our complete contributions as follows.63

• We give the first theoretical CGM formulation that achieves provable sublinear time cost64

per iteration. We also extend this result into Frank-Wolfe algorithm, Herding algorithm,65

and policy gradient method.66

• We propose a pair of efficient transformations that formulate the direction search in Frank-67

Wolfe algorithm as a projected approximate MaxIP problem.68

• We present the theoretical results that the proposed sublinear Frank-Wolfe algorithm69

asymptotically preserves the same order in the number of iterations towards convergence.70

Furthermore, we analyze the trade-offs between saving iteration cost and the increasing71

number of iterations to accelerate total running time.72

• We identify the problems of LSH type approximate MaxIP for cost reduction in other pop-73

ular CGM methods and propose corresponding solutions.74

The following sections are organized as below: Section 2 introduces the related works on data-75

structures and optimization, Section 3 introduces our algorithm associated with the main statements76

convergence, Section 4 provide the proof sketch of the main statements, Section 5 presents the77

societal impact and Section 6 conclude the paper.78

2 Related work79

2.1 Maximum Inner Product Search for Machine Learning80

Maximum Inner Product Search (MaxIP) is a fundamental problem with applications in machine81

learning. Given a query x ∈ Rd and a dataset Y ⊂ Rd with n vectors, MaxIP targets at searching for82

y ∈ Y that maximize the inner product x>y. The naive MaxIP solution takes O(dn) by comparing83

x with each y ∈ Y . To accelerate this procedure, various algorithms are proposed to reduce the84

running time of MaxIP [33, 34, 36, 35, 37, 38, 43, 44, 39, 45, 40, 41, 42]. We could categorize85

the MaxIP approaches into two categories: reduction methods and non-reduction methods. The86

reduction methods use transformations to transform approximate MaxIP to approximate nearest87

neighbor search (ANN) and solve it with ANN data-structures. One of the popular data-structure is88

to use locality sensitive hashing [46, 47].89

Definition 2.1 (Locality Sensitive Hashing). Let c denote a parameter such that c > 1. Let p1, p290

denote two parameters such that 0 < p2 < p1 < 1. A family H is called (r, c · r, p1, p2)-sensitive if91

and only if, for any two point x, y ∈ Rd, h chosen uniformly fromH satisfies the following:92
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• if ‖x− y‖2 ≤ r, then Prh∼H[h(x) = h(y)] ≥ p1,93

• if ‖x− y‖2 ≥ c · r, then Prh∼H[h(x) = h(y)] ≤ p2.94

Here we define the LSH functions for euclidean distance. LSH functions could be used for search95

in cosine [48, 49] or Jaccard similarity [50, 51]. [33] first show that MaxIP could be solved by96

`2 LSH and asymmetric transformations. After that, [34, 36, 35, 43] propose a series of methods97

to solve MaxIP via LSH functions for other distance measures. Besides LSH, graph-based ANN98

approaches [38] could also be used after reduction. On the other hand, the non-reduction method99

direct builds data-structures for approximate MaxIP. [37, 42] uses quantization to approximate the100

inner product distance and build codebooks for efficient approximate MaxIP. [38, 44] proposes a101

greedy algorithm for approximate MaxIP under computation budgets. [39, 40, 41] direct construct102

navigable graphs that achieve the state-of-the-art empirical performance.103

Recently, there is a remarkable growth in applying data-structures for machine learning [52, 53, 54].104

Following the paradigm, approximate MaxIP data-structures have been applied to overcome the105

efficiency bottleneck of various machine learning algorithms. [38] formulates the inference of neural106

network with a wide output layer as a MaxIP problem and uses a graph-based approach to reduce107

the inference time. In same task, [55] proposes a learnable LSH data-structures that further improves108

the inference efficiency with less energy consumption. In neural network training, [29, 30, 31] uses109

approximate MaxIP to retrieve interested neurons for backpropagation. In this way, the computation110

overhead of gradient update in neural networks could be reduced. In large-scale linear models,111

[28] uses approximate MaxIP data-structures to retrieve the samples with large gradient norm and112

perform standard gradient descent, which improves the total running time for stochastic gradient113

descent. [32] proposes a scalable machine teaching algorithm that enables iterative teaching in114

large-scale datasets. In bandit problem, [56]. proposes an LSH based algorithm that achieves linear115

bandits algorithms with sublinear time complexity.116

Despite the promising empirical results, there is little theoretical analysis on approximate MaxIP117

for machine learning. We summarize the major reasons as: (1) Besides LSH, the other approximate118

MaxIP data-structures do not provide theoretical guarantees on time and space complexity. (2)119

Current approaches treat data-structures and learning dynamics separately. There is no joint analysis120

on the effect of approximate MaxIP for machine learning.121

2.2 Projection-free Optimization122

Frank-Wolfe algorithm [25] is a projection-free optimization method with wide applications in con-123

vex [9, 10] and non-convex optimizations [11, 12]. The procedure of Frank-Wolfe algorithm could124

be summarized two steps: (1) given the gradient, find the vector in the feasible domain that has the125

maximum inner product. (2) update the current weight with the retrieved vector. Formally, given126

a function g : Rd → R over a convex set S, starting from a initial weight w0 the Frank-Wolfe127

algorithm performs update the weight with learning rate η following:128

st ← arg min
s∈S
〈s,∇g(wt)〉

wt+1 ← (1− ηt) · wt + ηt · st.
Previous literature focuses on reducing the number of iterations for Frank-Wolfe algorithm over129

specific domains such as `p balls [9, 10, 13, 14]. There exists less work discussing the reduction130

of iteration cost in the iterative procedure of Frank-Wolfe algorithm. In this work, we focus on131

the Frank-Wolfe algorithm over the convex hull of a finite feasible set. This formulation is more132

general and it includes recent Frank-Wolfe applications in probabilistic modeling [1, 2], structural133

learning [3] and policy optimization [5].134

3 Our Sublinear Iteration Cost Algorithm135

In this section, we formally present our results on the sublinear iteration cost CGM algorithms. We136

start with the preliminary definitions of the objective function. Then, we present the results on the137

number of iterations and cost per iterations for our sublinear CGM algorithms to converge.138

3.1 Preliminaries139

We provide the notations and settings for this paper. We start with basic notations for this paper.140

For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. For a vector x, we use ‖x‖2 :=141

(
∑n
i=1 x

2
i )

1/2 to denote its `2 norm.142
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We say a function convex if143

L(x) ≥ L(y) + 〈∇L(y), x− y〉.
We say a function is β-smooth if144

L(y) ≤ L(x) + 〈∇L(x), y − x〉+
β

2
‖y − x‖22.

Given a set A = {xi}i∈[n] ⊂ Rd, we say its convex hull B(A) is the collection of all finite linear145

combinations y that satisfies y =
∑
i∈[n] ai ·xi, where ai ∈ (0, 1) for all i ∈ [n] and

∑
i∈[n] ai = 1.146

Let Dmax denotes the maximum diameter of B(A) so that ‖x− y‖2 ≤ Dmax for all (x, y) ∈ B(A).147

We present the detailed definitions in Appendix A.148

Next, we present the settings of our work. Let S ⊂ RD denotes a n-point finite set. Given a convex149

and β-smooth function g : Rd → R defined over the convex hull B(S). Our goal is to find a150

w ∈ B(S) that minimizes g(w). Given large n in the higher dimension, the dominant complexity of151

iteration cost is the finding the MaxIP of ∇g(w) with respect to S. In this setting, the fast learning152

rate of Frank-Wolfe in `p balls [9, 13, 16] could not be achieved. We present the detailed problem153

setting the Frank-Wolfe algorithm in Appendix C.154

3.2 Our results155

We present our main results with comparison to the original algorithm in Table 2. From the table,156

we show that with near-linear preprocessing time, our algorithms maintain the same number of157

iterations towards convergence while reducing the cost spent in each iteration to sublinear in the158

number of possible parameters.159

Statement Preprocess #Iters Cost per iter
Frank-Wolf [9] 0 O(βD2

max/ε) O(dn+ Tg)
Ours Theorem 3.1 dn1+o(1) O(βD2

max/ε) O(dnρ + Tg)
Herding [1] 0 O(D2

max/ε) O(dn)

Ours Theorem 3.2 dn1+o(1) O(D2
max/ε) O(dnρ)

Policy gradient [5] 0 O(
βD2

max

ε2(1−γ)3µ2
min

) O(dn+ TQ)

Ours Theorem 3.3 dn1+o(1) O(
βD2

max

ε2(1−γ)3µ2
min

) O(dnρ + TQ)

Table 1: Comparison between classical algorithm and our sublinear time algorithm. We compare our
algorithm with Frank-Wolfe in: (1) “Frank-Wolfe” denotes Frank-Wolfe algorithm [9] for convex
functions over a convex hull. Let Tg denotes the time for evaluating the gradient for any parameter.
(2) “Herding” denotes kernel herding algorithm [1] (3) “Policy gradient” denotes the projection free
policy gradient method [5]. Let TQ the time for evaluating the policy gradient for any parameter.
Let γ ∈ (0, 1) denotes the discount factor. Note that n is the number of possible parameters. no(1) is
smaller than nc for any constant c > 0. Let ρ ∈ (0, 1) denote a fixed parameter determined by LSH
data-structure. The failure probability of our algorithm is 1/poly(n). β is the smoothness factor.
Dmax denotes the maximum diameter of the coonvex hull.

Next, we introduce the statement of each sublinear iteration cost algorithm. We start by introducing160

our result for improving the running time of Frank-Wolfe.161

Theorem 3.1 (Sublinear time Frank-Wolfe, informal of Theorem D.1). Let g : Rd → R denotes162

a convex and β-smooth function. Let the complexity of calculating ∇g(x) to be Tg . Let S ⊂ Rd163

denotes a set of n points, and B ⊂ Rd is the convex hull of S with maximum diameterDmax. Let ρ ∈164

(0, 1) denote a fixed parameter. For any parameters ε, δ, there is an iterative algorithm (Algorithm 2)165

with that takesO(dn1+o(1)) time in pre-processing, takes T = O(βD2
max/ε) iterations andO(dnρ+166

Tg) cost per iteration, starts from a random w0 from B as initialization point,and outputs wT ∈ Rd167

from B such that168

g(wT )−min
w∈B

g(w) ≤ ε,

holds with probability at least 1− 1/poly(n).169
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Next, we show our main result for the Herding algorithm. Herding algorithm is widely applied170

in kernel methods [57]. [1] shows that the Herding algorithm is equivalent to a conditional gradi-171

ent method with the least-squares loss function. Therefore, we extend our results and obtain the172

following statement.173

Theorem 3.2 (Sublinear time Herding algorithm, informal version of Theorem E.3). Let X ⊂ Rd174

denote a feature set and Φ : Rd → Rk denote a mapping. Let Dmax denote the maximum diameter175

of Φ(X ) and B(Φ(X )) denote the convex hull of Φ(X ). Given a distribution p(x) over X , we176

denote µ = Ex∼p(x)[Φ(x)]. Let ρ ∈ (0, 1) denotes a fixed parameter. For any parameters ε, δ,177

there is an iterative algorithm (Algorithm 3) that takes O(dn1+o(1)) time in pre-processing, takes178

T = O(D2
max/ε) iterations and O(dnρ) cost per iteration, starts from a random w0 from B as179

initialization point, and outputs wT ∈ Rd from B(Φ(X )) such that180

1

2
‖wT − µ‖22 −min

w∈B

1

2
‖w − µ‖22 ≤ ε,

holds with probability at least 1− 1/poly(n).181

Finally, we present our result for policy gradient. Policy gradient [58] is a popular algorithm with182

wide applications in robotics [59] and recommendation [60]. [5] proposes a provable Frank-Wolfe183

method that maximizes the reward functions with policy gradient. However, the optimization re-184

quires a linear scan over all possible actions, which is unscalable in complex environments. We185

propose an efficient Frank-Wolfe algorithm with per iteration cost sublinear in the number of ac-186

tions. Our statement is presented as below.187

Theorem 3.3 (Sublinear time policy gradient, informal version of Theorem F.3). Let TQ denotes188

the time for computing the policy graident. Let Dmax denotes the maximum diameter of action189

space and β is a constant. Let γ ∈ (0, 1). Let ρ ∈ (0, 1) denotes a fixed parameter. Let µmin190

denotes the minimal density of states in S. There is an iterative algorithm (Algorithm 5) that spends191

O(dn1+o(1)) time in preprocessing, takes O(
βD2

max

ε2(1−γ)3µ2
min

) iterations and O(dnρ + TQ) cost per192

iterations, start from a random point π0
θ as initial point, and output πTθ that have the average gap193 √∑

s∈S gT (s)2 < ε holds with probability at least 1−1/poly(n), where gT (s) is defined in Eq. (6).194

4 Proof Overview195

We present the overview of proofs in this section. We start with introducing the efficient MaxIP data-196

structures. Next, we show how to transform the direction search in conditional gradient approach197

as a MaxIP problem. Finally, we provide proof sketches for each main statement in Section 3. The198

detailed proof is presented in the supplement material.199

4.1 Approximate MaxIP Data-structures200

We present the LSH data-structures for approximate MaxIP in this section. The detailed description201

is presented in Appendix A. We use the reduction-based approximate MaxIP method with LSH202

data-structure to achieve sublinear iteration cost. Note that we choose this method due to its clear203

theoretical guarantee on the retrieval results. It is well-known that an LSH data-structures is used for204

approximate nearest neighbor problem. The following definition of approximate nearest neighbor205

search is very standard in literature [61, 46, 47, 62, 63, 64, 65, 66, 67, 68, 69].206

Definition 4.1 (Approximate Nearest Neighbor (ANN)). Let c > 1 and r ∈ (0, 2). Given an n-207

point dataset P ⊂ Sd−1 on the sphere, the goal of the (c, r)-Approximate Near Neighbor problem208

(ANN) is to build a data structure that, given a query q ∈ Sd−1 with the promise that there exists a209

datapoint p ∈ P with ‖p− q‖2 ≤ r reports a datapoint p′ ∈ P within distance c · r from q.210

In the iterative-type optimization algorithm, the cost per iteration could be dominated by the Ap-211

proximate MaxIP problem (Definition 4.2), which is the dual problem of the (c, r)-ANN.212

Definition 4.2 (Approximate MaxIP). Let c ∈ (0, 1) and τ ∈ (0, 1). Given an n-point dataset213

Y ⊂ Sd−1, the goal of the (c, τ)-MaxIP is to build a data structure that, given a query x ∈ Sd−1214

with the promise that there exists a vector y ∈ Y with 〈x, y〉 ≥ τ , it reports a vector z ∈ Y with215

similarity 〈x, z〉 ≥ c ·MaxIP(x, Y ).216
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Next, we present the the primal-dual connection between ANN and approximate MaxIP. Given to217

unit vectors x, y ∈ Rd with both norm equal to 1, ‖x − y‖22 = 2 − 2〈x, y〉. Therefore, we could218

maximizing 〈x, y〉 by minimizing ‖x − y‖22. Based on this connection, we present how to solve219

(c, τ)-MaxIP using (c, r)-ANN. We start with showing how to solve (c, r)-ANN with LSH.220

Theorem 4.3 ([66]). Let c > 1 and r ∈ (0, 2). The (c, r)-ANN on a unit sphere Sd−1 can be solved221

in query time O(d · nρ), where ρ ∈ (0, 1), using LSH with both preprocessing time and space in222

O(n1+o(1) + dn).223

Next, we solve (c, τ)-MaxIP by solving (c, r)-ANN using Theorem 4.3. We have224

Corollary 4.4 (An informal statement of Corollary B.1). Let c ∈ (0, 1) and τ ∈ (0, 1). The (c, τ)-225

MaxIP on a unit sphere Sd−1 can be solved in query time O(d · nρ), where ρ ∈ (0, 1), using LSH226

with both preprocessing time and space in O(dn1+o(1))227

In our work, we consider a generalized form of approximate MaxIP, denoted as projected approxi-228

mate MaxIP.229

Definition 4.5 (Projected approximate MaxIP). Let φ, ψ : Rd → Rk denotes two transforms.230

Given an n-point dataset Y ⊂ Rd so that ψ(Y ) ⊂ Sd−1, the goal of the (c, φ, ψ, τ)-MaxIP231

is to build a data structure that, given a query x ∈ Rd and φ(x) ∈ Sk−1 with the promise232

that maxy∈Y 〈φ(x), ψ(y)〉 ≥ τ , it reports a datapoint z ∈ Y with similarity 〈φ(x), ψ(z)〉 ≥233

c ·MaxIP(φ(x), ψ(Y )).234

For details of space-time trade-offs, please refer to Appendix B. In the following sections, we would235

show how to use projected approximate MaxIP to accelerate the optimization algorithm by reducing236

the cost per iteration.237

4.2 Efficient Transformations238

We have learned from Section 4.1 that (c, τ)-MaxIP on a unit sphere Sd−1 using LSH for ANN.239

Therefore, the next step is to transform the direction search procedure in iterative optimization al-240

gorithm into a MaxIP on a unit sphere. To achieve this, we formulate the direction search as a241

projected approximate MaxIP (see Definition A.5). We start with presenting a pair of transforma-242

tion φ0, ψ0 : Rd → Rd+1 such that, given a function g : Rd → R, for any x, y in a convex set K, we243

have244

φ0(x) :=[∇g(x)>, x>∇g(x)]>, ψ0(y) := [−y>, 1]>. (1)

In this way, we show that245

〈y − x,∇g(x)〉 = − 〈φ0(x), ψ0(y)〉,
arg min

y∈Y
〈y − x,∇g(x)〉 = arg max

y∈Y
〈φ0(x), ψ0(y)〉 (2)

Therefore, we could transform the direction search problem into a MaxIP problem.246

Next, we present a standard transformations [36] that connects the MaxIP to ANN in unit sphere.247

For any x, y ∈ Rd, we propose transformation φ1, ψ1 : Rd → Rd+2 such that248

φ1(x) =
[
(D−1x x)> 0

√
1− ‖xD−1x ‖22

]>
ψ1(y) =

[
(D−1y y)>

√
1− ‖yD−1y ‖22 0

]>
(3)

Here Dx, Dy are the maximum diameter of x and y. Under these transformations, both φ1(x) and249

ψ1(y) have norm 1 and arg maxy∈Y 〈φ1(x), ψ1(y)〉 = arg maxy∈Y 〈x, y〉.250

Combining transformations in Eq. (1) and Eq. (3), we obtain query transform φ : Rd → Rd+3 with251

form φ(x) = φ1(φ0(x)) and data transform φ : Rd → Rd+3 with form ψ(y) = ψ1(ψ0(y)). Using252

φ and ψ, we transform the direction search problem in optimization into a MaxIP in unit sphere.253
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Moreover, given a set Y ⊂ Rd and a query x ∈ Rd, the solution z of (c, φ, ψ, τ)-MaxIP over (x, Y )254

has the propriety that 〈z − x,∇g(x)〉 ≤ c · miny∈Y 〈y − x,∇g(x)〉. Thus, we could approximate255

the direction search with LSH based MaxIP data-structure.256

Note that only MaxIP problem with positive inner product values could be solved by LSH. We found257

the direction search problem naturally satisfies this condition. We show that if g is convex, given a258

set S ⊂ Rd, we have mins∈S〈∇g(x), s − x〉 ≤ 0 for any x ∈ B(S), where B is the convex hull of259

S. Thus, maxy∈Y 〈φ0(x), ψ0(y)〉 is non-negative following Eq. (2).260

4.3 Proof of Theorem 3.1261

We present the proof sketch for Theorem 3.1 in this section. We refer the readers to Appendix D for262

the detailed proofs.263

Let g : Rd → R denotes a convex and β-smooth function. Let the complexity of calculating264

∇g(x) to be Tg . Let S ⊂ Rd denotes a set of n points, and B ⊂ Rd is the convex hull of S with265

maximum diameterDmax. Let φ, ψ : Rd → Rd+3 denotes the tranformations defined in Section 4.2.266

Starting from a random vector w0 ∈ B(S). Our sublinear Frank-Wolfe algorithm follows the update267

following rule that each step268

st ← (c, φ, ψ, τ)-MaxIP of wt with respect to S

wt+1 ← wt + η · (st − wt)

We start with the upper bounding 〈st − wt,∇g(wt)〉. Because st is the (c, φ, ψ, τ)-MaxIP of wt269

with respect to S, we have270

〈st − wt,∇g(wt)〉 ≤ cmin
s∈S
〈s− wt,∇g(wt) ≤ c〈w∗ − wt,∇g(wt)〉 (4)

For convenient of the proof, for each t, we define ht = g(wt)− g(w∗). Next, we upper bound ht+1271

as272

ht+1 ≤ g(wt) + ηt〈st − wt,∇g(wt)〉+
β

2
η2t ‖st − wt‖22 − g(w∗)

≤ g(wt) + cηt〈w∗ − wt,∇g(wt)〉+
β

2
η2t ‖st − wt‖22 − g(w∗)

≤ g(wt) + cηt〈w∗ − wt,∇g(wt)〉+
βD2

max

2
η2t − g(w∗)

≤ (1− ηt)g(wt) + cηtg(w∗) +
βD2

max

2
η2t − g(w∗)

= (1− cηt)ht +
βD2

max

2
η2t

(5)

where the first step follows from the definition of β-smoothness, the second step follows from273

Eq. (4), the third step follows from the definition of Dmax, the forth step follows from the con-274

vexity of g.275

Let η = 2
c(t+2) and At = t(t+1)

2 . Combining them with Eq.(5), we show that276

At+1ht+1 −Atht = c−2
t+ 1

t+ 2
βD2

max

< c−2βD2
max

Using induction from 1 to t, we show that277

Atht < c−2tβD2
max

Taken At = t(t+1)
2 into consideration, we have278

ht <
2βD2

max

c2(t+ 1)
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Given constant approximation ratio c, t should be in O(
βD2

max

ε ) so that ht ≤ ε.279

Thus, we complete the proof.280

Cost Per Iteration After we take O(dn1+o(1)) preprocessing time, the cost per iteration consists281

three pairs: (1) it takes Tg to compute ∇g(wt), (2) it takes O(d) to perform transform φ and ψ, (3)282

it takes O(dnρ) to retrieve st from LSH. Thus, the final cost per iteration would be O(dnρ + Tg).283

Next, we show how to extend the proof to Herding problem. Following [1], we start with defining284

function g = 1
2‖w

T − µ‖22. We show that this function g is a convex and 1-smooth function.285

Therefore, the herding algorithm is equivalent to the Frank-Wolfe Algorithm over function g. Using286

the proof of Theorem 3.1 with β = 1, we show that it takes T = O(D2
max/ε) iterations and O(dnρ)287

cost per iteration to reach the ε optimal solution. Similar to Theorem 3.1, we show that the cost per288

iteration would be O(dnρ) as it takes O(d) to compute∇g(wt).289

4.4 Proof of Theorem 3.3290

We present the proof sketch for Theorem 3.3 in this section. We refer the readers to Appendix F for291

the detailed proofs.292

In this paper, we focus on the action-constrained Markov Decision Process (ACMDP). In this setting,293

we are provided with a state S ∈ Rk and action space A ∈ Rd. However, at each step t ∈ N, we294

could only access a finite n-vector set of actions C(s) ⊂ A. Let us denote Dmax as the maximum295

diameter of A.296

When you play with this ACMDP, the policy you choose is defined as πθ(s) : S → Awith parameter297

θ. Meanwhile, there exists a reward function r : S × A ∈ [0, 1]. Then, we define the Q function as298

below,299

Q(s, a|πθ) = E
[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a, πθ

]
.

where γ ∈ (0, 1) is a discount factor.300

Given a state distribution µ, the objective of policy gradient is to maximize J(µ, πθ) =301

Es∼µ,a∼πθ [Q(s, a|πθ)] via policy gradient [58] denoted as:302

∇θJ(µ, πθ) = E
s∼dπµ

[
∇θπθ(s)∇aQ(s, πθ(s)|πθ)|

]
.

[5] propose an iterative algorithm that perform MaxIP at each iteration k over actions to find303

gk(s) = max
a∈C(s)

〈aks − πkθ (s),∇aQ(s, πkθ (s)|πkθ ))〉. (6)

In this work, we approximate Eq. (6) using (c, φ, ψ, τ)-MaxIP. Here define φ : S × Rd → Rd+1304

and ψ : Rd → Rd+1 as follows:305

φ(s, πkθ ) := [∇aQ(s, πkθ (s)|πkθ )>, (πkθ )>Q(s, πkθ (s)|πkθ )]>, ψ(a) := [a>,−1]>.

Then, for all x, y ∈ Rd we have gk(s) = 〈φ(s, πkθ ), ψ(a)〉. Note that we still require transformations306

in Eq. (3) to generate unit vectors.307

Next, we show that if we retrieve an action âks using (c, φ, ψ, τ)-MaxIP, the gap ĝk(s) would be308

lower bounded by309

ĝk(s) = 〈âks − πkθ (s),∇aQ(s, πkθ (s)|πkθ ))〉
≥ cgk(s) (7)

Combining Eq. (7) the standard induction in [5], we upper bound
∑
s∈S gT (s)2 as310 ∑

s∈S
gT (s)2 ≤ 1

T + 1

2βD2
max

c2(1− γ)3µ2
min

. (8)
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where µmin denotes the minimal density of sates in S and β is the smoothness factor.311

In this way, given a constant factor c, if we would like to minimize the gap
∑
s∈S gT (s)2 < ε2, T312

should be O(
βD2

max

ε2(1−γ)3µ2
min

).313

Cost Per Iteration After we take O(dn1+o(1)) preprocessing time, the cost per iteration consists314

three pairs: (1) it takes TQ to compute policy gradient, (2) it takes O(d) to perform transform φ315

and ψ, (3) it takes O(dnρ) to retrieve actions from LSH. Thus, the final cost per iteration would be316

O(dnρ + TQ).317

4.5 Quantization for Adaptive Queries318

In optimization, the gradient computed in every iteration is not independent of each other. This319

would generate a problem for MaxIP data-structures. If we use a vector containing the gradients320

as query for MaxIP data-structures, the query failure probability in each iteration is not indepen-321

dent. Therefore, the total failure probability could not be union bounded. As previous MaxIP322

data-structures focus on the assumptions that queries are independent, the original failure analysis323

could not be directly applied.324

In this work, we use a standard query quantization method to handle the adaptive query sequence325

in optimization. Given the known query space, we quantize it by lattices [70]. This quantization is326

close to the Voronoi diagrams. In this way, each query is located into a cell with a center vector.327

Next, we perform query using the center vector in the cell. Therefore, the failure probability of328

the MaxIP query sequence is equivalent to the probability that any center vector in the cell fails to329

retrieve its approximate MaxIP solution. As the centers of cells are independent, we could union330

bound the probability. On the other hand, as the maximum diameter of the cell is λ. This query331

quantization would introduce a λ additive error in the inner product retrieved. We refer the readers332

to Appendix G for the detailed quantization approach.333

4.6 Optimizing Accuracy-Efficiency Trade-off334

In this work, we show that by LSH based MaxIP data-structure, the cost for direction search is335

O(dnρ), where ρ ∈ (0, 1). In Section D.2 of the supplementary material, we show that ρ is a336

function of constant c and parameter τ in approximate MaxIP (see Definition 4.2). Moreover, we337

also show in Section D.2 that LSH results in only a constant multiplicative factor increase in the338

number of iterations. Considering the cost per iteration and the number of iterations, we show that339

when our algorithms stop at the ε-optimal solution, LSH could achieve acceleration in the overall340

running time. Therefore, we could set c and τ parameter to balance the accuracy-efficiency trade-off341

of CGM to achieve the desired running time.342

5 Potential Negative Societal Impact343

This paper discusses the theoretical foundation of data-structures for conditional gradient methods.344

We believe that this paper does not have negative societal impact in the environment, privacy, and345

other domains.346

6 Concluding Remarks347

In this work, we present the first Frank-Wolfe algorithms that achieve sublinear linear time cost348

per iteration. We also extend this result into herding algorithm and policy gradient methods. We349

formulate the direction search in Frank-Wolfe algorithm as a projected approximate maximum inner350

product search problem with a pair of efficient transformations. Then, we use locality sensitive351

hashing data-structure to reduce the iteration cost into sublinear over number of possible parameters.352

Our theoretical analysis shows that the sublinear iteration cost Frank-Wolfe algorithm preserves the353

same order in the number of iterations towards convergence. Moreover, we analyze and optimize the354

trade-offs between saving iteration cost and increasing the number of iterations to achieve sublinear355

total running time. Furthermore, we identify the problems of existing MaxIP data-structures for cost356

reduction in iterative optimization algorithms and propose the corresponding solutions. We hope this357

work can be the starting point of future study on sublinear iteration cost algorithm for optimization.358
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Appendix640

We provide supplementary materials for our work. Section A introduces the preliminary notations641

and definitions, Section B introduces the LSH data structure in detail for MaxIP, Section C presents642

our sublinear Frank-Wolfe algorithm, Section D presents the convergence analysis for sublinear643

Frank-Wolfe, Section E provide the algorithm and analysis on sublinear cost Herding algorithm,644

Section F provide the algorithm and analysis on sublinear cost policy gradient approach, Section G645

shows how to handle adaptive queries in MaxIP.646

A Preliminary647

A.1 Notations648

We use Pr[] and E[] for probability and expectation. We use max{a, b} to denote the maximum649

between a and b. We use min{a, b} (resp. max{a, b}) to denote the minimum (reps. maximum)650

between a and b. For a vector x, we use ‖x‖2 := (
∑n
i=1 x

2
i )

1/2 to denote its `2 norm. We use651

‖x‖p := (
∑n
i=1 |xi|p)1/p to denote `p norm. For a square matrixA, we use tr[A] to denote the trace652

of matrix A.653

A.2 LSH and MaxIP654

We start with the defining the Approximate Nearest Neighbor (ANN) problem [61, 46, 47, 62, 63,655

64, 65, 66, 67, 68, 69] as:656

Definition A.1 (Approximate Nearest Neighbor (ANN)). Let c > 1 and r ∈ (0, 2). Given an n-657

vector set P ⊂ Sd−1 on the sphere, the goal of the (c, r)-Approximate Near Neighbor (ANN) search658

is to construct a data structure that for any query q ∈ Sd−1 such that minp∈P ‖p− q‖2 ≤ r, return659

a vector p′ ∈ P such that ‖p′ − q‖2 ≤ c · r.660

The ANN problem can be solved via locality sensitive hashing (LSH) [46, 47, 65]. In this paper, we661

use the standard definitions of LSH (see Indyk and Motwani [46]).662

Definition A.2 (Locality Sensitive Hashing). Let c denote a parameter such that c > 1. Let p1, p2663

denote two parameters such that 0 < p2 < p1 < 1. A family H is called (r, c · r, p1, p2)-sensitive if664

and only if, for any two vector x, y ∈ Rd, h chosen uniformly fromH satisfies the following:665

• if ‖x− y‖2 ≤ r, then Prh∼H[h(x) = h(y)] ≥ p1,666

• if ‖x− y‖2 ≥ c · r, then Prh∼H[h(x) = h(y)] ≤ p2.667

Next, we show that LSH solves ANN problem with sublinear query time complexity.668

Theorem A.3 (Andoni, Laarhoven, Razenshteyn and Waingarten [66]). Let c > 1 and r ∈ (0, 2).669

The (c, r)-ANN on a unit sphere Sd−1 can be solved with query time O(d · nρ), space O(n1+o(1) +670

dn) and preprocessing time O(dn1+o(1)), where ρ = 2
c2
− 1

c4
+ o(1).671

Here we write o(1) is equivalent to O(1/
√

log n). Note that we could reduce d to no(1) with John-672

son–Lindenstrauss Lemma [71]. Besides, we could achieve better ρ using LSH in [64] if we allowed673

to have more proprocessing time.674

In this work, we focus on a well-known problem in computational complexity: approximate MaxIP.675

In this work, we follow the standard notation in [72] and define the approximate MaxIP problem as676

follows:677

Definition A.4 (Approximate MaxIP). Let c ∈ (0, 1) and τ ∈ (0, 1). Given an n-vector dataset678

Y ⊂ Sd−1, the goal of the (c, τ)-MaxIP is to construct a data structure that, given a query x ∈ Sd−1679

with the promise that maxy∈Y 〈x, y〉 ≥ τ , it retrieves a vector z ∈ Y with 〈x, z〉 ≥ c·maxy∈Y 〈x, y〉.680

In many applications, it is more convenient to doing inner product search in a transformed/projected681

space compared to doing inner product search in the original space. Thus, we propose the following682

definitions (Definition A.5 and Definition A.6)683
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Definition A.5 (Projected MaxIP). Let φ, ψ : Rd → Rk denotes two transforms. Given a data set684

Y ⊆ Rd and a point x ∈ Rd, we define (φ, ψ)-MaxIP as follows:685

(φ, ψ)-MaxIP(x, Y ) := max
y∈Y
〈φ(x), ψ(y)〉

Definition A.6 (Projected approximate MaxIP). Let φ, ψ : Rd → Rk denotes two transforms.686

Given an n-point dataset Y ⊂ Rd so that ψ(Y ) ⊂ Sd−1, the goal of the (c, φ, ψ, τ)-MaxIP is687

to build a data structure that, given a query x ∈ Rd and φ(x) ∈ Sk−1 with the promise that688

maxy∈Y 〈φ(x), ψ(y)〉 ≥ τ , it retrieves a vector z ∈ Y with 〈φ(x), ψ(z)〉 ≥ c · (φ, ψ)-MaxIP(x, Y ).689

Besides MaxIP, We also define a version of the minimum inner product search problem.690

Definition A.7 (regularized Min-IP). Given a data set Y ⊆ Rd and a point x ∈ Rd. Let φ : Rd →691

Rd denotes a mapping. Given a constant α, we define regularized Min-IP as follows:692

(φ, α)-Min-IP(x, Y ) := min
y∈Y
〈y − x, φ(x)〉+ α‖x− y‖.

A.3 Definitions and Properties for Optimization693

We start with listing definitions for optimization.694

Definition A.8 (Convex hull and its diameter). Given a setA = {xi}i∈[n] ⊂ Rd, we define its convex695

hull B(A) to be the collection of all finite linear combinations y that satisfies y =
∑
i∈[n] ai · xi696

where ai ∈ (0, 1) for all i ∈ [n] and
∑
i∈[n] ai = 1. Let Dmax denotes the maximum square of697

diameter of B(A) so that ‖x− y‖2 ≤ Dmax for all (x, y) ∈ B(A).698

Definition A.9 (Smoothness). We say L is β-smooth if699

L(y) ≤ L(x) + 〈∇L(x), y − x〉+
β

2
‖y − x‖22

Definition A.10 (Convex). We say function L is convex if700

L(x) ≥ L(y) + 〈∇L(y), x− y〉

Next, we list properties for optimization.701

Corollary A.11. For a set A = {xi}i∈[n] ⊂ Rd, and its convex hull B(A), given a query q ∈ Rd, if702

x∗ = arg maxx∈A q
>x. Then, q>y ≤ q>x∗ for all y ∈ B(A).703

Proof. We can upper bound q>y as follows:704

q>y = q>(
∑
i∈[n]

ai · xi)

=
∑
i∈[n]

ai · q>xi

≤
∑
i∈[n]

ai · q>x∗

≤ q>x∗

where the first step follows from the definition of convex hull in Definition A.8, the second step is705

an reorganization, the third step follows the fact that ai ∈ [0, 1] for all i ∈ [n] and q>xi ≤ q>x∗ for706

all xi ∈ A, the last step follows that
∑
i∈[n] ai ≤ 1.707

Lemma A.12 (MaxIP Condition). Let g : Rd → R denotes a convex function. Let S ⊂ Rd denotes708

a set of points. Given a vector x ∈ B(S), we have709

min
s∈S
〈∇g(x), s− x〉 ≤ 0, ∀x ∈ B.
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Proof. Let smin = arg mins∈S〈∇g(x), s〉. Then, we upper bound 〈∇g(x), smin − x〉 as710

〈∇g(x), smin − x〉 = 〈∇g(x), smin −
∑
s∈S

ai · s〉

≤ 〈∇g(x),
∑
s∈S

ai(smin − si)〉

=
∑
si∈S

ai〈∇g(x), smin − si〉

=
∑
si∈S

ai(〈∇g(x), smin〉 − 〈∇g(x), si〉)

≤ 0 (9)

where the first step follows from the definition of convex hull in Definition A.8, the second and third711

steps are reorganizations, the final steps follows that 〈∇g(x), s0〉 ≤ 〈∇g(x), s〉 for all s ∈ S.712

Next, we upper bound mins∈S〈∇g(x), s− x〉 ≤ 0, ∀x ∈ B as713

min
s∈S
〈∇g(x), s− x〉 ≤ 〈∇g(x), s0 − x〉 ≤ 0

where the first step follows from the definition of function min and the second step follows from714

Eq (9).715

B Data Structures716

In this section, we present a formal statement that solves (c, τ)-MaxIP problem on unit sphere using717

LSH for (c, r)-ANN.718

Corollary B.1 (Formal statement of Corollary 4.4). Let c ∈ (0, 1) and τ ∈ (0, 1). Given a set719

of n-vector set Y ⊂ Sd−1 on the sphere, one can construct a data structure with O(dn1+o(1))720

preprocessing time and O(n1+o(1) + dn) space so that for any query x ∈ Sd−1, we take query721

time complexity O(d · nρ) to retrieve (c, τ)-MaxIP of x in Y with probability at least 0.9i, where722

ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1)723

Proof. We know that ‖x − y‖22 = 2 − 2〈x, y〉 for all x, y ∈ Sd−1. In this way, if we have a LSH724

data-structure for (c, r)-ANN. It could be used to solve (c, τ)-MaxIP with τ = 1 − 0.5r2 and725

c = 1−0.5c2r2
1−0.5r2 . Next, we write c2 as726

c2 =
1− c(1− 0.5r2)

0.5r2
=

1− cτ
1− τ

.

Next, we show that if the LSH is initialized following Theorem A.3, it takes query time O(d · nρ),727

space O(n1+o(1) + dn) and preprocessing time O(dn1+o(1)) to solve (c, τ)-MaxIP through solving728

(c, r)-ANN, where729

ρ =
2

c2
− 1

c4
+ o(1) =

2(1− τ)2

(1− cτ)2
− (1− τ)4

(1− cτ)4
+ o(1).

730

In practice, c is increasing as we set parameter τ close to MaxIP(x, Y ). Moreover, Corrolary B.1731

could be applied to projected MaxIP problem.732

Corollary B.2. Let c ∈ (0, 1) and τ ∈ (0, 1). Let φ, ψ : Rd → Rk denotes two transforms.733

Let Tφ denotes the time to compute φ(x) and Tψ denotes the time to compute ψ(y). Given a set734

of n-points Y ∈ Rd with ψ(Y ) ⊂ Sk−1 on the sphere, one can construct a data structure with735

iIt is obvious to boost probability from constant to δ by repeating the data structure log(1/δ) times.
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O(dn1+o(1) + Tψn) preprocessing time and O(n1+o(1) + dn) space so that for any query x ∈ Rd736

with φ(x) ∈ Sk−1, we take query time complexity O(d · nρ + Tφ) to solve (c, φ, ψ, τ)-MaxIP with737

respect to (x, Y ) with probability at least 0.9, where ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1).738

Proof. The preprocessing phase can be decomposed in two parts.739

• It takes O(Tψn) time to transform every y ∈ Y into ψ(y).740

• It takes O(O(dn1+o(1)) time and O(dn1+o(1) + dn) to index every ψ(y) into LSH using741

Corrolary B.1.742

The query phase can be decomposed in two parts.743

• It takes O(Tφ) time to transform every x ∈ Rd into φ(x).744

• It takes O(d · nρ) time perform query for φ(x) in LSH using Corrolary B.1.745

746

C Algorithms747

C.1 Problem Formulation748

In this section, we show how to use Frank-Wolfe Algorithm to solve the Problem C.1.749

Problem C.1.

min
w∈B

g(w) (10)

We have the following assumptions:750

• g : Rd → R is a differentiable function.751

• S ⊂ Rd is a finite feasible set. |S| = n.752

• B = B(S) ⊂ Rd is the convex hull of the finite set S ⊂ Rd defined in Definition A.8.753

• Dmax is the maximum diameter of B(S) defined in Definition A.8754

In Problem C.1, function g could have different proprieties about convexity and smoothness.755

To solve this problem, we introduce a Frank-Wolfe Algorithm shown in Algorithm 1.756

Algorithm 1 Frank-Wolf algorithm for Problem C.1

1: procedure FRANKWOLFE(S ⊂ Rd)
2: T ← O(

βD2
max

ε ), ∀t ∈ [T ]

3: η ← 2
t+2

4: Start with w0 ∈ B. . B = B(S)(see Definition A.8).
5: for t = 1→ T − 1 do
6: st ← arg mins∈S〈∇g(wt), s〉
7: wt+1 ← (1− ηt)wt + ηts

t

8: end for
9: return wT

10: end procedure

One of the major computational bottleneck of Algorithm 1 is the cost paid in each iteration. Al-757

gorithm 1 has to linear scan all the s ∈ S in each iteration. To tackle this issue, we propose a758

Frank-Wolfe Algorithm with sublinear cost in each iteration.759
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C.2 Our Sublinear Frank-Wolfe Algorithm760

In this section, we present the Frank-Wolfe algorithm with sublinear cost per iteration using LSH.761

The first step is to formulate the line 6 in Algorithm 1 as a projected MaxIP problem defined in762

Definition A.5. To achieve this, we present a general MaxIP transform.763

Proposition C.2 (MaxIP Transform). Let φ1, ψ1 : Rd → Rk1 and φ2, ψ2 : Rd → Rk2 to be the764

projection functions. Given the polynomial function p(z) =
∑D
i=0 aiz

i, we show that765

〈φ1(x), ψ1(y)〉+ p(‖φ2(x)− ψ2(y)‖22) = 〈φ(x), ψ(y)〉 (11)

where φ, ψ : Rd → Rk1+k2(D+1)2 is the decomposition function.766

Proof. Because φ2(x), ψ2(y) ∈ Rk2 , ‖φ2(x)− ψ2(y)‖2i2 =
∑k2
j=1(φ2(x)j − ψ2(y)j)

2i. This is the767

sum over dimensions. Then, we have768

p(‖φ2(x)− ψ2(y)‖22) =

D∑
i=0

ai‖φ2(x)− ψ2(y)‖2i2

=

D∑
i=0

ai

k2∑
j=1

(φ2(x)j − ψ2(y)j)
2i

where the first follows from definition of polynomial p, and the second step follows from definition769

of `2 norm.770

Here φ2(x)j means the jth entry of φ2(x). Using the binomial theorem, we decompose (φ2(x)j −771

ψ2(y)j)
2i as:772

(φ2(x)j − ψ2(y)j)
2i

=

2i∑
l=0

(
2i
l

)
φ2(x)2i−lj ψ2(y)lj

= 〈[φ2(x)2ij , · · · , φ2(x)2i−lj , · · · , φ2(x)j , 1]︸ ︷︷ ︸
uj

, [1, ψ2(y)j , · · · , ψ2(y)lj , · · · , ψ2(y)2ij ]︸ ︷︷ ︸
vj

〉

Then, we generate two vectors ui ∈ Rk2(2i+1) and vi ∈ Rk2(2i+1)773

ui = [u1 · · · uj · · · uk2 ] uj =
[
φ2(x)2ij · · · φ2(x)2i−lj · · · φ2(x)j 1

]>
vi = [v1 · · · vj · · · vk2 ] vj =

[
1 ψ2(y)j · · · ψ2(y)lj · · · ψ2(y)2ij

]>
Thus,

∑k2
j=1(φ2(x)j − ψ2(y)j)

2i can be rewrite with inner product by concatenating all the uj774

together and then concatenating all the vj .775

k2∑
j=1

(φ2(x)j − ψ2(y)j)
2i = 〈ui, vi〉.

We make vectors b ∈ Rk2(D+1)2 and c ∈ Rk2(D+1)2 such as776

b = [u0 · · · , ui, · · · , uD]

c = [a0v
0, · · · , aivi, · · · , aDvD]

So that777

D∑
i=0

ai

k2∑
j=1

(φ2(x)j − ψ2(y)j)
2i =

D∑
i=0

ai〈ui, vi〉 =

D∑
i=0

〈ui, aivi〉 = 〈b, c〉
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Finally, we have778

〈φ1(x), ψ1(y)〉+ p(‖φ2(x)− ψ2(y)‖22) = 〈φ1(x), ψ1(y)〉+ 〈b, c〉
= 〈[φ1(x), b], [ψ1(y), c]〉
= 〈φ(x), ψ(y)〉

Total projected dimension:779

k1 +

D∑
i=0

k2(2i+ 1) = k1 + (D + 1)k2 + 2k2

D∑
i=1

i

= k1 + (D + 1)k2 + 2k2 ·
D(D + 1)

2

= k1 + k2(D + 1)2

780

Therefore, any binary function with format 〈φ1(x), ψ1(y)〉+p(‖φ2(x)−ψ2(y)‖22) defined in Propo-781

sition C.2 can be transformed as a inner product.782

Next, we show that a modified version of line 6 in Algorithm 1 can be formulated as a projected783

MaxIP problem.784

Corollary C.3 (Equivalence between projected MaxIP and Min-IP). Let g be a differential function785

defined on convex set K ⊂ Rd. Given η ∈ (0, 1) and x, y ∈ K, we define φ, ψ : Rd → Rd+3 as786

follows:787

φ(x) :=
[
φ0(x)

>

Dx
0
√

1− ‖φ0(x)‖22
D2
x

]>
ψ(y) :=

[
ψ0(y)

>

Dy

√
1− ‖ψ0(y)‖22

D2
y

0

]>
where788

φ0(x) :=[∇g(x)>, x>∇g(x)]> ψ0(y) := [−y>, 1]>

, Dx is the maximum diameter of φ0(x) and Dy is the maximum diameter of ψ0(y).789

Then, for all x, y ∈ Rd, we transform them into unit vector φ(x) and ψ(y) on Sd+2. Moreover, we790

have791

〈y − x,∇g(x)〉 = −DxDy〈φ(x), ψ(y)〉

Further, the (φ, ψ)-MaxIP (Definition A.5) is equivalent to the (∇g, 0)-Min-IP (Definition A.7).792

arg max
y∈K
〈φ(x), ψ(y)〉 = arg min

y∈K
〈y − x,∇g(x)〉

In addition, let Tψ denote the time of evaluating at any point y ∈ Rd for function ψ, then we have793

Tψ = O(1).794

Let Tφ denote the time of evaluating at any point x ∈ Rd for function φ, then we have Tφ =795

T∇g +O(d), where the T∇g denote the time of evaluating function∇g at any point x ∈ Rd.796

Proof. We start with showing that ‖φ(x)‖2 = ‖ψ(y)‖2 = 1. Next, we show that797

〈φ(x), ψ(y)〉 =
〈φ0(x), ψ0(y)〉

DxDy

=
〈−y,∇g(x)〉+ 〈x,∇g(x)〉

DxDy

= − 〈y − x,∇g(x)〉
DxDy

where the first step follows from definition of φ and ψ, the second step follows from definition of798

φ0 and ψ0, the last step is a reorganization.799

Based on the results above,800

arg max
y∈K
〈φ(x), ψ(y)〉 = arg min

y∈K
〈y − x,∇g(x)〉

801
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Using Corollary C.3, the direction search in Frank-Wolfe algorithm iteration is equivalent to a802

(φ, ψ)-MaxIP problem. In this way, we propose Algorithm 2, an Frank-Wolfe algorithm with sub-803

linear cost per iteration using LSH.804

Algorithm 2 Sublinear Frank-Wolfe for Problem C.1

1: data structure LSH . Corollary B.2
2: INIT(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ (0, 1))
3: . |S| = n, c ∈ (0, 1) is LSH parameter, and d is the dimension of data
4: QUERY(x ∈ Rd, τ ∈ (0, 1)) . τ ∈ (0, 1) is LSH parameter
5: end data structure
6:
7: procedure SUBLINEARFRANKWOLFE(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ (0, 1), τ ∈ (0, 1)) .

Theorem D.1
8: Construct φ, ψ : Rd → Rd+1 as Corollary C.3
9: static LSH LSH

10: LSH.INIT(ψ(S), n, d+ 3, c)
11: Start with w0 ∈ B. . B = B(S)(see Definition A.8).
12: T ← O(

βD2
max

c2ε )

13: η ← 2
c(t+2) , ∀t ∈ [T ]

14: for t = 1→ T − 1 do
15: /* Query with wt and retrieve its (c, φ, ψ, τ)-MaxIP st ∈ S from LSH data structure */
16: st ← LSH.QUERY(φ(wt), τ)
17: /* Update wt in the chosen direction*/
18: wt+1 ← (1− ηt) · wt + ηt · st
19: end for
20: return wT
21: end procedure

D Convergence Analysis805

In this Section D, analyze the convergence of our Sublinear Frank-Wolfe algorithm in Algorithm 2806

when g is convex (see Definition A.10) and β-smooth (see Definition A.9). Moreover, we compare807

our sublinear Frank-Wolfe algorithm with Frank-Wolfe algorithm in Algorithm 1 in terms of number808

of iterations and cost per iteration.809

D.1 Summary810

We first show the comparsion results in Table 2. As shown in the table, with O(dn1+o(1) · κ)811

preprocessing time, Algorithm 2 achieves O(dnρ ·κ+Tg) cost per iteration with 1
c2 more iterations.812

Algorithm Statement Preprocessing #iters cost per iter
Algorithm 1 [9] 0 O(βD2

max/ε) O(dn+ Tg)
Algorithm 2 Theorem D.1 O(dn1+o(1) · κ) O(c−2βD2

max/ε) O(dnρ · κ+ Tg)
Table 2: Comparison between original Frank-Wolfe algorithm and our sublinear Frank-Wolfe al-
gorithm. Here Tg denotes the time for computing gradient of g, c ∈ (0, 1) is the approximation
factor of LSH. We let κ := Θ(log(T/δ)) where T is the number of iterations and δ is the failure
probability. ρ ∈ (0, 1) is a fixed parameter determined by LSH.

813

D.2 Sublinear Frank-Wolfe Algorithm814

The goal of this section is to prove Theorem D.1.815

Theorem D.1 (Convergence result of Sublinear Frank-Wolfe, a formal version of Theorem 3.1 ).816

Let g : Rd → R denotes a convex (see Definition A.10) and β-smooth function (see Definition A.9).817
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Let the complexity of calculating ∇g(x) to be Tg . Let φ, ψ : Rd → Rk denotes two transforms818

in Corollary C.3. Let S ⊂ Rd denotes a set of points with |S| = n, and B ⊂ Rd is the convex819

hull of S (see Definition A.8). For any parameters ε, δ, there is an iterative algorithm with that820

takes O(dn1+o(1) · κ) preprocessing time and O((n1+o(1) + dn) · κ) space, takes T = O(
βD2

max

ε )821

iterations and O(dnρ · κ+ Tg) cost per iteration, starts from a random w0 from B as initialization822

point, updates the w in each iteration as follows:823

st ← (c, φ, ψ, τ)-MaxIP of wt with respect to S

wt+1 ← wt + η · (st − wt)

and outputs wT ∈ Rd from B such that824

g(wT )−min
w∈B

g(w) ≤ ε,

holds with probability at least 1− δ. Here κ := Θ(log(T/δ)) and ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1).825

Proof. Convergence.826

Let t denote some fixed iteration. We consider two cases:827

• Case 1. τ > maxs∈S〈ψ(s), φ(wt)〉;828

• Case 2. τ ≤ maxs∈S〈ψ(s), φ(wt)〉.829

Case 1. In this case, we can show that830

τ ≥ max
s∈S
〈ψ(s), φ(wt)〉

≥ 〈ψ(w∗), φ(wt)〉
DxDy

=
〈wt − w∗,∇g(wt)〉

DxDy

≥ g(wt)− g(w∗)

DxDy
,

where the first step follows from Corollary C.3, the second step follows from the Corollary A.11,831

the third step is a reorganization, the last step follows the convexity of g (see Definition A.10).832

Thus, as long as τ ≥ DxDyε, then we have833

g(wt)− g(w∗) ≤ ε.

This means we already converges to the optimal.834

Case 2. We start with the upper bounding 〈st − wt,∇g(wt)〉 as835

〈st − wt,∇g(wt)〉 = −DxDy〈ψ(st), φ(wt)〉
≤ − c ·DxDy max

s∈S
〈ψ(s), φ(wt)〉

≤ − c ·DxDy〈ψ(w∗), φ(wt)〉
= c〈w∗ − wt,∇g(wt)〉 (12)

where the first step follows from Corollary C.3, the second step follows from Corollary B.2 and836

MaxIP condition in Lemma A.12, the third step follows from Corollary A.11.837

For convenient of the proof, for each t, we define ht as follows:838

ht = g(wt)− g(w∗). (13)
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Next, we upper bound ht+1 as839

ht+1 = g(wt+1)− g(w∗)

= g((1− ηt)wt + ηts
t)− g(w∗)

≤ g(wt) + ηt〈st − wt,∇g(wt)〉+
β

2
η2t ‖st − wt‖22 − g(w∗)

≤ g(wt) + ηt〈st − wt,∇g(wt)〉+
βD2

max

2
η2t − g(w∗)

≤ g(wt) + cηt〈w∗ − wt,∇g(wt)〉+
βD2

max

2
η2t − g(w∗)

= (1− ηt)g(wt) + cηt
(
g(wt) + 〈w∗ − wt,∇g(wt)〉

)
+
βD2

max

2
η2t − g(w∗)

≤ (1− ηt)g(wt) + cηtg(w∗) +
βD2

max

2
η2t − g(w∗)

≤ (1− cηt)g(wt)− (1− cηt)g(w∗) +
βD2

max

2
η2t

≤ (1− cηt)ht +
βD2

max

2
η2t

(14)

where the first step follows from definition of ht+1 (see Eq. (13)), the second step follows from840

the update rule of Frank-Wolfe, the third step follows from the definition of β-smoothness in Def-841

inition A.9, the forth step follows from the definition of maximum diameter in Definition A.8, the842

fifth step follows the Eq (12), the sixth step is a reorganization, the seventh step follows from the843

definition of convexity (see Definition A.10), the eighth step follows from merging the coefficient844

of g(w∗), and the last step follows from definition of ht (see Eq. (13)).845

Let et = Atht, At is a parameter and we will decide it later. we have:846

et+1 − et = At+1

(
(1− cηt)ht +

βD2
max

2
η2t

)
−Atht

= (At+1(1− cηt)−At)ht + σ +
βD2

max

2
At+1η

2
t (15)

Let At = t(t+1)
2 , cηt = 2

t+2 . In this way we rewrite At+1(1− ηt)−At and At+1
η2t
2 as847

• At+1(1− ηt)−At = 0848

• At+1
η2t
2 = t+1

(t+2)c2 < c−2849

Next, we upper bound et+1 − et as:850

et+1 − et < 0 + c−2
t+ 1

t+ 2
βD2

max

< c−2βD2
max (16)

where the first step follows from At+1(1 − ηt) − At = 0 and At+1
η2t
2 = t+1

(t+2)c2 . The second step851

follows from t+1
t+2 < 1852

Based on Eq (16), we upper bound et using induction and have853

et < c−2tβD2
max (17)

Using the definition of et, we have854

ht =
et
At

<
2βD2

max

c2(t+ 1)
(18)
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To make ht ≤ ε, t should be in O(
βD2

max

c2ε ). Thus, we complete the proof.855

Preprocessing time According to Corrollary B.2, can construct κ = Θ(log(T/δ)) LSH data struc-856

tures for (c, φ, ψ, τ)-MaxIP with φ, ψ defined in Corollary C.3. As transforming every s ∈ S into857

ψ(s) takes O(dn). Therefore, the total the preprocessing time complexity is O(dn1+o(1) · κ).858

Cost per iteration859

Given each wt, compute ∇g(wt) takes Tg . Next, it takes O(d) time to generate φ(wt) according to860

Corollary C.3 based on g(wt) and ∇g(wt). Next, according to Corrollary B.2, it takes O(dnρ · κ)861

to retrieve st from κ = Θ(log(T/δ)) LSH data structures. After we select st, it takes O(d) time to862

update the wt+1. Combining the time for gradient calculation, LSH query and wt update, the total863

complexity is O(dnρ · κ+ Tg) with ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1).864

865
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E Herding Algorithm866

E.1 Problem Formulation867

In this section, we focus on herding algorithm a specific example of Problem C.1. We consider a868

finite set X ⊂ Rd and a mapping Φ : Rd → Rk. Given a distribution p(x) over X , we denote869

µ ∈ Rk as870

µ = E
x∼p(x)

[Φ(x)] (19)

The goal of herding algorithm [57] is to find T elements {x1, x2, · · · , xT } ⊆ X such that ‖µ −871 ∑T
t=1 vtΦ(xt)‖2 is minimized. Where vt is a non-negative weight. The algorithm generates samples872

by the following:873

xt+1 = arg max
x∈X
〈wt,Φ(x)〉

wt+1 = wt + µ− Φ(xt+1) (20)

Let B denotes the convex hull of X . [1] show that the recursive algorithm in Eq (20) is equivalent874

to a Frank-Wolfe algorithm Problem E.1.875

Problem E.1 (Herding).

min
w∈B

1

2
‖w − µ‖22

We have the following assumptions:876

• S = Φ(X ) ⊂ Rd is a finite feasible set. |S| = n.877

• B = B(S) ⊂ Rd is the convex hull of the finite set S ⊂ Rd defined in Definition A.8.878

• Dmax is the maximum diameter of B(S) defined in Definition A.8879

Therefore, a frank-Wolfe algorithm [1] for herding is proposed as880

Algorithm 3 Frank-Wolf algorithm for Herding

1: procedure FRANKWOLFE(S ⊂ Rk)
2: T ← O(

D2
max

ε ), ∀t ∈ [T ]

3: η ← 2
t+2

4: Start with w0 ∈ B.
5: for t = 1→ T − 1 do
6: st ← arg maxs∈S〈wt − µ, s〉
7: wt+1 ← (1− η)wt + ηst

8: end for
9: return wT

10: end procedure

Algorithm 3 takes O(nd) cost per iteration.881

To improve the efficiency of Algorithm 3, we propose a herding algorithm with sublinear cost per882

iteration using LSH.883
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Algorithm 4 Sublinear Frank-Wolf algorithm for Herding

1: data structure LSH . Corollary B.2
2: INIT(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ (0, 1))
3: . |S| = n, c ∈ (0, 1) is LSH parameter, and d is the dimension of data
4: QUERY(x ∈ Rd, τ ∈ (0, 1)) . τ ∈ (0, 1) is LSH parameter
5: end data structure
6:
7: procedure SUBLINEARFRANKWOLF(S ⊂ Rd, n ∈ N, d ∈ N,c ∈ (0, 1) ,τ ∈ (0, 1) )
8: . Theorem E.3
9: Construct φ, ψ : Rd → Rd+1 as Corollary C.3

10: static LSH LSH
11: LSH.INIT(ψ(S), n, d+ 3, c)
12: Start with w0 ∈ B. . B = B(S)(see Definition A.8).
13: T ← O(

βD2
max

c2ε ), ∀t ∈ [T ]

14: η ← 2
c(t+2)

15: for t = 1→ T − 1 do
16: /* Query with wt and retrieve its (c, φ, ψ)-MaxIP st ∈ S from LSH data structure */
17: st ← LSH.QUERY(φ(wt), τ)
18: /* Update wt in the chosen direction*/
19: wt+1 ← (1− ηt) · wt + ηt · st
20: end for
21: return wT
22: end procedure

E.2 Convergence Analysis884

The goal of this section is to show the convergence analysis of our Algorithm 4 compare it with885

Algorithm 3 for herding.886

We first show the comparison results in Table 3.

Algorithm Statement Preprocessing #iters cost per iter
Algorithm 3 [1] 0 O(D2

max/ε) O(nd)

Algorithm 4 Theorem E.3 O(κn1+o(1)) O(c−2D2
max/ε) O(κnρ log n+ d)

Table 3: Comparison between Algorithm 4 and Algorithm 3

887

Next, we analyze the smoothness of 1
2‖w − µ‖

2
2.888

Lemma E.2. We show that g(w) = 1
2‖w

T − µ‖22 is a convex and 1-smooth function.889

Proof.

g(x) + 〈∇g(x), y − x〉+
1

2
‖y − x‖22 =

1

2
‖x− µ‖22 + 〈x− µ, y − x〉+

1

2
‖y − x‖22

=
1

2
(x>x− 2x>µ+ µ>µ) + (x>y − y>µ

=
1

2
y>y − y>µ+

1

2
µ>µ

=
1

2
‖y − µ‖22

= g(y) (21)

where all the steps except the last step are reorganizations. The last step follows g(y) = 1
2‖y − µ‖

2
2890

Rewrite the Eq (21) above, we have891

g(y) = g(x) + 〈∇g(x), y − x〉+
1

2
‖y − x‖22 (22)
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≥ g(x) + 〈∇g(x), y − x〉 (23)

g(x) = 1
2‖x− µ‖

2
2 is a convex function.892

Rewrite the Eq (21) above again, we have893

g(y) = g(x) + 〈∇g(x), y − x〉+
1

2
‖y − x‖22 (24)

≤ g(x) + 〈∇g(x), y − x〉+
1

2
‖y − x‖22 (25)

g(x) = 1
2‖x− µ‖

2
2 is a 1-smooth convex function.894

895

Next, we show the convergence results of Algorithm 4.896

Theorem E.3 (Convergence result of Sublinear Herding, a formal version of Theorem 3.2). For897

any parameters ε, δ, there is an iterative algorithm (Algorithm 4) that takes O(dn1+o(1) · κ) time in898

pre-processing and O((n1+o(1) +dn) ·κ) space, takes T = O(
D2

max

c2ε ) iterations and O(dnρ ·κ) cost899

per iteration, starts from a random w0 from B as initialization point, updates the w in each iteration900

based on Algorithm 4 and outputs wT ∈ Rd from B such that901

1

2
‖wT − µ‖22 −min

w∈B

1

2
‖w − µ‖22 ≤ ε,

holds with probability at least 1− δ. Here ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1) and κ := Θ(log(T/δ)).902

Proof. First, we show that g(w) = 1
2‖w

T − µ‖22 is a convex and 1-smooth function. using903

Lemma E.2. Then, we could prove the theorem using Theorem E.3. Following the fact that the904

computation of gradient is O(d), we could also provide the query time, preprocesisng time and905

space complexities.906

907

E.3 Discussion908

We show that our sublinear Frank-Wolfe algorithm demonstrated in Algorithm 4 breaks the linear909

cost per iteration of current Frank-Wolfe algorithm in Algorithm 3 in herding algorithm. Meanwhile,910

the extra number of iterations Algorithm 4 pay is affordable.911

F Policy Gradient Optimization912

We present the our results on policy gradient in this section.913

F.1 Problem Formulation914

In this paper, we focus on the action-constrained Markov Decision Process (ACMDP). In this setting,915

we are provided with a state S ∈ Rk and action space A ∈ Rd. However, at each step t ∈ N, we916

could only access a finite subset of actions C(s) ⊂ A with cardinality n. Let us denote Dmax as the917

maximum diameter of A.918

When you play with this ACMDP, the policy you choose is defined as πθ(s) : S → Awith parameter919

θ. Meanwhile, there exists a reward function r : S × A ∈ [0, 1]. Next, we define the Q function as920

below,921

Q(s, a|πθ) = E
[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a, πθ

]
.

where γ ∈ (0, 1) is a discount factor.922
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Given a state distribution µ, the objective of policy gradient is to maximize the expected value923

J(µ, πθ) = Es∼µ,a∼πθ [Q(s, a|πθ)] via policy gradient [58] denoted as:924

∇θJ(µ, πθ) = E
s∼dπµ

[
∇θπθ(s)∇aQ(s, πθ(s)|πθ)|

]
.

[5] propose an iterative algorithm that perform MaxIP at each iteration k over actions to find925

gk(s) = max
a∈C(s)

〈aks − πkθ (s),∇aQ(s, πkθ (s)|πkθ ))〉. (26)

Moreover, [5] also have the following statement926

Lemma F.1 ([5]). Given a ACMDP and the gap gk(s) in Eq.(26), we show that927

J(µ, πk+1
θ ) ≥ J(µ, πkθ (s)) +

(1− γ)2µ2
min

2LD2
max

∑
s∈S

gk(s)2

Therefore, [5] maximize the expected value via minimizing gk(s).928

In this work, we accelerate Eq. (6) using (c, φ, ψ, τ)-MaxIP. Here define φ : S × Rd → Rd+2 and929

ψ : Rd → Rd+3 as follows:930

Corollary F.2 (Transformation for Policy Gradient). Let g be a differential function defined on931

convex set K ⊂ Rd with maximum diameter DK. For any x, y ∈ K, we define φ, ψ : Rd → Rd+3 as932

follows:933

φ(x) :=
[
φ0(x)

>

Dx
0
√

1− ‖φ0(x)‖22
D2
x

]>
ψ(y) :=

[
ψ0(y)

>

Dy

√
1− ‖ψ0(y)‖22

D2
y

0

]>
where934

φ0(s, πkθ ) := [∇aQ(s, πkθ (s)|πkθ )>, (πkθ )>Q(s, πkθ (s)|πkθ )]>

ψ0(a) = [a>,−1]>

and Dx is the maximum diameter of φ0(x) and Dy is the maximum diameter of ψ0(y).935

Then, for all x, y ∈ K we have gk(s) = DxDy〈φ(s, πkθ ), ψ(a)〉. Moreover, φ(x) and ψ(y) are unit936

vectors with norm 1.937

Proof. We show that938

〈φ(s, πkθ ), ψ(a)〉 = D−1x D−1y 〈∇aQ(s, πkθ (s)|πkθ ), a〉 − 〈∇aQ(s, πkθ (s)|πkθ ), πkθ 〉
= D−1x D−1y 〈aks − πkθ (s),∇aQ(s, πkθ (s)|πkθ ))〉

where the first step follows the definition of φ and ψ, the second step is an reorganization.939

In this way, we propose a sublinear iteration cost algorithm for policy gradient in Algorithm 5.940
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Algorithm 5 Sublinear Frank-Wolfe Policy Optimization (SFWPO)

1: data structure LSH . Corollary B.2
2: INIT(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ (0, 1))
3: . |S| = n, c ∈ (0, 1) is LSH parameter, and d is the dimension of data
4: QUERY(x ∈ Rd, τ ∈ (0, 1)) . τ ∈ (0, 1) is LSH parameter
5: end data structure
6:
7: procedure SFWPO(S ⊂ Rk, c ∈ (0, 1),τ ∈ (0, 1))
8: . Theorem F.3
9: Input: Initialize the policy parameters as θ0 ∈ Rl that satisfies π0

θ(s) ∈ C(s) for all s ∈ S
10: for each State s ∈ S do
11: Construct φ, ψ : Rd → Rd+1 as Corollary F.2
12: static LSH LSHs
13: LSHs INIT(ψ(C(s), n, d+ 3, c)
14: end for
15: T ← O(

c−2LD2
max

ε2(1−γ)3µ2
min

16: for each iteration k = 0, 1, · · · , T do
17: for each State s ∈ S do
18: Use policy πkθ and obtain Q(s, πkθ (s)|πkθ )
19: end for
20: for each State s ∈ S do
21: âks ← LSHs.QUERY(φ(s, πkθ (s), τ))

22: ĝk(s) = 〈âks − πkθ (s),∇aQ(s, πkθ (s)|πkθ ))〉
23: αk(s) = (1−γ)µmin

LD2
s

ĝk(s)

24: πk+1
θ (s) = πkθ (s) + αk(s)(âks − πkθ (s))

25: end for
26: end for
27: return πTθ (s)
28: end procedure

F.2 Convergence Analysis941

The goal of this section is to show the convergence analysis of of Algorithm 5 compare it with [5].We942

first show the comparison results in Table 4.

Algorithm Statement Preprocessing #iters cost per iter
[5] [5] 0 O(

βD2
max

ε2(1−γ)3µ2
min

) O(dn+ TQ)

Algorithm 5 Theorem F.3 O(dn1+o(1) · κ) O(
c−2βD2

max

ε2(1−γ)3µ2
min

) O(dnρ · κ+ TQ)

Table 4: Comparison between our sublinear policy gradient (Algorithm 5) and [5].

943

The goal of this section is to prove Theorem F.3.944

Theorem F.3 (Sublinear Frank-Wolfe Policy Optimization (SFWPO), a formal version of Theo-945

rem 3.3). Let TQ denotes the time for computing the policy graident. Let Dmax denotes the maxi-946

mum diameter of action space and β is a constant. Let γ ∈ (0, 1). Let ρ ∈ (0, 1) denotes a fixed947

parameter. Let µmin denotes the minimal density of sates in S. There is an iterative algorithm948

(Algorithm 5) that spends O(dn1+o(1) · κ) time in preprocessing and O((n1+o(1) + dn) · κ) space,949

takes O(
βD2

max

ε2(1−γ)3µ2
min

) iterations and O(dnρ ·κ+TQ) cost per iterations, start from a random point950

π0
θ as initial point, and output policy πTθ that have average gap

√∑
s∈S gT (s)2 < ε holds with951

probability at least 1− 1/ poly(n), where gT (s)2 is defined in Eq. (26) and κ := Θ(log(T/δ)).952

Proof. Let âks denotes the action retrieved by LSH. Note that similar to Case 1 of Theorem D.1,953

the algorithms convergences if parameter τ is greater than maximum inner product. Therefore, we954
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could direct focus on Case 2 and lower bound ĝk(s) as955

ĝk(s) = 〈âks − πkθ (s),∇aQ(s, πkθ (s)|πkθ ))〉

= DxDy〈φ(s, πkθ ), ψ(âks)〉
≥ cDxDy max

a∈C(a)
〈φ(s, πkθ ), ψ(a)〉

= c〈aks ,∇aQ(s, πkθ (s)|πkθ ))〉 − c〈πkθ (s),∇aQ(s, πkθ (s)|πkθ ))〉
= cgk(s) (27)

where the first step follows from the line 22 in Algorithm 5, the second step follows from Corol-956

lary F.2, the third step follows from Corollary B.2, the forth step follows from Corollary F.2 and the957

last step is a reorganization.958

Next, we upper bound J(µ, πk+1
θ ) as959

J(µ, πk+1
θ ) ≥ J(µ, πkθ (s)) +

(1− γ)2µ2
min

2LD2
max

∑
s∈S

ĝk(s)2

≥ J(µ, πkθ (s)) +
c2(1− γ)2µ2

min

2LD2
max

∑
s∈S

gk(s)2

(28)

where the first step follows from Lemma F.1, the second step follows from Eq. (27)960

Using induction from 1 to T , we have961

J(µ, πTθ ) = J(µ, π1
θ) +

c2(1− γ)2µ2
min

2LD2
max

T∑
k=0

∑
s∈S

gk(s)2 (29)

Let G =
∑T
k=0

∑
s∈S gk(s)2, we upper bound G as962

G ≤ 2LD2
max

c2(1− γ)2µ2
min

(J(µ, πTθ )− J(µ, π0
θ))

≤ 2LD2
max

c2(1− γ)2µ2
min

J(µ, π∗θ))

≤ 2LD2
max

c2(1− γ)3µ2
min

(30)

where the first step follows from Eq (29), the second step follows from J(µ, π∗θ) ≥ J(µ, πTθ ), last963

step follows from J(µ, π∗θ) ≤ (1− γ)−1.964

Therefore, we upper bound
∑
s∈S gT (s)2 as965 ∑
s∈S

gT (s)2 ≤ 1

T + 1
G

≤ 1

T + 1

2LD2
max

c2(1− γ)3µ2
min

(31)

where the first step is a reorganization, the second step follows that
∑
s∈S gT (s)2 is non-increasing,966

the second step follows from Eq (30).967

If we want
∑
s∈S gT (s)2 < ε2, T should be O(

c−2LD2
max

ε2(1−γ)3µ2
min

)968

Preprocessing time According to Corrollary B.2, can construct κ = Θ(log(T/δ)) LSH data struc-969

tures for (c, φ, ψ, τ)-MaxIP with φ, ψ defined in Corollary F.2. As transforming every a ∈ A into970

ψ(a) takes O(dn). Therefore, the total the preprocessing time complexity is O(dn1+o(1) · κ).971
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Cost per iteration972

Given each wt, compute the policy gradient takes TQ. Next, it takes O(d) time to generate φ(s, πkθ )973

according to Corollary C.3 based on policy gradient. Next, according to Corrollary B.2, it takes974

O(dnρ · κ) to retrieve action from κ = Θ(log(T/δ)) LSH data structures. After we select action, it975

takes O(d) time to compute the gap the update the value. Thus, the total complexity is O(dnρ · κ+976

TQ) with ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1).977

978

F.3 Discussion979

We show that our sublinear Frank-Wolfe based policy gradient algorithm demonstrated in Algo-980

rithm 5 breaks the linear cost per iteration of current Frank-Wolfe based policy gradient algorithm981

algorithm. Meanwhile, the extra number of iterations Algorithm 5 pay is affordable.982

G More Data Structures: Adaptive MaxIP Queries983

In optimization, the gradient at each iteration is not independent from the previous gradient. There-984

fore, it becomes a new setting for using (c, τ)-MaxIP. If we take the gradient as query and the985

feasible set as the data set, the queries in each step forms an adaptive sequence. In this way, the986

failure probability of LSH or other (c, τ)-MaxIP data-structures could not be union bounded. To987

extend (c, τ)-MaxIP data-structures such as LSH and graphs into this new setting, we demonstrate a988

query quantization method.989

We start with relaxing the (c, τ)-MaxIP with a inner product error.990

Definition G.1 (Relaxed approximate MaxIP). Let approximate factor c ∈ (0, 1) and threshold991

τ ∈ (0, 1). Let λ ≥ 0 denotes an additive error. Given an n-vector set Y ⊂ Sd−1, the objective992

of (c, τ, λ)-MaxIP is to construct a data-structure that, for a query x ∈ Sd−1 with conditions that993

maxy∈Y 〈x, y〉 ≥ τ , it retrieves vector z ∈ Y that 〈x, z〉 ≥ c ·MaxIP(x, Y )− λ.994

Then, we present a query quantization approach to solve (c, τ, λ)-MaxIP for adaptive queries. We995

assume that the Q is the convex hull of all queries. For any query x ∈ Q, we perform a quantization996

on it and locate it to the nearest lattice with center q̂ ∈ Q. Here the lattice has maximum diameter997

2λ. Then, we query q̂ on data-structures e.g., LSH, graphs, alias tables. This would generate a998

λ additive error to the inner product. Because the lattice centers are independent, the cumulative999

failure probability for adaptive query sequence could be union bounded. Formally, we present the1000

corollary as1001

Corollary G.2 (A query quantization version of Corollary B.1). Let approximate factor c ∈ (0, 1)1002

and threshold τ ∈ (0, 1). Given a n-vector set Y ⊂ Sd−1, one can construct a data-structure with1003

O(dn1+o(1) · κ) preprocessing time and O((n1+o(1) + dn) · κ) space so that for every query x in1004

an adaptive sequence X = {x1, x2, · · · , xT } ⊂ Sd−1, we take query time complexity O(dnρ · κ) to1005

solve (c, τ, λ)-MaxIP with respect to (x, Y ) with probability at least 1 − δ, where ρ = 2(1−τ)2
(1−cτ)2 −1006

(1−τ)4
(1−cτ)4 + o(1), κ := d log(ndDX/(λδ)) and DX is the maximum diameter in `2 distance of all1007

queries in X .1008

Proof. The probability that at least one query x ∈ X fails is equivalent to the probability that at1009

least one query q̂ ∈ Q̂ fails. Therefore, we could union bound the probability as:1010

Pr[∃q̂ ∈ Q̂ s.t all (c, τ)-MaxIP fail] = n · (dDX

λ
)d · (1/10)κ ≤ δ

where the second step follows from κ := d log(ndDX/(λδ)).1011

The results of q̂ has a λ additive error to the original query. Thus, our results is a (c, τ, λ)-MaxIP1012

solution. The time and space complexty is obtained via Corollary B.1. Thus we finish the proof.1013

Definition G.3 (Quantized projected approximate MaxIP). Let approximate factor c ∈ (0, 1) and1014

threshold τ ∈ (0, 1). Let λ ≥ 0 denotes an additive error. Let φ, ψ : Rd → Rk denotes two1015
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transforms. Given an n-point dataset Y ⊂ Rd so that ψ(Y ) ⊂ Sd−1, the goal of the (c, φ, ψ, τ, λ)-1016

MaxIP is to build a data structure that, given a query x ∈ Rd and φ(x) ∈ Sk−1 with the1017

promise that maxy∈Y 〈φ(x), ψ(y)〉 ≥ τ − λ, it retrieves a vector z ∈ Y with 〈φ(x), ψ(z)〉 ≥1018

c · (φ, ψ)-MaxIP(x, Y ).1019

Next, we extend Corollary G.2 to adaptive queries.1020

Corollary G.4. Let c ∈ (0, 1), τ ∈ (0, 1), λ ≥ 0 and δ ≥ 0. Let φ, ψ : Rd → Rk denotes1021

two transforms. Let Tφ denotes the time to compute φ(x) and Tψ denotes the time to compute ψ(y).1022

Given a set of n-points Y ∈ Rd with ψ(Y ) ⊂ Sk−1 on the sphere, one can construct a data structure1023

withO(dn1+o(1)·κ+Tψn) preprocessing time andO((dn1+o(1)+dn)·κ) space so that for any query1024

x ∈ Rd with φ(x) ∈ Sk−1, we take query time complexity O(dnρ · κ + Tφ) to solve (c, φ, ψ, τ, λ)-1025

MaxIP with respect to (x, Y ) with probability at least 1− δ, where ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1),1026

κ := d log(ndDX/(λδ)) and DX is the maximum diameter in `2 distance of all queries in X .1027

Finally, we present a modified version of Theorem D.1.1028

Theorem G.5 (Convergence result of Frank-Wolfe via LSH with Adaptive Input). Let g : Rd → R1029

denotes a convex (see Definition A.10) and β-smooth function (see Definition A.9). Let the complex-1030

ity of calculating ∇g(x) to be Tg . Let S ⊂ Rd denotes a set of points with |S| = n, and B ⊂ Rd1031

is the convex hull of S defined in Definition A.8. For any parameters ε, δ, there is an iterative algo-1032

rithm with (c, φ, ψ, τ, c−2ε/4)-MaxIP data structure that takes O(dn1+o(1) · κ) preprocessing time1033

and O((n1+o(1) + dn) · κ) space, takes T = O(
βD2

max

ε ) iterations and O(dnρ · κ + Tg) cost per1034

iteration, starts from a random w0 from B as initialization point, updates the w in each iteration as1035

follows:1036

st ← (c, φ, ψ, τ, c−2ε/4)-MaxIP of wt with respect to S

wt+1 ← wt + η · (st − wt)

and outputs wT ∈ Rd from B such that1037

g(wT )−min
w∈B

g(w) ≤ ε,

holds with probability at least 1− δ. Here κ := d log(ndDX/(λδ)) and ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 +1038

o(1).1039

Proof. Convergence.1040

We start with modifying Eq. (14) with additive MaxIP error λ and get1041

ht+1 = (1− cηt)ht +
βD2

max

2
η2t + ηtλ

Let et = Atht with At = t(t+1)
2 . Let ηt = 2

c(t+2) . Let λ =
βD2

max

T+1 Following the proof in1042

Theorem D.1, we upper bound et+1 − et as1043

et+1 − et ≤ (At+1(1− cηt)−At)ht +
βD2

max

2
At+1η

2
t +At+1ηtλ (32)

where1044

• At+1(1− ηt)−At = 01045

• At+1
η2t
2 = t+1

(t+2)c2 < c−21046

• At+1ηtλ = (t+ 1)λ < βD2
max.1047

Therefore,1048

et+1 − et < 2c−2βD2
max (33)
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Based on Eq (33), we upper bound et using induction and have1049

et < 2c−2tβD2
max (34)

Using the definition of et, we have1050

ht =
et
At

<
4βD2

max

c2(t+ 1)
(35)

To make hT ≤ ε, T should be in O(
βD2

max

c2ε ). Moreover, λ =
βD2

max

T+1 = ε
4c2 .1051

Preprocessing time According to Corrollary G.4, can construct κ = d log(ndDX/(λδ) LSH data1052

structures for (c, φ, ψ, τ, c−2ε/4)-MaxIP with φ, ψ defined in Corollary C.3. As transforming every1053

s ∈ S into ψ(s) takesO(dn). Therefore, the total the preprocessing time complexity isO(dn1+o(1) ·1054

κ) and space complexity is O((n1+o(1) + dn) · κ).1055

Cost per iteration1056

Given each wt, compute ∇g(wt) takes Tg . Next, it takes O(d) time to generate φ(wt) according to1057

Corollary C.3 based on g(wt) and ∇g(wt). Next, according to Corrollary G.4, it takes O(dnρ · κ)1058

to retrieve st from κ LSH data structures. After we select st, it takes O(d) time to update the1059

wt+1. Combining the time for gradient calculation, LSH query and wt update, the total complexity1060

is O(dnρ · κ+ Tg) with ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1).1061

1062

Similarly, we could extend the results to statements of Herding algorithm and policy gradient.1063

Theorem G.6 (Modified result of Sublinear Herding,). For any parameters ε, δ, there is an iterative1064

algorithm (Algorithm 4) with c−2ε/4 query quantization that takes O(dn1+o(1) · κ) time in pre-1065

processing and O((n1+o(1) + dn) · κ) space, takes T = O(
D2

max

c2ε ) iterations and O(dnρ · κ) cost1066

per iteration, starts from a random w0 from B as initialization point, updates the w in each iteration1067

based on Algorithm 4 and outputs wT ∈ Rd from B such that1068

1

2
‖wT − µ‖22 −min

w∈B

1

2
‖w − µ‖22 ≤ ε,

holds with probability at least 1 − δ. Here ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1) and κ :=1069

d log(ndDX/(λδ)).1070

Theorem G.7 (Modified result of Sublinear Frank-Wolfe Policy Optimization (SFWPO)). Let TQ1071

denotes the time for computing the policy graident. Let Dmax denotes the maximum diameter of1072

action space and β is a constant. Let γ ∈ (0, 1). Let ρ ∈ (0, 1) denotes a fixed parameter. Let µmin1073

denotes the minimal density of sates in S. There is an iterative algorithm (Algorithm 5) with c−2ε/41074

query quantization that spends O(dn1+o(1) · κ) time in preprocessing and O((n1+o(1) + dn) · κ)1075

space, takesO(
βD2

max

ε2(1−γ)3µ2
min

) iterations andO(dnρ ·κ+TQ) cost per iterations, start from a random1076

point π0
θ as initial point, and output policy πTθ that have average gap

√∑
s∈S gT (s)2 < ε holds with1077

probability at least 1−1/ poly(n), where gT (s) is defined in Eq. (26) and κ := d log(ndDX/(λδ)).1078
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