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Abstract

This paper presents new variance-aware confidence sets for linear bandits and1

linear mixture Markov Decision Processes (MDPs). With the new confidence sets,2

we obtain the follow regret bounds:3

• For linear bandits, we obtain an rOppolypdq
b

1`
řK
k“1 σ

2
kq data-dependent4

regret bound, where d is the feature dimension, K is the number of rounds,5

and σ2
k is the unknown variance of the reward at the k-th round. This is the6

first regret bound that only scales with the variance and the dimension but no7

explicit polynomial dependency on K. When variances are small, this bound8

can be significantly smaller than the rΘ
`

d
?
K
˘

worst-case regret bound.9

• For linear mixture MDPs, we obtain an rOppolypd, logHq
?
Kq regret bound,10

where d is the number of base models, K is the number of episodes, and11

H is the planning horizon. This is the first regret bound that only scales12

logarithmically with H in the reinforcement learning with linear function13

approximation setting, thus exponentially improving existing results, and14

resolving an open problem in Zhou et al. [2020a].15

We develop three technical ideas that may be of independent interest: 1) applica-16

tions of the peeling technique to both the input norm and the variance magnitude, 2)17

a recursion-based estimator for the variance, and 3) a new convex potential lemma18

that generalizes the seminal elliptical potential lemma.19

1 Introduction20

In sequential decision-making problems such as bandits and reinforcement learning (RL), the agent21

chooses an action based on the current state, with the goal to maximize the total reward. When the22

state-action space is large, function approximation is often used for generalization. One of the most23

fundamental and widely used methods is linear function approximation.24

For (infinite-actioned) linear bandits, the minimax-optimal regret bound is rΘpd
?
Kq [Dani et al.,25

2008, Abbasi-Yadkori et al., 2011], where d is the feature dimension and K is the number of total26

rounds played by the agent.1 However, oftentimes the worst-case analysis is overly pessimistic, and27

it is possible to obtain data-dependent bound that is substantially smaller than rOpd
?
Kq in benign28

scenarios.29

One direction to study is the variance magnitude. As a motivating example, in linear bandits, if30

there is no noise (variance is 0), one only needs to pay at most d regret to identify the best action31

because d samples are sufficient to recover the underlying linear coefficients (in general position).32

1We follow the reinforcement learning convention to use K to denote the total number of rounds / episodes.
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This constant-type regret bound is much smaller than the
?
K-type regret bound in the worst case33

where the variance magnitude is a lower bounded constant. Therefore, a natural question is:34

Can we design an algorithm that adapts to the variance magnitude, and its regret degrades35

gracefully from the benign noiseless constant-type bound to the worst-case
?
K-type bound?36

In RL, exploiting the variance information is also important. For tabular RL, one needs to utilize37

the variance information, e.g., Bernstein-type exploration bonus to achieve the minimax optimal38

regret [Azar et al., 2017, Zanette and Brunskill, 2019, Zhang et al., 2020c,a, Menard et al., 2021, Dann39

et al., 2019]. For example, the recently proposed MVP algorithm [Zhang et al., 2020a], enjoys an40

rOppolylogpHq ˆ p
?
SAK ` S2Aqq regret bound, where S is the number of states, A is the number41

of actions, H is the planning horizon, and K is the total number of episodes. 23 Notably, this regret42

bound only scales logarithmically with H . On the other hand, without using the variance information,43

e.g., using Hoeffding-type bonus instead of Bernstein-type bonus, algorithms would suffer a regret44

that scales polynomially with H [Azar et al., 2017].45

Going beyond tabular RL, a recent line of work studied RL with linear function approximation46

with different assumptions [Yang and Wang, 2019, Modi et al., 2020, Jin et al., 2020, Ayoub et al.,47

2020, Zhou et al., 2020a, Modi et al., 2020]. Our paper studies the linear mixture Markov Decision48

Process (MDP) setting [Modi et al., 2020, Ayoub et al., 2020, Zhou et al., 2020a], where the transition49

probability can be represented by a linear function of some features or base models. This model-based50

assumption is motivated by problems in robotics and queuing systems. We refer readers to Ayoub51

et al. [2020] for more discussions.52

For this linear mixture MDP setting, previous works can obtain regret bounds in the form53

rOppolypd,Hq
?
Kq, where d is the number of base models. While these bounds do not scale54

with SA, they scale polynomially with H , because the algorithms in previous works do not use the55

variance information. In practice, H is often large, and even a polynomial dependency on H may not56

be acceptable. Therefore, a natural question is57

Can we design an algorithm that exploits the variance information to obtain an58

rOppolypd, logHq
?
Kq regret bound for linear mixture MDP?59

1.1 Our Contributions60

In this paper, we develop new, variance-aware confidence sets for linear bandits and linear mixture61

MDP and answer the above two questions affirmatively.62

Linear Bandits. For linear bandits, we obtain an rOppolypdq
b

1`
řK
k“1 σ

2
kq regret bound, where63

σ2
k is the unknown variance at the k-th round. To our knowledge, this is the first bound that solely64

depends on the variance and the feature dimension, and has no explicit polynomial dependency65

on K. When the variance is very small so that σ2
k ! 1, this bound is substantially smaller than66

the worst-case rΘpd
?
Kq bound. Furthermore, this regret bound naturally interpolates between the67

worst-case
?
K-type bound and the noiseless-case constant-type bound.68

Linear Mixture MDP. For linear mixture MDP, we obtain the desired rOppolypd, logHq
?
Kq69

regret bound. This is the first regret bound in RL with function approximation that 1) does not scale70

with the size of the state-action space, and 2) only scales logarithmically with the planning horizon71

H . Therefore, we exponentially improve existing results on RL with linear function approximation72

in term of the H dependency, and resolve an open problem in [Zhou et al., 2020a]. More importantly,73

our result conveys the positive conceptual message for RL: it is possible to simultaneously overcome74

the two central challenges in RL, large state-action space and long planning horizon.75

2
rOp¨q hides logarithmic factors. Sometimes we write out polylogH explicitly to emphasize the logarithmic

dependency on H .
3This bound holds for setting where the transition is homogeneous and the total reward is bounded by 1. We

focus on this setting in this paper. See Section 2 and 3 for more discussions.
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1.2 Main Difficulties and Technical Innovations76

We first describe limitations of existing works why they cannot achieve the desired regret bounds77

described above.78

Limitations of Existing Variance-Aware Confidence Sets Faury et al. [2020], Zhou et al. [2020a]79

applied Bernstein-style inequalities to construct a confidence sets of the least square estimator for80

linear bandits. However, their methods can not be applied directly to obtain the desired data-dependent81

regret bound.82

We give a simple example to illustrate their limitations. Consider the case where the variance is83

always σ2 ! 1. Let px1, y1q , . . . , pxk´1, yk´1q be the samples collected before the k-th round.84

Their confidence set at the k-th round is Θk “ tθ|||θ ´ θ̂k||Λk´1
ď Cpσ

?
d ` 1 ` λ1{2qu (See85

In Equation (4.3) of Zhou et al. [2020a] and Theorem 1 of Faury et al. [2020]). where Λk´1 “86
řk´1
τ“1 xτx

J
τ ` λI is the un-normalized covariance matrix , θ̂k “ Λ´1

k´1

řk´1
τ“1 yτxτ is the estimated87

linear coefficients by least squares, λ is a regularization parameter and C is a constant. Consider the88

case d “ 1 and xk “
a

1{K for k “ 1, . . . ,K. Their regret bound is roughly89

K
ÿ

k“1

pσ
?
d` 1` λ1{2q}xk}Λ´1

k
ě p1` λ1{2q

K
ÿ

i“1

}xk}Λ´1
k
ě p1` λ1{2q

c

K

1` λ
ě
?
K,

which is much larger than our bound, O
`?
Kσ2 ` 1

˘

when σ is very small. For more detailed90

discussion, please refer to Appendix B.91

Below we describe our main techniques.92

Elimination with Peeling. Instead of using least squares and upper-confidence-bound (UCB), we93

use an elimination approach. More precisely, for the underlying linear coefficients θ˚ P Rd, we94

build a confidence interval for pθ˚qJ µ for every µ in an ε-net of the d-dimensional unit ball, and95

we eliminate θ P Rd if θJµ fails to fall in the confidence interval of θ˚µ for some µ. To build96

the confidence intervals, we use 1) an empirical Bernstein inequality (cf. Theorem 4) and 2) the97

peeling technique to both the input norm and the variance magnitude. As will be clear in the proof98

(cf. Section D), this peeling step is crucial to obtain a tight regret bound for the example above. The99

new confidence region provides a tighter estimation for θ˚, which helps address the drawback in100

least squares.101

Generalization of the Elliptical Potential Lemma. Since we use the peeling technique which102

comes with a clipping operation, we cannot use the seminal elliptic potential lemma Dani et al. [2008]103

any more. Instead, we propose a more general lemma below, which provides a bound of potential104

for a general class of convex functions though with a worse dependency on d than the bound in the105

elliptical potential lemma. We believe this lemma can be applied to other problems as well.106

Lemma 1 (Generalized Quadratic Potential Lemma). Let fpxq ě 0 be a convex function over107

R such that fpxq
x2 ď

fpyq
y2 ď 1 and fpxq ě fpyq if x2 ě y2 ą 0. Fix ` P p0, 1s. For any108

x1,x2, . . . ,xt P Bd2p1q and µ1,µ2, . . . ,µt P Bd2p1q, we have that109

t
ÿ

i“1

min

#

fpxiµiq
ři´1
j“1 fpxjµiq ` `

2
, 1

+

ď Opd4 logpdt{`qq. (1)

Note that by choosing fpxq “ x2 and µi “
xiΛ

´1
i

}xiΛ
´1
i }

with Λi “
ři´1
j“1 xjx

J
j ` `I, Lemma 1 reduces110

to the classical elliptic potential lemma [Dani et al., 2008]. Our proof consists of two major parts. We111

first establish a symmetric version of Equation (1) using rearrangement inequality, and then bound the112

number of times the energy for some µ (i.e.,
ři
j“1 fpxjµq ` l

2) doubles. The full proof is deferred113

to Appendix C.114

For linear mixture MDP, we propose another technique to further reduce the dependency on d.115
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Recursion-based Variance Estimation. In linear bandits, generally it is not possible to estimate116

the variance because the variance at each round can arbitrarily different. On the other hand, for linear117

mixture MDP, the variance is a quadratic function of the underlying l coefficient θ˚. Furthermore,118

the higher moments are polynomial functions of θ˚. Utilizing this rich structure and leveraging the119

recursion idea in previous analyses on tabular RL [Lattimore and Hutter, 2012, Li et al., 2020, Zhang120

et al., 2020a], we explicitly estimate the variance and higher moments to further reduce the regret.121

See Section 5 for more explanations.122

2 Related Work123

Linear Bandits. There is a line of theoretical analyses of linear bandits problems [Auer et al.,124

2002, Dani et al., 2008, Chu et al., 2011, Abbasi-Yadkori et al., 2011, Li et al., 2019a,b]. For125

infinite-actioned linear bandits, the minimax regret bound is rΘpd
?
Kq. and recent works tried to126

give fine-grained instance-dependent bounds [Katz-Samuels et al., 2020, Jedra and Proutiere, 2020].127

For multi-armed bandits, Audibert et al. [2006] showed by exploiting the variance information, one128

can improve the regret bound. For linear bandits, only a few work studied how to use the variance129

information. Faury et al. [2020] studied logistic bandit problem with adaptivity to the variance of130

noise, where a Bernstein-style confidence set was proposed. However, they assume the variance is131

known and cannot attain the desired variance-dependent bound due to the example we gave above.132

Linear bandits can be also seen as a simplified version of RL with linear function approximation,133

where the planning horizon degenerates to H “ 1.134

RL with Linear Function Approximation. Recently, it is a central topic in the theoretical RL135

community to figure out the necessary and sufficient conditions that permit efficient learning in RL136

with large state-action space [Wen and Van Roy, 2013, Jiang et al., 2017, Yang and Wang, 2019,137

2020, Du et al., 2019b, 2020a, 2019a, 2020b, Jiang et al., 2017, Feng et al., 2020, Sun et al., 2019,138

Dann et al., 2018, Krishnamurthy et al., 2016, Misra et al., 2019, Ayoub et al., 2020, Zanette et al.,139

2020, Wang et al., 2019, 2020c,b, Jin et al., 2020, Weisz et al., 2020, Modi et al., 2020, Shariff and140

Szepesvári, 2020, Jin et al., 2020, Cai et al., 2019, He et al., 2020, Zhou et al., 2020a]. However,141

to our knowledge, all existing regret upper bounds have a polynomial dependency on the planning142

horizon H , except works that assume the environment is deterministic [Wen and Van Roy, 2013, Du143

et al., 2020b].144

This paper studies the linear mixture MDP setting [Ayoub et al., 2020, Zhou et al., 2020b,a, Modi145

et al., 2020], which assumes the underlying transition is a linear combination of some known base146

models. Ayoub et al. [2020] gave an algorithm, UCRL-VTR, with an rOpdH2
?
Kq regret in the time-147

inhomogeneous model.4 Our algorithm improves the H-dependency from polypHq to polylogpHq,148

at the cost of a worse dependency on d.149

Variance Information in Tabular MDP. The use of the variance information in tabular MDP was150

first proposed by Lattimore and Hutter [2012] in the discounted MDP setting, and was later adopted151

in the episodic MDP setting [Azar et al., 2017, Jin et al., 2018, Zanette and Brunskill, 2019, Dann152

et al., 2019, Zhang et al., 2020a,b]. This technique is crucial to tighten the dependency on H .153

Concurrent Work by Zhou et al. [2020a]. While preparing this draft, we noticed a concurrent154

work by Zhou et al. [2020a], who also studied how to use the variance information for linear155

bandits and linear mixture MDPs. We first compare their results with ours. For linear bandits,156

they proved an rOp
?
dK ` d

b

řK
i“1 σ

2
i q regret bound, while we prove an rOpd4.5

b

řK
i“1 σ

2
i ` d

5q157

regret bound. Our bound has a worse dependency on d, but in the regime where K is very large158

and the sum of the variances is small, our bound is stronger. Furthermore, they assumed the159

variance is known while we do not need this assumption. For linear mixture MDP, they proved an160

4The time-inhomogeneous model refers to the setting where the transition probability can vary at different
levels, and the time-homogeneous model refers to the setting where the transition probability is the same at
different levels. Roughly speaking, the model complexity of the time-inhomogeneous model is H times larger
than that of the time-homogeneous model. In general, it is straightforward to tightly extend a result for the
time-homogeneous model to the time-inhomogeneous model by extending the state-action space [Jin et al., 2018,
Footnote 2], but not vice versa.
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rOp
?
d2H ` dH2

?
K`d2H2`d3Hq bound for the time-inhomogeneous model, while we prove an161

rOpd4.5
?
K ` d5q ˆ polylogpHq bound for the time-homogeneous model. Their bound has a better162

dependency on d than ours and is near-optimal in the regime K “ Ω ppoly pd,Hqq and H “ Opdq.163

On the other hand, we have an exponentially better dependency on H in the time-homogeneous164

model. Indeed, obtaining a regret bound that is logarithmic in H (in the time-homogeneous model)165

was raised as an open question in their paper [Zhou et al., 2020a, Remark 5.5].166

Next, we compare the algorithms and the analyses. The algorithms in the two papers are very different167

in nature: ours are based on elimination while theirs are based on least squares and UCB. We note168

that, for linear bandits, their current analysis cannot give a
?
K-free bound because there is a term169

that scales inversely with the variance. This can be seen by plugging the first line of their (B.25) to170

their (B.23). For the same reason, they cannot give a horizon-free bound in the time-homogeneous171

linear mixture MDP. In sharp contrast, our analysis does not have the term depending on the inverse172

of the variance. On the other hand, their algorithms are computationally efficient (given certain173

computation oracles), but our algorithms are not because ours are elimination-based. See Section 6174

for more discussions.175

3 Preliminaries176

Notations. We use Bdpprq “ tx P Rd : ‖x‖p ď ru to denote the d-dimensional `p-ball of radius r.177

For any set S Ď Rd, we use BS to denote its boundary. For N P N, we define rN s “ t1, . . . , Nu.178

One important operation used in our algorithms and analyses is clipping. Given ` ą 0 and u P R, we179

define180

clippu, `q “ mint|u|, `u ¨ u
|u|

for u ‰ 0 and clipp0, `q “ 0. For any two vectors u,v, to save notations, we use uv “ uJv to181

denote their inner product when no ambiguity.182

Linear Bandits. We useK to denote the number of rounds in the linear bandits. At each round k “183

1, . . . ,K, the algorithm is first given the context set Ak Ď Bd2p1q, then the algorithm chooses an action184

xk P Ak and receives the noisy reward rk “ xkθ˚`εk,where θ˚ P Bd2p1q is the unknown underlying185

linear coefficients and εk is the random noise. We define Fk “ σpx1, ε1, . . . ,xk, εk,xk`1q. We186

assume that |rk| ď 1 and that the noise εk satisfies Erεk | Fks “ 0 and Erε2
k | Fks “ σ2

k. The goal187

is to learn θ˚ and minimize the cumulative expected regret ErRKs, where188

RK “

K
ÿ

k“1

rmax
xPAk

xθ˚ ´ xkθ
˚s.

Remark 1. Here we assume the reward is uniformly bounded (|rk| ď 1) instead of 1-sub-Gaussian189

commonly used in the literature only for the ease of presentation, because in RL, it is standard to190

assume bounded reward. Note if the noise is 1-sub-Gaussian, our algorithm also applies with only191

an O plog T q overhead because a problem with 1-sub-Gaussian noise can be reduced to that with192

uniformly bounded noise by clipping the noise with a threshold Oplog T q.193

Episodic MDP and Linear Mixture MDP. We use a tuple pS,A, r, P,K,Hq to define an episodic194

finite-horizon MDP. Here, S is its state space, A is its action space, r : S ˆAÑ r0, 1s is its reward195

function, P ps1 | s, aq is the transition probability from the state-action pair ps, aq to the new state196

s1, K is the number of episodes, and H is the planning horizon of each episode. Without the loss of197

generality, we assume a fixed initial state s1. A sequence of functions π “ tπh : S Ñ 4pAquHh“1 is198

an policy, where 4pAq denotes the set of all possible distributions over A.199

At each episode k “ 1, . . . ,K, the algorithm outputs a policy πk, which is then executed on the200

MDP by akh „ πkhps
k
hq, s

k
h`1 „ P p¨ | skh, a

k
hq. We let rkh “ rpskh, a

k
hq be the reward at time step h in201

episode k. Importantly, we assume the transition model P p¨ | ¨, ¨q is time-homogeneous, which is202

necessary to bypass the polypHq dependency. We assume that the reward function is known, which203

is standard in the theoretical RL literature to simplify the presentation [Modi et al., 2020, Ayoub et al.,204

2020]. We let π˚ to denote the optimal policy which achieves the maximum reward in expectation.205

We make the following regularity assumption on the rewards: the sum of reward,
řH
h“1 rh, in each206

episode is bounded by 1.207
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Algorithm 1 VOFUL: Variance-Aware Optimism in the Face of Uncertainty for Linear Bandits

1: Initialize: `i “ 22´i, ι “ 16d ln dK
δ , L2 “ rlog2Ks,Λ2 “ t1, 2, . . . , L2 ` 1u, Θ1 “ Bd2p1q,

Let B be an K´3-net of Bd2p2q with size not larger than p 4
K q

3d

2: for k “ 1, 2, . . . ,K do
3: Optimistic Action Selection:
4: Observe context set Ak Ď Bd2p1q
5: Compute xk Ð arg maxxPAk maxθPΘk xθ, choose action xk
6: Receive feedback yk
7: Construct Confidence Set:
8: For each θ P Bd2p1q, define εkpθq “ yk ´ xkθ, ηkpθq “ pεkpθqq

2.
9: Define confidence set Θk`1 “

Ş

jPΛ2
Θj
k`1, where

Θj
k`1 “

"

θ P Bd2p1q :

∣∣∣∣∣ k
ÿ

v“1

clipjpxvµqεvpθq

∣∣∣∣∣ ď
g

f

f

e

k
ÿ

v“1

clip2
j pxvµqηvpθqι` `jι,@µ P B

*

(2)

and clipjp¨q “ clipp¨, `jq.
10: end for

Assumption 2 (Non-uniform reward).
řH
h“1 r

k
h ď 1 almost surely for any policy πk.208

This assumption is much weaker than the common assumption where the reward at each time step is209

bounded by 1{H (uniform reward) because Assumption 2 allows one spiky reward as large as Ω p1q.210

See more discussions about this reward scaling in Jiang and Agarwal [2018], Wang et al. [2020a],211

Zhang et al. [2020a].212

For any policy π, we define its H-step V -function and Q-function as213

V πh psq “ max
aPA

Qπhps, aq

where Qπhps, aq “ rps, aq ` Es1„P p¨|s,aqV πh`1ps
1q for h “ 1, . . . ,H

where we set VH`1 “ 0. For simplicity, we also denote V πps1q “ V π1 ps1q and V ˚ps1q “ V π
˚

ps1q.214

A linear mixture MDP is an episodic MDP with the extra assumption that its transition model is an215

unknown linear combination of a known set of models. Specifically, there is an unknown parameter216

θ˚ P Bd1p1q, such that P “
řd
i“1 θ

˚
i Pi where based models P1, . . . , Pd are given. The goal is to217

learn θ˚ and minimize the cumulative expected regret ErRKs, where218

RK “

k
ÿ

k“1

rV ˚ps1q ´ V
kps1qs.

4 Algorithm and Theory for Linear Bandits219

In this section, we introduce our algorithm for linear bandits and analyze its regret. The pseudo-220

code is listed in Algorithm 1. The following theorem shows our algorithm achieves the desired221

variance-dependent regret bound. The proof is deferred to Section D.222

Theorem 3. The expected regret of Algorithm 1 is bounded by ErRKs ď rOpd4.5

b

řK
k“1 σ

2
k ` d

5q.223

This theorem shows our algorithm’s regret has no explicit polynomial dependency on the number224

of rounds K. In the worst-case where the variance is Ω p1q, our bound becomes rO
`

d4.5
?
K ` d5

˘

,225

which has a worse dependency on d compared with the minimax optimal algorithms [Dani et al.,226

2008, Abbasi-Yadkori et al., 2011]. However, in the benign case where the variance is op1q, our227

bound can be much smaller. In particular, in the noiseless case, our bound is a constant-type regret228

bound, up to logarithmic factors. One future direction is to design an algorithm that is minimax229

optimal in the worst-case but also adapts to the variance magnitude like ours.230

Now we describe our algorithm. Similar to the existing linear bandits algorithms, our algorithm231

maintains a confidence set for the underlying parameter θ˚. The confidence set Θk is updated at232
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each round, and we choose the action greedily according to the confidence set. Note that existing233

confidence sets either do not exploit variance information [Dani et al., 2008, Abbasi-Yadkori et al.,234

2011], or require the variance to be known and do not fully exploit the variance information [Zhou235

et al., 2020a, Faury et al., 2020] as their regret bounds still have an rOp
?
Kq term.236

To relax the known variance assumption, we use the following empirical Bernstein inequality that237

depends on the empirical variance, in contrast to the Bernstein inequality that depends on the true238

variance, which was used in existing works [Zhou et al., 2020b, Faury et al., 2020].239

Theorem 4. Let tFiuni“0 be a filtration. Let tXiu
n
i“1 be a sequence of real-valued random variables240

such that Xi is Fi-measurable. We assume that ErXi | Fi´1s “ 0 and that |Xi| ď b almost surely.241

For δ ă e´1, we have242

Pr

»

–

∣∣∣∣∣ nÿ
i“1

Xi

∣∣∣∣∣ ď 8

g

f

f

e

n
ÿ

i“1

X2
i ln

1

δ
` 16b ln

1

δ

fi

fl ě 1´ 6δ log2 n. (3)

Importantly, this inequality controls the deviation via the empirical variance, which is X2
i and can be243

computed once Xi is known. Note some previously proved inequalities require certain independence244

assumptions and thus cannot be directly applied to martingales [Maurer and Pontil, 2009, Peel et al.,245

2013], so they cannot be used for solving our linear bandits problem. The proof of the theorem is246

deferred to Appendix D.2.247

Much more effort is devoted to designing a confidence set that fully exploits the variance information.248

Note Theorem 4 is for real-valued random variables, and it remains unclear how to generalize it to249

the linear regression setting, which is crucial for building confidence sets for linear bandits. Previous250

works built up their confidence sets based on analyzing the convergence of the ordinary ridged least251

square estimator [Dani et al., 2008, Abbasi-Yadkori et al., 2011], or the weighted one [Zhou et al.,252

2020a].253

We drop the least square estimators and instead, we take a testing-based approach, as done in254

Equation (2). To illustrate the idea, we first ignore the clipjp¨q operation and `j terms. We define the255

noise function εkpθq and the variance function ηkpθq (Line 8 of Algorithm 1). Note that εkpθ˚q “ εk256

and ηkpθ˚q “ ε2
k, so we have the following fact: if θ “ θ˚, then Equation (3) would be true if we257

replace Xk “ wkpµqεkpθq and X2
k “ w2

kpµqηkpθq with high probability, where twkpµqu is a proper258

sequence of weights depending on the test direction µ. Our approach uses the fact in the opposite259

direction: if weighted wkpµqεkpθq, w2
kpµqηkpθq satisfies Equation (3) for all possible test directions260

µ, then we put θ into the confidence set.261

Given the test direction µ, following the least square estimation, wkpµq is set to be xkµ. However,262

with wkpµq “ xkµ, the right-hand-side of Equation (3) is at least b ě max1ďkďn |wkpµq| “263

max1ďkďn |xkµ|, which might be dominant compared with
řn
k“1 w

2
kpµqηkpθq (See Appendix B264

for a toy example). To address this problem, we consider to peel wkpµq for various thresholds265

of difference level. More precisely, we construct confidence regions respectively with wjkpµq “266

clipjpxkµq, where lj “ 22´j for j “ 1, 2, . . . , rlog2Ks. At last, we define the final confidence267

region as the intersections of all these confidence regions.268

Proof Sketch. Now we explain how our confidence set enables us to obtain a variance-dependent269

regret bound. We define θk “ arg maxθPΘk xkpθ ´ θ
˚q and µk “ θk ´ θ˚. Then our goal is to270

bound the regret
ř

k xkµk. Our main idea is to consider txku, tµku as two sequences of vectors.271

We decouple the complicated dependency between txku and tµku by a union bound over the net272

B (defined in Line 1 of Algorithm 1). To bound the regret, we implicitly divide all rounds k P rKs273

into norm layers based on log2 |xkµk| in the analysis. 5 Within each layer, we apply Equation (2)274

to obtain the relations between µk and tx1, . . . ,xk´1u, which would self-normalize the growth275

of the two sequences, ensuring that their in-layer total sum is properly bounded. Since we have276

logarithmically many layers, the total regret is then properly bounded. We highlight that our norm277

peeling technique ensures that the variance-dependent term dominates the other variance-independent278

term in Bernstein inequalities (
a

ř

X2
i

ą
„ b in Theorem 4), which resolves the variance-independent279

term in the final regret bound obtained by Zhou et al. [2020a]. See Section D for the full proof.280

5This cannot be done explicitly in the algorithm, since it would re-couple the two sequences.
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Algorithm 2 VARLin: Variance-Aware RL with Linear Function Approximation

1: Initialize: `i “ 22´i, ι “ 16d ln dHK
δ , L0 “ rlog2KHs, L1 “ L2 “ r5 log2pHKq ` 3s,Λ0 “

t0, 1, , . . . , L0u,Λ1 “ t1, . . . , L1u,Λ2 “ t1, . . . , L2u. B be an pHKq´3-net of Bd1p2q with size
no larger than p 4

HK q
3d. Θ1 “ Bd1p1q.

2: for k “ 1, 2, . . . ,K do
3: Optimistic Planning:
4: for h “ H,H ´ 1, . . . , 1 do
5: For each ps, aq P S ˆA, let Qkhps, aq “ mint1, rps, aq `maxθPΘk

řd
i“1 θiP

i
s,aV

k
h`1u.

6: For each s P S, let V kh psq “ maxaPAQ
k
hps, aq.

7: end for
8: for h “ 1, 2, . . . ,H do
9: Choose action akh Ð arg maxaPAQ

k
hps

k
h, aq, observe the next state skh`1.

10: end for
11: Construct Confidence Set:
12: For m P Λ0, h P rHs, define the input xmk,h “ rP

1
skh,a

k
h

pV kh`1q
2m , . . . , P d

skh,a
k
h

pV kh`1q
2msJ.

13: For m P Λ0, h P rHs, define the variance estimate ηmk,h “ maxθPΘktθx
m`1
k,h ´ pθxmk,hq

2u.
14: Denote εmv,upθq “ θx

m
v,u ´ pV

v
u`1ps

v
u`1qq

2m for m P Λ0, u P rHs, v P rk ´ 1s

15: Define T m,i
k`1 “ tpv, uq P rks ˆ rHs : ηmv,u P p`i`1, `isu, T m,L1`1

k`1 “ tpv, uq P rks ˆ rHs :
ηmv,u ď `L1`1u.

16: Define the confidence ball Θk`1 “
Ş

m,i,j Θm,i,j
k`1 , where

Θm,i,j
k`1 “

#

θ P Bd1p1q :

∣∣∣∣∣∣
ÿ

pv,uqPT m,ik

clipjpx
m
v,uµqε

m
v,upθq

∣∣∣∣∣∣
ď4

d

ÿ

pv,uqPTm,ik

clip2
j px

m
v,uµqη

m
v,uι` 4`jι,@µ P B

+

(4)

and clipjp¨q “ clipp¨, `jq
17: end for

5 Algorithm and Theory for Linear Mixture MDP281

We introduce our algorithm and the regret bound for linear mixture MDP. Its pseudo-code is listed in282

Algorithm 2 and its regret bound is stated in the following theorem.283

Theorem 5. The expected regret of Algorithm 2 is bounded by ErRKs ď rO
`

d4.5
?
K ` d9

˘

.284

To our knowledge, this is the first regret bound that only scales polynomially with the dimension (d),285

and does not scale polynomially with the planning horizon H . The proof of Theorem 5 is deferred to286

Section E.287

Before describing our algorithm, we introduce some additional notations. In this section, we assume288

that, unless explicitly stated, the variables m, i, j, k, h iterate over the sets Λ0,Λ1,Λ2, rKs, rHs,289

respectively. See Line 1 of Algorithm 2 for the definitions of these sets. For example, at Line 16 of290

Algorithm 2, we have
Ş

m,i,j Θm,i,j
k`1 “

Ş

mPΛ0,iPΛ1,jPΛ2
Θm,i,j
k`1 .291

The starting point of our algorithm design is from Zhang et al. [2020a], in which the authors obtained292

a nearly horizon-free regret bound in tabular MDP. A natural idea is to combine their proof with293

our results for linear bandits (cf. Section 4) and obtain a nearly horizon-free regret bound for linear294

mixture MDP.295

Note that, however, there is one caveat for such direct combination: in Section 4, the confidence set296

Θk is updated at a per-round level, in that Θk is built using all rounds prior to k; while for the RL297

setting, the confidence set Θk could only be updated at a per-episode level and use all time steps prior298

to episode k. Were it updated at a per-time-step level, severe dependency issues would prevent us299

from bounding the regret properly. Such discrepancy in update frequency results in a gap between300
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the confidence set built using data prior to episode k, and that built using data prior to time step301

pk, hq. Fortunately, we are able to resolve this issue. In Lemma 22, we show that we can relate these302

two confidence intervals, except for Õpdq “bad” episodes. Therefore, we could adapt the analysis303

in Zhang et al. [2020a] only for the not “bad” episodes, and we bound the regret by 1 for the “bad”304

episodes. The resulting regret bound should be rOpd6.5
?
Kq.305

To further reduce the horizon-free regret bound to Õpd4.5
?
Kq, we present another novel technique.306

We first note an important advantage of the linear mixture MDP setting over the linear bandit setting:307

in the latter setting, we cannot estimate the variance because there is no structure on the variance308

among different actions; while in the former setting, we could estimate an upper bound of the variance,309

because the variance is a quadratic function of θ˚. Therefore, we can use the peeling technique on the310

variance magnitude to reduce the regret (comparing Equation (27) and Equation (40) in appendix).311

We note that one can also apply this step to linear bandits if the variance can be estimated.312

Along the way, we also need to bound the gap between estimated variance and true variance, which313

can be seen as the “regret of variance predictions.” Using the same idea, we can build a confidence314

set using the variance sequence (x2), and the regret of variance predictions can be bounded by the315

variance of variance, namely the 4-th moment. Still, a peeling step on the 4-th moment is required to316

bound the regret of variance predictions, we need to bound the gap between estimated 4-th moment317

and true 4-th moment, which requires predicting 8-th moment, We continue to use this idea: we318

estimate 2-th, 4-th, 8-th, . . . , OplogKHq-th moments. The index m is used for moments, and Λ0 is319

the index set reserved for moments. We note that the proof in [Zhang et al., 2020a] also depends on320

the higher moments. The main difference is here we estimate these higher moments explicitly.321

6 Discussions322

By incorporating the variance information in the confidence set construction, we derive the first323

variance-dependent regret bound for linear bandits and the nearly horizon-free regret bound for linear324

mixture MDP. Below we discuss limitations of our work and some future directions.325

One drawback of our result is that our dependency on d is large. The main reason is our bounds rely326

on the convex potential lemma (Lemma 17), which is rOpd4q. In analogous to the elliptical potential327

lemma in [Abbasi-Yadkori et al., 2011], we believe that this bound can be improved to rOpdq. This328

improvement will directly reduce the dependencies on d in our bounds.329

Another drawback is that our method is not computationally efficient. This is a common issue in330

elimination-based algorithms. We note that the issue of computational tractability is common in se-331

quential decision-making problems. We list some examples. Many algorithm for tabular problems are332

statistically efficient but computationally inefficient [Zhang and Ji, 2019, Wang et al., 2020a, Bartlett333

and Tewari, 2012]. The most statistically efficient algorithm for linear MDP, ELEANOR [Zanette334

et al., 2020], is not computationally efficient. Algorithms for many general frameworks on RL with335

function approximation are elimination-based and thus not computationally efficient [Krishnamurthy336

et al., 2016, Jiang et al., 2017, Sun et al., 2019, Jin et al., 2021, Du et al., 2021, Dong et al., 2020].337

Fortunately, later work has made progress on computational aspects for many settings [Zhang et al.,338

2020a, Dann et al., 2018, Du et al., 2019a, Jin et al., 2020, Fruit et al., 2018, Wang et al., 2020c,339

Agarwal et al., 2020]. For now, leave it as a future direction to design computationally efficient340

algorithms that enjoy variance-dependent bounds for linear bandits and horizon-free bounds for linear341

mixture MDP.342

Lastly, in this paper, we only study sequential decision-making problems with linear function343

approximation. It would be interesting to generalize the ideas in this paper to other settings with344

function approximation, such as linear MDP [Yang and Wang, 2019, Jin et al., 2020], low inherent345

Bellman error [Zanette et al., 2020], Eluder dimension [Wang et al., 2020c, Russo and Van Roy,346

2013], and various general frameworks on RL with function approximation [Jiang et al., 2017, Sun347

et al., 2019, Du et al., 2021, Jin et al., 2021].348

References349

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic350

bandits. Advances in neural information processing systems, 24:2312–2320, 2011.351

9



Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity352

and representation learning of low rank mdps. arXiv preprint arXiv:2006.10814, 2020.353

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. Use of variance estimation in the multi-354

armed bandit problem. 2006.355

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed356

bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.357

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin F Yang. Model-based reinforcement358

learning with value-targeted regression. In Proceedings of the 37th International Conference on359

Machine Learning, 2020.360

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-361

ment learning. In Proceedings of the 34th International Conference on Machine Learning, pages362

263–272, 2017.363

Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical364

Journal, Second Series, 19(3):357–367, 1967.365

Peter L Bartlett and Ambuj Tewari. Regal: A regularization based algorithm for reinforcement366

learning in weakly communicating mdps. arXiv preprint arXiv:1205.2661, 2012.367

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza-368

tion. arXiv preprint arXiv:1912.05830, 2019.369

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff370

functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and371

Statistics, pages 208–214, 2011.372

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit373

feedback. In Conference on Learning Theory, 2008.374

Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E.375

Schapire. On oracle-efficient PAC-RL with rich observations. In Advances in Neural Information376

Processing Systems, 2018.377

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable378

reinforcement learning. In Proceedings of the 36th International Conference on Machine Learning,379

pages 1507–1516, 2019.380

Kefan Dong, Jian Peng, Yining Wang, and Yuan Zhou. Root-n-regret for learning in Markov decision381

processes with function approximation and low Bellman rank. In Conference on Learning Theory,382

pages 1554–1557. PMLR, 2020.383

Simon S Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.384

Provably efficient RL with rich observations via latent state decoding. In International Conference385

on Machine Learning, pages 1665–1674, 2019a.386

Simon S Du, Yuping Luo, Ruosong Wang, and Hanrui Zhang. Provably efficient Q-learning with func-387

tion approximation via distribution shift error checking oracle. In Advances in Neural Information388

Processing Systems, pages 8058–8068, 2019b.389

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient for390

sample efficient reinforcement learning? In International Conference on Learning Representations,391

2020a.392

Simon S Du, Jason D Lee, Gaurav Mahajan, and Ruosong Wang. Agnostic Q-learning with func-393

tion approximation in deterministic systems: Tight bounds on approximation error and sample394

complexity. Advances in Neural Information Processing Systems, 2020b.395

Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and396

Ruosong Wang. Bilinear classes: A structural framework for provable generalization in RL. arXiv397

preprint arXiv:2103.10897, 2021.398

10



Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic algorithms399

for logistic bandits. In International Conference on Machine Learning, pages 3052–3060. PMLR,400

2020.401

Fei Feng, Ruosong Wang, Wotao Yin, Simon S Du, and Lin F Yang. Provably efficient exploration402

for RL with unsupervised learning. arXiv preprint arXiv:2003.06898, 2020.403

Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained404

exploration-exploitation in reinforcement learning. In International Conference on Machine405

Learning, pages 1578–1586. PMLR, 2018.406

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with407

linear function approximation. arXiv preprint arXiv:2011.11566, 2020.408

Yassir Jedra and Alexandre Proutiere. Optimal best-arm identification in linear bandits. Advances in409

Neural Information Processing Systems, 33, 2020.410

Nan Jiang and Alekh Agarwal. Open problem: The dependence of sample complexity lower bounds411

on planning horizon. In Conference On Learning Theory, pages 3395–3398, 2018.412

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Con-413

textual decision processes with low Bellman rank are PAC-learnable. In Proceedings of the 34th414

International Conference on Machine Learning, pages 1704–1713, 2017.415

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient?416

In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.417

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement418

learning with linear function approximation. In Conference on Learning Theory, pages 2137–2143,419

2020.420

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman Eluder dimension: New rich classes of RL421

problems, and sample-efficient algorithms. arXiv preprint arXiv:2102.00815, 2021.422

Julian Katz-Samuels, Lalit Jain, Kevin G Jamieson, et al. An empirical process approach to the union423

bound: Practical algorithms for combinatorial and linear bandits. Advances in Neural Information424

Processing Systems, 33, 2020.425

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning with rich426

observations. In Advances in Neural Information Processing Systems, pages 1840–1848, 2016.427

Tor Lattimore and Marcus Hutter. Pac bounds for discounted mdps. In International Conference on428

Algorithmic Learning Theory, pages 320–334. Springer, 2012.429

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Breaking the sample size barrier in430

model-based reinforcement learning with a generative model. In Advances in Neural Information431

Processing Systems, 2020.432

Yingkai Li, Yining Wang, and Yuan Zhou. Nearly minimax-optimal regret for linearly parameterized433

bandits. In Conference on Learning Theory, pages 2173–2174, 2019a.434

Yingkai Li, Yining Wang, and Yuan Zhou. Tight regret bounds for infinite-armed linear contextual435

bandits. arXiv preprint arXiv:1905.01435, 2019b.436

Andreas Maurer and Massimiliano Pontil. Empirical Bernstein bounds and sample variance penaliza-437

tion. In Conference on Learning Theory, 2009.438

Pierre Menard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. Ucb momentum439

q-learning: Correcting the bias without forgetting. arXiv preprint arXiv:2103.01312, 2021.440

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state441

abstraction and provably efficient rich-observation reinforcement learning. arXiv preprint442

arXiv:1911.05815, 2019.443

11



Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of reinforcement444

learning using linearly combined model ensembles. In International Conference on Artificial445

Intelligence and Statistics, pages 2010–2020. PMLR, 2020.446

Thomas Peel, Sandrine Anthoine, and Liva Ralaivola. Empirical bernstein inequality for martingales:447

Application to online learning. 2013.448

Dan Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic449

exploration. In Advances in Neural Information Processing Systems, pages 2256–2264, 2013.450

Roshan Shariff and Csaba Szepesvári. Efficient planning in large mdps with weak linear function451

approximation. arXiv preprint arXiv:2007.06184, 2020.452

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based453

RL in contextual decision processes: PAC bounds and exponential improvements over model-free454

approaches. In Conference on Learning Theory, pages 2898–2933, 2019.455

Ruosong Wang, Simon S Du, Lin F Yang, and Sham M Kakade. Is long horizon reinforcement learning456

more difficult than short horizon reinforcement learning? In Advances in Neural Information457

Processing Systems, 2020a.458

Ruosong Wang, Simon S Du, Lin F Yang, and Ruslan Salakhutdinov. On reward-free reinforcement459

learning with linear function approximation. In Advances in Neural Information Processing460

Systems, 2020b.461

Ruosong Wang, Ruslan Salakhutdinov, and Lin F Yang. Provably efficient reinforcement learning462

with general value function approximation. Advances in Neural Information Processing Systems,463

2020c.464

Yining Wang, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy. Optimism in reinforcement465

learning with generalized linear function approximation. arXiv preprint arXiv:1912.04136, 2019.466

Gellert Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for planning in467

mdps with linearly-realizable optimal action-value functions. arXiv preprint arXiv:2010.01374,468

2020.469

Zheng Wen and Benjamin Van Roy. Efficient exploration and value function generalization in470

deterministic systems. In Advances in Neural Information Processing Systems, pages 3021–3029,471

2013.472

Lin Yang and Mengdi Wang. Sample-optimal parametric Q-learning using linearly additive features.473

In International Conference on Machine Learning, pages 6995–7004, 2019.474

Lin F Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and475

regret bound. International Conference on Machine Learning, 2020.476

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement477

learning without domain knowledge using value function bounds. In International Conference on478

Machine Learning, pages 7304–7312, 2019.479

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near480

optimal policies with low inherent bellman error. In International Conference on Machine Learning,481

2020.482

Zihan Zhang and Xiangyang Ji. Regret minimization for reinforcement learning by evaluating the483

optimal bias function. In Advances in Neural Information Processing Systems, pages 2823–2832,484

2019.485

Zihan Zhang, Xiangyang Ji, and Simon S Du. Is reinforcement learning more difficult than bandits?486

a near-optimal algorithm escaping the curse of horizon. arXiv preprint arXiv:2009.13503, 2020a.487

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning488

via reference-advantage decomposition. In Advances in Neural Information Processing Systems,489

2020b.490

12



Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Model-free reinforcement learning: from clipped491

pseudo-regret to sample complexity. arXiv preprint arXiv:2006.03864, 2020c.492

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning493

for linear mixture markov decision processes. arXiv preprint arXiv:2012.08507, 2020a.494

Dongruo Zhou, Jiafan He, and Quanquan Gu. Provably efficient reinforcement learning for discounted495

mdps with feature mapping. arXiv preprint arXiv:2006.13165, 2020b.496

Checklist497

1. For all authors...498

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s499

contributions and scope? [Yes]500

(b) Did you describe the limitations of your work? [Yes] We discuss the limitations in501

Section 6.502

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This work503

is theoretical so the boarder impact does not apply.504

(d) Have you read the ethics review guidelines and ensured that your paper conforms to505

them? [Yes]506

2. If you are including theoretical results...507

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We present the508

main assumption in Section 3.509

(b) Did you include complete proofs of all theoretical results? [Yes] We present the proofs510

in Appendix.511

3. If you ran experiments...512

(a) Did you include the code, data, and instructions needed to reproduce the main experi-513

mental results (either in the supplemental material or as a URL)? [N/A] We have no514

experiments.515

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they516

were chosen)? [N/A]517

(c) Did you report error bars (e.g., with respect to the random seed after running experi-518

ments multiple times)? [N/A]519

(d) Did you include the total amount of compute and the type of resources used (e.g., type520

of GPUs, internal cluster, or cloud provider)? [N/A]521

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...522

(a) If your work uses existing assets, did you cite the creators? [N/A] We do not use523

existing models.524

(b) Did you mention the license of the assets? [N/A]525

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]526

527

(d) Did you discuss whether and how consent was obtained from people whose data you’re528

using/curating? [N/A]529

(e) Did you discuss whether the data you are using/curating contains personally identifiable530

information or offensive content? [N/A]531

5. If you used crowdsourcing or conducted research with human subjects...532

(a) Did you include the full text of instructions given to participants and screenshots, if533

applicable? [N/A] This work is inrelevent with human subjects.534

(b) Did you describe any potential participant risks, with links to Institutional Review535

Board (IRB) approvals, if applicable? [N/A]536

(c) Did you include the estimated hourly wage paid to participants and the total amount537

spent on participant compensation? [N/A]538

13



A Technical Lemmas539

Lemma 6 ([Azuma, 1967]). Let pMnqně0 be a martingale such thatM0 “ 0 and |Mn ´Mn´1| ď b540

almost surely for every n ě 1. Then we have541

Pr
”

|Mn| ě b
a

2n logp2{δq
ı

ď δ.

Lemma 7 ([Zhang et al., 2020c], Lemma 9). Let tFiuiě0 be a filtration. Let tXiuiě1 be a real-542

valued stochastic process adapted to tFiuiě0 such that 0 ď Xi ď 1 almost surely and that Xi is543

Fi-measurable. For every δ P p0, 1q, c ě 1, we have544

Pr

«

Dn ě 1 :
n
ÿ

i“1

ErXi | Fi´1s ě 4c ln
4

δ
,
n
ÿ

i“1

Xi ď c ln
4

δ

ff

ď δ.

Lemma 8. Let tFiuiě0 be a filtration. Let tXiuiě1 be a real-valued stochastic process adapted to545

tFiuiě0 such that 0 ď Xi ď 1 almost surely and that Xi is Fi-measurable. For every δ P p0, 1q, c ě546

1, we have547

Pr

«

Dn ě 1 :
n
ÿ

i“1

Xi ě 4c ln
4

δ
,
n
ÿ

i“1

ErXi | Fi´1s ď c ln
4

δ

ff

ď δ.

Proof. We follow the proof of Lemma 9 in [Zhang et al., 2020c]. Let λ ą 0 be a parameter,548

µi “ ErXi | Fi´1s. Define Yn “ exp
`

λ
řn
i“1Xi ´ pe

λ ´ 1q
řn
i“1 µi

˘

for n ě 0. Note that549

EreλX s ď µeλ ` p1 ´ µq ď eµpe
λ
´1q, so EreλXi´pe

λ
´1qµi | Fi´1s ď 1, thus tYnuně0 is a550

super-martingale. Let τ “ mintn :
řn
i“1Xi ě 4c lnp4{δqu be a stopping time, then we have551 ∣∣Ymintτ,nu

∣∣ ď eλp4c lnp4{δq`1q ă `8 almost surely for every n ě 0. Therefore, by the optional552

stopping theorem, we have ErYτ s ď 1. Finally, we have553

Pr

«

Dn ě 1 :
n
ÿ

i“1

Xi ě 4c ln
4

δ
,
n
ÿ

i“1

µi ď c ln
4

δ

ff

ď Pr

«

τ
ÿ

i“1

µi ď c ln
4

δ

ff

ď Pr

«

Yτ ě exp

˜

λ
τ
ÿ

i“1

Xi ´ pe
λ ´ 1qc ln

2

δ

¸ff

ď Pr

„

Yτ ě exp

ˆ

λp4c ln
4

δ
´ 1q ´ peλ ´ 1qc ln

2

δ

˙

ď exp

ˆ

λp1´ 4c ln
2

δ
q ` peλ ´ 1qc ln

2

δ

˙

“ eλepe
λ
´1´4λqc lnp4{δq.

Choosing λ “ 1, we have554

eλepe
λ
´1´4λqc lnp4{δq ď e ¨ e´2c lnp4{δq “ ep

δ

4
qc ď

e

4
δ ď δ,

which concludes the proof.555

Lemma 9. Let tFiuiě0 be a filtration. Let tXiu
n
i“1 be a sequence of random variables such that556

|Xi| ď 1 almost surely, that Xi is Fi-measurable. For every δ P p0, 1q, we have557

Pr

«

n
ÿ

i“1

ErX2
i | Fi´1s ě

n
ÿ

i“1

8X2
i ` 4 ln

4

δ

ff

ď prlog2 ns` 1qδ.

Proof. Let Y “
řn
i“1 ErX2

i | Fi´1s, Z “
řn
i“1X

2
i . Applying Lemma 7 with the sequence558

tX2
i u
n
i“1, we have for every c ě 1,559

Pr

„

Y ě 4c ln
4

δ
, Z ď c ln

4

δ



ď δ.
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Therefore, we have560

Pr

„

Y ě 8Z ` 4 ln
4

δ



ď

rlog2 ns
ÿ

j“1

Pr

„

Y ě 8Z ` 4 ln
4

δ
, 2j´1 ln

4

δ
ď Z ď 2j ln

4

δ



` Pr

„

Y ě 8Z ` 4 ln
4

δ
, Z ď ln

4

δ



ď

rlog2 ns
ÿ

j“1

Pr

„

Y ě 8Z, 2j´1 ln
4

δ
ď Z ď 2j ln

4

δ



` Pr

„

Y ě 4 ln
4

δ
, Z ď ln

4

δ



ď

rlog2 ns
ÿ

j“1

Pr

„

Y ě 8 ¨ 2j´1 ln
4

δ
, 2j´1 ln

4

δ
ď Z ď 2j ln

4

δ



` Pr

„

Y ě 4 ln
4

δ
, Z ď ln

4

δ



ď

rlog2 ns
ÿ

j“1

Pr

„

Y ě 4 ¨ 2j ln
4

δ
, Z ď 2j ln

4

δ



` Pr

„

Y ě 4 ln
4

δ
, Z ď ln

4

δ



ď prlog2 ns` 1qδ

as desired.561

Lemma 10. Let tFiuiě0 be a filtration. Let tXiu
n
i“1 be a sequence of random variables such that562

|Xi| ď 1 almost surely, that Xi is Fi-measurable. For every δ P p0, 1q, we have563

Pr

«

n
ÿ

i“1

X2
i ě

n
ÿ

i“1

8ErX2
i | Fi´1s ` 4 ln

4

δ

ff

ď prlog2 ns` 1qδ.

Proof. Let Y “
řn
i“1X

2
i , Z “

řn
i“1 ErX2

i | Fi´1s. Applying Lemma 8 with the sequence564

tX2
i u
n
i“1, we have for every c ě 1,565

Pr

„

Y ě 4c ln
4

δ
, Z ď c ln

4

δ



ď δ.

Therefore, we have566

Pr

„

Y ě 8Z ` 4 ln
4

δ



ď

rlog2 ns
ÿ

j“1

Pr

„

Y ě 8Z ` 4 ln
4

δ
, 2j´1 ln

4

δ
ď Z ď 2j ln

4

δ



` Pr

„

Y ě 8Z ` 4 ln
4

δ
, Z ď ln

4

δ



ď

rlog2 ns
ÿ

j“1

Pr

„

Y ě 8Z, 2j´1 ln
4

δ
ď Z ď 2j ln

4

δ



` Pr

„

Y ě 4 ln
4

δ
, Z ď ln

4

δ



ď

rlog2 ns
ÿ

j“1

Pr

„

Y ě 8 ¨ 2j´1 ln
4

δ
, 2j´1 ln

4

δ
ď Z ď 2j ln

4

δ



` Pr

„

Y ě 4 ln
4

δ
, Z ď ln

4

δ



ď

rlog2 ns
ÿ

j“1

Pr

„

Y ě 4 ¨ 2j ln
4

δ
, Z ď 2j ln

4

δ



` Pr

„

Y ě 4 ln
4

δ
, Z ď ln

4

δ



ď prlog2 ns` 1qδ

as desired.567

Lemma 11 ([Zhang et al., 2020c], Lemma 11). Let pMnqně0 be a martingale such that M0 “ 0 and568

|Mn ´Mn´1| ď b almost surely for every n ě 1. For each n ě 0, let Fn “ σpM0, . . . ,Mnq and569

let Varn “
řn
i“1 ErpMi ´Mi´1q

2 | Fi´1s. Then for any n ě 1 and ε, δ ą 0, we have570

Pr
”

|Mn| ě 2
a

2Varn lnp1{δq ` 2
a

ε lnp1{δq ` 2b lnp1{δq
ı

ď 2plog2pb
2n{εq ` 1qδ.
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Lemma 12. Let λ1, λ2, λ4 ą 0, λ3 ě 1 and κ “ maxtlog2pλ1q, 1u. Let a1, a2, . . . , aκ be non-571

negative reals such that ai ď λ1 and ai ď λ2

a

ai ` ai`1 ` 2i`1λ3 ` λ4 for any 1 ď i ď κ (with572

aκ`1 “ λ1). Then we have that573

a1 ď 22λ2
2 ` 6λ4 ` 4λ2

a

2λ3.

Proof. Note that574

ai ď λ2
?
ai ` λ2

a

ai`1 ` 2i`1λ3 ` λ4,

so we have575

ai ď

ˆ

λ2 `

b

λ2

a

ai`1 ` 2i`1λ3 ` λ4

˙2

ď 2λ2
2 ` 2λ2

a

ai`1 ` 2i`1λ3 ` 2λ4.

By Lemma 11 in [Zhang et al., 2020a], we have576

a1 ď maxt

ˆ

2λ2 `

b

p2λ2q
2 ` p2λ2

2 ` 2λ4q

˙2

, 2λ2

a

8λ3 ` 2λ2
2 ` 2λ4u

ď maxt20λ2
2 ` 4λ4, 2λ2

a

8λ3 ` 2λ2
2 ` 2λ4u ď 22λ2

2 ` 6λ4 ` 4λ2

a

2λ3,

which concludes the proof.577

B Difficulty with Previous Approaches578

In the example in Section 1, if we know xi ď
b

1
K for 1 ď i ď K, the best confidence region for579

θ˚ should be Θt “ tθ|}θ ´ θ̂t}Λt´1
ď Cpσ

?
d` λ1{2qu, and we can obtain a variance-aware regret580

bound by letting λ “ σ2. However, if we let xK`1 “ 1 and use the same concentration inequality as581

before, the confidence region would be ΘK`1 “ tθ|}θ ´ θ̂t}Λt´1
u ď Cpσ

?
d` 1` λ1{2q.582

We present the detailed computation as below. Choose θ˚ “ Θp1q. θ˚ ´ θ̂K`1 “ ´

řK`1
i“1 xiεi

λ`
řK`1
i“1 x2

i

`583

λθ˚

λ`
řK`1
i“1 x2

i

. When εi is bounded in r´1, 1s with variance σ2, following Bernstein inequality, we have584

that
ˇ

ˇ

ˇ

řK`1
i“1 xiεi

λ`
řK`1
i“1 x2

i

ˇ

ˇ

ˇ
ď

?
σ2

řK`1
i“1 x2

i`maxi xi

λ`
řK`1
i“1 x2

i

. Therefore, the best confidence interval we have is585

}θ˚ ´ θ̂K`1}ΛK
ă
„

g

f

f

e

σ2
řK`1
i“1 x2

i

λ`
řK`1
i“1 x2

i

`
maxi xi

b

λ`
řK`1
i“1 x2

i

`
λθ˚

b

λ`
řK`1
i“1 x2

i

“ Θ

˜

c

σ2

λ` 1
`

1` λ
?

1` λ

¸

,

i.e., |θ˚ ´ θ̂K`1|
ă
„ Θpσ ` λ1{2 ` 1q. Therefore, to maintain a confidence region for the general case586

following methods in [Zhou et al., 2020a, Faury et al., 2020], the term 1` λ1{2 is unavoidable.587

Remark 2. We highlight that the analysis above is for the uniformly bounded noise. For sub-Gaussian588

noise, we can ensure that
ˇ

ˇ

ˇ

řK`1
i“1 xiεi

λ`
řK`1
i“1 x2

i

ˇ

ˇ

ˇ
ď

?
σ2

řK`1
i“1 x2

i

λ`
řK`1
i“1 x2

i

, which help to reduce the width of confidence589

interval. More precisely, in the way we have that |θ˚ ´ θ̂K`1| ď Opσ ` λ1{2q590

C Proof of Lemma 1591

In this section, we present the proof of Lemma 1.592

Restatement of Lemma 1 Let fpxq ě 0 be a convex function over R such that fpxqx2 ď
fpyq
y2 ď 1 and593

fpxq ě fpyq if x2 ě y2 ą 0. Fix ` P p0, 1s. For any x1,x2, . . . ,xt P Bd2p1q and µ1,µ2, . . . ,µt P594

Bd2p1q, we have that595

t
ÿ

i“1

min

#

fpxiµiq
ři´1
j“1 fpxjµiq ` `

2
, 1

+

ď Opd4 logpCdt{`qq. (5)

Let fpxq and ` be fixed. To prove Lemma 1, we have the lemmas below.596
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Lemma 13. For any x1.x2, . . . ,xt P Bd2p1q and µ1,µ2, . . . ,µn P Bd2p1q, we have that597

t
ÿ

i“1

min

#

fpxiµiq
řt
j“1 fpxjµiq ` `

2
, 1

+

ď Opd logpCdt{`qq. (6)

Lemma 14. Let x1,x2, . . . ,xt P Bd2p1q be a sequence of vectors. If there exists a sequence598

0 “ τ0 ă τ1 ă τ2 ă . . . ă τz “ t such that for each 1 ď ζ ď z, there exists µζ P Bd2p1q such that599

τζ
ÿ

i“1

fpxiµζq ` `
2 ą 4pd` 2q2 ˆ

˜

τζ´1
ÿ

i“1

fpxiµζq ` `
2

¸

, (7)

then z ď Opd log2
pdt{`qq.600

We present the proofs of Lemma 13 and 14 respectively in Section C.1 and C.2. Given these two601

lemmas, we continue analysis as below.602

Let τ0 “ 0 and for i ě 1, we let603

τi “ mintt` 1u Y

#

τ

ˇ

ˇ

ˇ

ˇ

ˇ

Dτi´1 ď τ 1 ă τ,
τ
ÿ

j“1

fpxjµτ 1q ` `
2 ą 4pd` 2q2

˜

τ 1
ÿ

j“1

fpxjµτ 1q ` `
2

¸+

.

Let k “ minti | τi “ t ` 1u. Then k is well-defined and k ď Opd log2
pdtqq by Lemma 14.604

Furthermore, for any κ ă k and any τκ ď i1 ă i2 ă τκ`1, we have605

i2
ÿ

j“1

fpxjµi1q ` `
2 ď 4pd` 2q2

˜

i1
ÿ

j“1

fpxjµi1q ` `
2

¸

. (8)

Now we are ready to prove Lemma 1. We have606

t
ÿ

i“1

min

#

fpxiµiq
ři´1
j“1 fpxjµiq ` `

2
, 1

+

ď 2
t
ÿ

i“1

fpxiµiq
ři
j“1 fpxjµiq ` `

2

ď 8pd` 2q2
k
ÿ

κ“1

¨

˝

τκ´1
ÿ

i“τκ´1

fpxiµiq
řτκ´1
j“1 fpxjµiq ` `2

˛

‚ (9)

ď 8pd` 2q2
k
ÿ

κ“1

¨

˝

τκ´1
ÿ

i“τκ´1

fpxiµiq
řτκ´1
j“τκ´1

fpxjµiq ` `2

˛

‚,

ď k ˆOpd2q ˆOpd logpt{`qq ď Opd4 log3
pdtqq, (10)

where (9) uses (8) and (10) uses Lemma 13.607

C.1 Proof of Lemma 13608

Restatement of Lemma 13 For any x1.x2, . . . ,xt P Bd2p1q and µ1,µ2, . . . ,µn P Bd2p1q, we have609

that610

t
ÿ

i“1

min

#

fpxiµiq
řt
j“1 fpxjµiq ` `

2
, 1

+

ď Opd logpCdt{`qq. (11)

Proof. Let St be the permutation group over rts. We claim that if611

t
ÿ

i“1

fxiµiq
řt
j“1 fpxjµiq ` `

2
“ max

ξPSt

t
ÿ

i“1

fpxξpiqµiq
řt
j“1 f2pxξpjqµi, q ` `2

, (12)

then there exists some i such that pxiµiq2 ě pxjµiq2 for any j P rts. Otherwise, we construct a612

directed graph G “ pV,Eq where V “ rts and edge pi, jq with i ‰ j is in E if and only if pxjµiq2 ě613
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pxj1µiq
2 for any j1 P rts. Let dpiq be the out degree of i. By assuming tpxiµiq2 ě pxJj µiq

2,@j P614

rtsu fails to hold, we learn that dpiq ě 1 for every i, so there exists a circle pi1, i2, . . . , ikq in G.615

Consider the permutation ξ such that ξpijq “ ij`1 for j P rks (with ik`1 :“ i1) and ξpiq “ i for616

i R ti1, . . . , iku. By definition, we have pµijxξpijqq
2 ą pµijxij q

2 for j P rks, which implies that617

fpµijxξpijqq ą fpµijxij q for j P rks. Therefore618

t
ÿ

i“1

fpxiµiq
řt
j“1 fpxjµiq ` `

2
ă

t
ÿ

i“1

fpxξpiqµiq
řt
j“1 fpxjµiq ` `

2
“

t
ÿ

i“1

fpxξpiqµiq
řt
j“1 fpxξpjqµiq ` `

2
,

which leads to contradiction.619

We assume that (12) holds, otherwise we can bound an upper bound of the original quantity. Therefore,620

we can find an index i such that pxiµiq2 ě pxJj µiq
2 for any j P rts. Without loss of generality, we621

assume i “ 1. Because fpxq
x2 is decreasing in x, so we have622

fpx1µ1q

px1µ1q
2
ď
fpxjµ1q

pxjµ1q
2

for any j P rts, which implies623

fpx1µ1q
řt
j“1 fpxjµ1q ` `2

“
px1µ1q

2

´

řt
j“1 fpxjµ1q ` `2

¯

¨
px1µ1q2

fpx1µ1q

ď
px1µ1q

2

řt
j“1pxjµ1q

2 ` `2
. (13)

Therefore, we have624

t
ÿ

i“1

fpxiµiq
řt
j“1 fpxiµiq ` `

2
ď

px1µ1q
2

řt
j“1pxjµ1q

2 ` `2
`

t
ÿ

i“2

fpxiµiq
řt
j“1 fpxiµiq ` `

2

ď
px1µ1q

2

řt
j“1pxjµ1q

2 ` `2
`

t
ÿ

i“2

fpxiµiq
řt
j“2 fpxiµiq ` `

2
. (14)

Similarly, we can show that there exists a permutation ξ˚ P St such that625

t
ÿ

i“1

fpxiµiq
řt
j“1 fpxjµiq ` `

2
ď

t
ÿ

i“1

pxJξ˚piqµiq
2

řt
j“ipx

J
ξ˚pjqµiq

2 ` `2
. (15)

Finally, by Lemma 15, we have that626

t
ÿ

i“1

pxξ˚piqµiq
2

řt
j“ipxξ˚pjqµiq

2 ` `2
“

t
ÿ

i“1

min

#

pxξ˚piqµiq
2

řt
j“ipxξ˚pjqµiq

2 ` `2
, 1

+

ď Opd logpt{`qq.

627

C.2 Proof of Lemma 14628

Restatement of Lemma 14 Let x1,x2, . . . ,xt P Bd2p1q be a sequence of vectors. If there exists a629

sequence 0 “ τ0 ă τ1 ă τ2 ă . . . ă τz “ t such that for each 1 ď ζ ď z, there exists µζ P Bd2p1q630

such that631

τζ
ÿ

i“1

fpxiµζq ` `
2 ą 4pd` 2q2 ˆ

˜

τζ´1
ÿ

i“1

fpxiµζq ` `
2

¸

, (16)

then z ď Opd log2
pdt{`qq.632

Proof. If fp1q ď `2{t, then the conclusion holds trivially because 0 ď fpxq ď fp1q ď `2{t for633

all x P r´1, 1s. Suppose fp1q ą `2{t. Since fpxq
x2 ď

fpyq
y2 ď 1 for all x2 ě y2, we have that for634

0 ă λ ď 1 and any x P R, fpλxq ě λ2fpxq.635
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Let ei “ r0, . . . , 1, . . . , 0s be the one-hot vector whose only 1 entry is at its i-th coordinate. Noting636

that fpxq ď x2, |xiµζ | ď }µζ}2 and637

τζ
ÿ

i“1

fpxiµζq ą 4pd` 2q2 ˆ

˜

τζ´1
ÿ

i“1

fpxiµζq ` `
2

¸

´ `2 ě 4d2`2

we have that |µζ |2 ě
b

4d2`2

t . Define Eτ pµq “
řt
i“1 fpxtµq `

`2

d

řd
i“1 fpeiµq. Then Eτ pµq is638

convex in µ because fpxq is convex in x. By definition, we have that639

Eτ pµq ď
τ
ÿ

i“1

fpxiµq ` `
2.

By (16), we have that640

Eτζ pµζq ě

τζ
ÿ

i“1

fpxiµζq ě 4d2

˜

τζ´1
ÿ

i“1

fpxiµζq ` `
2

¸

ě 4d2Eτζ´1
pµζq. (17)

Define641

Λ “
 

i P Z :
X

log2pd`
4{t2q ` 2

\

ď i ď 2 tlog2 t` 2u
(

.

We consider the convex set Dτ,i “ tµ : Eτ pµq ď 2iu for i P Λ. Let ζ be fixed. Because642

}µζ} ě
b

4d2`2

t and supi fpeiµq ě
4d`2

t ¨fp1q ě
4d`4

t2 , we have that 4d`4

t2 ď Eτ pµζq ď t``2 ď t`1643

for any 1 ď τ ď t. Then we can find iζ P Λ such that Eτζ´1
pµζq P p2

iζ´1, 2iζ s, which means that644

µζ P Dτζ´1,iζ . Note that for 0 ď λ ď 1, fpλxq ě λ2fpxq for any x, it then follows that Etpλµq ě645

λ2Etpµq for any t,µ. Choosing λ “ 1
d , we have that Eτζ p

µζ
d q ě

1
d2Eτζ pµζq ě 4Eτζ´1

pµζq ě 2iζ .646

Therefore, µζd R Dτζ ,iζ . In words, the intercept of Dτζ ,iζ in the direction µζ is at most 1{d times of647

that of Dτζ´1,iζ .648

Note that Dt,i is decreasing in t for any i, so by Lemma 16, we have649

VolumepDτζ ,iζ q ď
6

7
VolumepDτζ´1,iζ q.

Also note that VolumepD0,iq ď p 2t
` q
d and VolumepDt,iq ě p 1

dt3 q
d, so we conclude that z ď650

d|Λ| log7{6p2dt
4{`q ď Opd log2

ptd{`qq.651

652

C.3 Other Lemmas and Proofs653

Lemma 15. Fix ` P p0, 1s. Let x1,x2, . . . ,xt P Bd2p1q and µ1,µ2, . . . ,µt P Bd2p1q be two se-654

quences of vectors. Then we have655

t
ÿ

i“1

I
"

pxiµiq
2 ą

i´1
ÿ

j“1

pxjµiq
2 ` `2

*

ď

t
ÿ

i“1

min

"

pxiµiq
2

ři´1
j“1pxjµiq

2 ` `2
, 1

*

ď Opd log
t

`
q. (18)

Proof. The first inequality in (18) holds clearly. To prove the second inequality, we define U0 “ `2I656

and Ui “ `2I `
ři
j“1 xjx

J
j for i ě 1. Note that657

pxiµiq
2

ři´1
j“1pxjµiq

2 ` `2
ď

pxiµiq
2

µJi Ui´1µi
ď xJi U

´1
i´1xi,

where the first inequality is because ‖µi‖2 ď 1 and the second inequality uses the Cauchy’s inequality,658

so we have659

t
ÿ

i“1

min

"

pxiµiq
2

ři´1
j“1pxjµiq

2 ` `2
, 1

*

ď

t
ÿ

i“1

min
 

xJi U
´1
i´1xi, 1

(

ď 2d ln
`

t{`2
˘

ď 4d lnpt{`q,

where the second-to-third inequality uses the elliptical potential lemma.660
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Lemma 16. Given x P Rd, we use pupxq, lpxqq to denote the polar coordinate of x where }µpxq}2 “661
x
}x}2

is the direction and lpxq “ }x}2. We also use pu, `q to denote the unique element x in Rd such662

that pupxq, lpxqq “ pu, `q. Let D be a bounded symmetric convex subset of Rd with d ě 2. Given663

any direction µ P BBd, there exists a unique lpuq P R such that pu, lpuqq, p´u, lpuqq P BD are on664

its boundary. Let D1 be a bounded symmetric convex subset of Rd containing D Ď D1 such that665

pu, d ¨ lpuqq P D1 for some direction u P BBd. Then we have that666

VolumepD1q ě
7

6
VolumepDq.

Proof. Let A “ pu, lpuqq and B “ pu, d ¨ lpuqq. Since A is on the boundary of D, we can find a667

hyperplane h1 such that A P h1 and h1 is tangent to D. Let h2 be the parallel hyperplane of h1668

containing the origin O P h2. Define669

H “

#

x P Rd
ˇ

ˇ

ˇ

ˇ

ˇ

dpx, h1q ` dpx, h2q “ dph1, h2q, Dy P D,λ P R, pB ´ yq “ λpB ´ xq

+

It is obvious that VolumepHq ě 1
2VolumepDq since for each x P D lying between h1 and h2,670

x P H . Define671

U “

#

x P Rd
ˇ

ˇ

ˇ

ˇ

ˇ

dpx, h2q “ dpx, h1q ` dph1, h2q, Dy P H,λ P r0, 1s, x “ λy ` p1´ λqB

+

.

We claim that672

VolumepUq “

ˆ

1´
1

d

˙d

VolumepU YHq “

ˆ

1´
1

d

˙d

pVolumepUq `VolumepHqq . (19)

To see the first equality, we note that U and U YH are both d-dimensional pyramids. It then follows673

from the volume formula and the relation dpB,Oq “ dˆ dpA,Oq. The second equality is because674

by their definitions, U,H are separated by the hyperplane h1, and thus they are disjoint. Finally, by675

(19), we have676

VolumepD1q ě VolumepUq `VolumepHq “ p1`
1

1´ p1´ 1{dqd
qVolumepHq

ě
1

2
p1`

1

p1´ p1´ 1{dqdq
qVolumepDq ě

7

6
VolumepDq.

677

D Missing Proofs in Section 4678

D.1 Application of the General Potential Lemma679

As an application of Lemma 1 on linear bandit and linear RL, we have the lemma as below680

Lemma 17. Fix ` P p0, 1s. Let x1,x2, . . . ,xt P Bd2p1q be a sequence of vectors, and681

µ1,µ2, . . . ,µt P Bd2p1q be another sequence of vectors. Then we have682

t
ÿ

i“1

clip2
pxiµi, `q

ři´1
j“1 clippxjµi, `qx

J
j µi ` `

2
ď Opd4 log3

pdtqq. (20)

Proof. Let683

f`pxq “

$

&

%

x2, |x| ď `,

2`x´ `2, x ą `,

´2`x´ `2, x ă ´`

be a convex relaxation of the function x ÞÑ clippx, `qx. It is easy to see that f`pxq is convex in x and684

for any x P R, ` ą 0,685

clippx, `qx ď f`pxq ď 2clippx, `qx ď 2x2. (21)
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Let hpxq “ f`pxq
2 . It is easy to see that if x2 ě y2, hpxqx2 “

clippx,lq
2x ď

clippy,lq
2y “

hpyq
y2 ď 1. By686

Lemma 1 with fpxq “ hpxq, we have that687

t
ÿ

i“1

hpxiµiq
ři´1
j“1 hpxjµiq ` `

2
ď Opd4 log3

pdtqq.

By (21), we obtain that688

t
ÿ

i“1

clip2
pxiµi, `q

ři´1
j“1 clippxjµi, `qx

J
j µi ` `

2
ď

t
ÿ

i“1

clippxiµi, `qxiµI
ři´1
j“1 clippxjµi, `qx

J
j µi ` `

2

ď 4
t
ÿ

i“1

hpxiµiq
ři´1
j“1 hpxjµiq ` `

2

ď Opd4 log3
pdtqq.

The proof is completed.689

D.2 Proof of Theorem 4690

D.2.1 Optimism691

The equation (2) accounts for the main novelty of our algorithm. We note that our confidence set is692

different from all previous ones [Dani et al., 2008, Abbasi-Yadkori et al., 2011]. Our confidence set693

is built based on the following new inequality, which may be of independent interest.694

With Lemma 4 in hand, we can easily prove that the optimal θ˚ is always in our confidence set with695

high probability. The proof details can be found in Appendix D.3.696

Lemma 18. With probability at least 1´Opδ logKq, we have θ˚ P Θk for all k P rKs.697

D.2.2 Bounding the Regret698

We bound the regret under the event specified in Lemma 18. We have699

RK “

K
ÿ

k“1

pmax
xPAk

xθ˚ ´ xkθ
˚q

ď

K
ÿ

k“1

ˆ

max
xPAk,θPΘk

xθ ´ xkθ
˚

˙

ď

K
ÿ

k“1

xk pθk ´ θ
˚q “

ÿ

k

xkµk,

where second inequality follows from Lemma 18. Therefore, it suffices to bound
ř

k xkµk, for700

which we have the following lemma.701

Lemma 19. With probability 1´Opδ logKq, we have702

ÿ

k

xkµk ď O

˜

d4.5
`

log4 dK
˘`

log
dK

δ

˘

ˆ

?
d`

g

f

f

e

K
ÿ

k“1

σ2
k

˙

¸

.

Since this lemma is one of our main technical contribution, we provide more proof details.703

Proof. First, we define the desired event E “ E1 X E2, where704

E1 “ t@k P rKs : θ˚ P Θku, E2 “

" K
ÿ

k“1

ηkpθ
˚q ď

K
ÿ

k“1

8σ2
k ` 4 ln

4

δ

*

.

By Lemma 18, we have PrrE1s ě 1 ´ Opδq. By Lemma 10, we have PrrE2s ě 1 ´ Opδ logKq.705

Therefore, by union bound, we have PrrEs ě 1´Opδ logKq.706
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Now we bound
ř

k xkµk under the event E to prove the lemma. Before presenting the proof, we707

define708

Φjkpµq “
k´1
ÿ

v“1

clipjpxvµqxvµ` `
2
j , Ψj

kpµq “
k´1
ÿ

v“1

clip2
j pxvµqηvpθ

˚q. (22)

Also for each k P rKs, we define jk P Λ2 which satisfies xkµk P p`jk{2, `jk s. If such jk does not709

exist (because xkµk ď `L2`1{2), we assign jk “ L2 ` 1.710

To proceed, we need the following claim.711

Claim 20. We have712

ÿ

k

xkµk “
ÿ

k:jk“L2`1

xkµk `
ÿ

k:jkďL2

xkµk

ď 1`
ÿ

k:jkďL2

xkµk ˆ
3
b

Ψjk
k pµkqι`

b

řk´1
v“1 2clip2

jk
pxvµkqpxvµkq2ι` 3`jk ι

Φjkk pµkq
.

(23)

We defer the proof of the claim to Appendix D.4 and continue to bound the three terms in (23). For713

the second term, we have714

ÿ

k:jkďL2

xkµk

b

řk´1
v“1 2clip2

jk
pxvµkqpxvµkq2ι

Φjkk pµkq

ď
1

2

ÿ

k:jkďL2

xkµk `
ÿ

k:jkďL2

xkµkI
"

b

řk´1
v“1 2clip2

jk
pxvµkqpxvµkq2ι

Φjkk pµkq
ą

1

2

*

. (24)

We note that715

ÿ

k:jkďL2

xkµkI
"

b

řk´1
v“1 2clip2

jk
pxvµkqpxvµkq2ι

Φjkk pµkq
ą

1

2

*

ď
ÿ

k:jkďL2

xkµkI
!

Φjkk pµkq ď 4`jk ι
)

ď
ÿ

k:jkďL2

xkµk
4`jk ι

Φjkk pµkq

ď
ÿ

k:jkďL2

4clip2
jk
pxkµkqι

Φjkk pµkq

ď Opd4|Λ2|ι log3
pdKqq, (25)

where the last inequality uses Lemma 17. Collecting (23),(24) and (25), we have716

ÿ

k

xkµk ď 1`
ÿ

k:jkďL2

3xkµk ˆ

b

Ψjk
k pµkqι` `jk ι

Φjkk pµkq
`

1

2

ÿ

k:jkďL2

xkµk `Opd
4|Λ2|ι log3

pdKqq.

Solving
ř

k xkµk, we obtain717

ÿ

k

xkµk ď Opd4|Λ2|ι log3
pdKqq `

ÿ

k:jkďL2

6xkµk ˆ

b

Ψjk
k pµkqι` `jk ι

Φjkk pµkq

ď Opd4|Λ2|ι log3
pdKqq `

ÿ

k:jkďL2

6xkµk ˆ

b

Ψjk
k pµkqι

Φjkk pµkq
, (26)
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where (26) uses the last two steps in (25). The remaining term in (26) can be bounded as718

ÿ

k:jkďL2

6xkµk ˆ

b

Ψjk
k pµkqι

Φjkk pµkq
ď

ÿ

k:jkďL2

6xkµk`jk

b

řk´1
v“1 ηvpθ

˚qι

Φjkk pµkq
(27)

ď
ÿ

k:jkďL2

6xkµk`jk

Φjkk pµkq

g

f

f

e

K
ÿ

k“1

ηkpθ˚qι

ď Opd4|Λ2| log3
pdKqq ˆ

g

f

f

e

K
ÿ

k“1

ηkpθ˚qι (28)

ď Opd4|Λ2| log3
pdKqq ˆ

g

f

f

e

´

ln
1

δ
`

K
ÿ

k“1

σ2
k

¯

ι, (29)

where (27) uses the definition of Ψj
kp¨q, (28) again uses the last two steps in (25), and (29) uses the719

event E2.720

Now we can finish the proof of Theorem 3. We choose δ “ OppK logKq´1q. Since on the event EC ,721

we have RK ď K. Therefore, together with the bound on E from Lemma 19, we conclude that the722

expected regret is bounded by ErRKs ď rOpd4.5

b

řK
k“1 σ

2
k ` d

5q.723

Proof. It suffices to prove the theorem for b “ 1, because otherwise we can apply tXi{bu
n
i“1 to the724

b “ 1 case. By Lemma 11 with ε “ 1 and δ ă 1{e, we have725

Pr

»

–

∣∣∣∣∣ nÿ
i“1

Xi

∣∣∣∣∣ ě 2

g

f

f

e

n
ÿ

i“1

2ErX2
i | Fi´1s ln

1

δ
` 4 ln

1

δ

fi

fl ď 4δ log2 n. (30)

By Lemma 9, we have726

Pr

«

n
ÿ

i“1

ErX2
i | Fi´1s ě

n
ÿ

i“1

8X2
i ` 4 ln

4

δ

ff

ď prlog2 ns` 1qδ. (31)

Therefore, by a union bound over (30) and (31), we have with probability at least 1´ 6δ log2 n,727 ∣∣∣∣∣ nÿ
i“1

Xi

∣∣∣∣∣ ď
g

f

f

e

n
ÿ

i“1

8ErX2
i | Fi´1s ln

1

δ
` 4 ln

1

δ

ď

g

f

f

e8

˜

n
ÿ

i“1

8X2
i ` 4 ln

4

δ

¸

ln
1

δ
` 4 ln

1

δ
ď 8

g

f

f

e

n
ÿ

i“1

X2
i ln

1

δ
` 16 ln

1

δ
,

which concludes the proof.728

D.3 Proof of Lemma 18729

Proof. Let δ1 “ e´ι. We define the desired event E “
Ş

kPrKs,jPΛ2
Ejk , where730

Ejk “

#
∣∣∣∣∣ k
ÿ

v“1

clipjpxvµqεvpθ
˚q

∣∣∣∣∣ ď
g

f

f

e

k
ÿ

v“1

clip2
j pxvµqηvpθ

˚qι` `jι,@µ P B

+

.
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Note that for each v, we have that
∣∣clipjpxvµqεvpθ˚q∣∣ ď `j and that pclipjpxvµqεvpθ

˚qq2 “731

clip2
j pxvµqηvpθ

˚q, so by Theorem 4, we have732

Pr

»

–

∣∣∣∣∣ k
ÿ

v“1

clipjpxvµqεv

∣∣∣∣∣ ď
g

f

f

e

k
ÿ

v“1

clip2
j pxvµqVarpεv | Fvqι` `jι

fi

fl

ě1´O
´

e´
ι

log2 log2 K

¯

ě1´O

ˆ

δ

K|B||Λ2|
logK

˙

,

where Fv is as defined in Section 3. Finally, using a union bound over pµ, j, kq P B ˆ Λ2 ˆ rKs, we733

have PrrEs ě 1´Opδ logKq.734

D.4 Proof of Claim 20735

Proof. We elaborate on (23). We will prove it by showing that the numerator is always greater than736

the denominator in the fraction in (23), so each term xkµk is multiplied by a number greater than 1.737

We have for every j P Λ2,738

Φjkpµkq “
k´1
ÿ

v“1

clipjpxvµkqxvµk ` `
2
j

ď

∣∣∣∣∣k´1
ÿ

v“1

clipjpxvµkqεvpθ
˚q

∣∣∣∣∣`
∣∣∣∣∣k´1
ÿ

v“1

clipjpxvµkqεvpθkq

∣∣∣∣∣` `2j (32)

ď

b

Ψj
kpµkqι`

g

f

f

e

k´1
ÿ

v“1

clip2
j pxvµkqηvpθkqι` 3`jι (33)

ď

b

Ψj
kpµkqι`

g

f

f

e

k´1
ÿ

v“1

clip2
j pxvµkqηvpθ

˚qι`

g

f

f

e

k´1
ÿ

v“1

clip2
j pxvµkq|ηvpθkq ´ ηvpθ˚q|ι` 3`jι

“ 2

b

Ψj
kpµkqι`

g

f

f

e

k´1
ÿ

v“1

clip2
j pxvµkq|ηvpθkq ´ ηvpθ˚q|ι` 3`jι

ď 2

b

Ψj
kpµkqι`

g

f

f

e

k´1
ÿ

v“1

clip2
j pxvµkqpηvpθ

˚q ` 2pxvµkq2qι` 3`jι (34)

ď 2

b

Ψj
kpµkqι`

g

f

f

e

k´1
ÿ

v“1

clip2
j pxvµkqηvpθ

˚qι`

g

f

f

e

k´1
ÿ

v“1

2clip2
j pxvµkqpxvµkq

2ι` 3`jι,

“ 3

b

Ψj
kpµkqι`

g

f

f

e

k´1
ÿ

v“1

2clip2
j pxvµkqpxvµkq

2ι` 3`jι, (35)

where (32) uses εvpθkq ´ εvpθ
˚q “ xvpθk ´ θ

˚q “ xvµk, (33) uses that θ˚,θk P Θk and the739

definition of Θk in (2), and (34) uses740

|ηvpθkq ´ ηvpθ˚q| “
∣∣pεvpθ˚q ´ xvµkq2 ´ pεvpθ˚qq2∣∣

ď2|εvpθ˚q|xvµk ` pεvpθ˚qq2 ď pxvµkq2 ` 2pεvpθ
˚qq2.

Since (35) holds for every j P Λ2, it holds for j “ jk, and thus (23) follows.741
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E Missing Proofs in Section 5742

E.1 Proof of Theorem 5743

Before introducing our proof, we make some definitions. We let θmk,h “ arg maxθPΘk x
m
k,hpθ ´ θ

˚q744

and µmk,h “ θ
m
k,h ´ θ

˚. Recall that T m,i
k is defined in Algorithm 2. We define745

Φm,i,jk pµq “
ÿ

pv,uqPT m,ik

clipjpx
m
v,uµqx

m
v,uµ` `

2
j , Ψm,i,j

k pµq “
ÿ

pv,uqPTm,ik

clip2
j px

m
v,uµqη

m
v,u. (36)

Note that our definitions in (36) are similar to those for linear bandits in (22). The main differences746

are: 1) we define Φp¨q,Ψp¨q also for higher moments, as indicated by the indexm in their superscripts;747

2) we add the variance layer, so that we only use samples from T m,i; 3) since we can now estimate748

variance, we use the upper bound of estimated variance in lieu of the empirical variance. For749

h P rH ` 1s, we further define750

Ikh “ It@u ď h,m, i, j : Φm,i,jk,u pµmk,uq ď 4pd` 2q2Φm,i,jk pµmk,uqu, (37)

where Ikh “ 1 indicates that for every u ď h, the confidence set using data prior to the time step751

pk, uq can be properly approximated by the confidence set with data prior to the episode k. We define752

Ikh in this way to ensure that it is Fk
h -measurable. The following lemma ensures that Qkh is optimistic753

with high probability. Its proof is deferred to Appendix E.3.754

Lemma 21. Pr
“

@k, h, s, a : Qkhps, aq ě Q˚hps, aq
‰

ě Prr@k P rKs : θ˚ P Θks ě 1´Opδq.755

When the event specified in Lemma 21 holds, the regret can be decomposed as756

RK “

K
ÿ

k“1

`

V ˚1 ps
k
1q ´ V

πk
1 psk1q

˘

ď

K
ÿ

k“1

`

V k1 ps
k
1q ´ V

πk
1 psk1q

˘

ď Ř1 ` Ř2 `R3 `
ÿ

k,h

pIkh ´ I
k
h`1q,

where757

Ř1 “
ÿ

k,h

pPskh,akhV
k
h`1´V

k
h`1ps

k
h`1qqI

k
h , Ř2 “

ÿ

k,h

`

V kh ps
k
hq ´ r

k
h ´ Pskh,akhV

k
h`1

˘

Ikh ,

R3 “

K
ÿ

k“1

`

H
ÿ

h“1

rkh ´ V
πk
1 psk1q

˘

.

Next we analyze these terms. First, we observe that R3 is a sum of a martingale difference sequence,758

so by Lemma 6, we have R3 ď Op
a

K logp1{δqq with probability at least 1´ δ. Next, we use the759

following lemma to bound
ř

k,hpI
k
h ´ I

k
h`1q. We defer its proof to Appendix E.4.760

Lemma 22.
ř

k,hpI
k
h ´ I

k
h`1q ď Opd log5

pdHKqq.761

To bound Ř1 and Ř2, we need to define the following quantities. First, we denote x̌k,h “ xk,hIkh762

and η̌mk,h “ ηmk,hI
k
h . Next, for m P Λ0, we define763

Řm “
ÿ

k,h

x̌mk,hµ
m
k,h, M̌m “

ÿ

k,h

´

Pskh,akhpV
k
h`1q

2m ´ pV kh`1ps
k
h`1qq

2m
¯

Ikh .

Intuitively, Řm represents the “regret” of 2m-th moment prediction and M̌m represents the total764

variance of 2m-th order value function. We have Ř1 “ M̌0 by definition and and using that765

Qkhps, aq ´ rps, aq ´ Ps,aV
k
h`1 ď max

θPΘk
x0
k,hpθ ´ θ

˚q,

we have Ř2 ď Ř0. So it suffices to bound Ř0 ` M̌0, which is done by the following lemma.766

Lemma 23. With probability at least 1´ δ, we have767

Ř0 `
∣∣M̌0

∣∣ ď O

ˆ

d4.5
b

K log5
pdHKq logp1{δq ` d9 log6

pdHKq logp1{δq

˙

.

Lemma 23 is the main technical part of our result in Section 5, so we sketch its proof in the next768

subsection. With the lemma in hand, we have with probability 1´ δ that RK ď rOpd4.5
?
K ` d9q.769

Finally, We conclude the proof to Theorem 5 by choosing δ “ 1{K and noting that RK ď K.770
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E.2 Bounding Ř and M̌771

We sketch the proof for Lemma 23. The first step to bound Řm is to relate it to the variance η̌m.772

Lemma 24. With probability at least 1 ´ δ, we have Řm ď Opd4
b

ř

k,h η̌
m
k,hι log7

pdHKq `773

d6ι log5
pdHKqq.774

We defer the proof to Appendix E.5. The proof is spiritually similar to proof of Lemma 19. The main775

difference is that we use the peeling technique to the magnitude of the variance.776

Based on Lemma 24, we use the following recursion lemma to relate Řm, M̌m to Řm`1, M̌m`1. We777

defer the proof to Appendix E.6. It mainly uses similar ideas in Zhang et al. [2020a].778

Lemma 25 (Recursions). With probability at least 1´ δ, we have779

Řm ď O

ˆ

d4
b

pM̌m`1 ` 2m`1pK ` Ř0q ` Řm`1 ` Řmqι log7
pdHKq ` d6ι log5

pdHKq

˙

,

∣∣M̌m

∣∣ ď O

ˆ

b

pM̌m`1 `Opd log5
pdHKqq ` 2m`1pK ` Ř0qq logp1{δq ` logp1{δq

˙

.

Finally, we can prove Lemma 23 by collecting Lemma 24,25 and using a technical lemma about780

recursion (Lemma 12). The details are in Appendix E.7.781

E.3 Proof of Lemma 21782

Proof. The lemma consists of two inequalities. The first inequality is proved using backward783

induction, where the induction step is given as784

Qkhps, aq “ mint1, rps, aq ` max
θPΘk

d
ÿ

i“1

θiP
i
s,aV

k
h`1u

ě mint1, rps, aq `
d
ÿ

i“1

θ˚i P
i
s,aV

k
h`1u ě mint1, rps, aq `

d
ÿ

i“1

θ˚i P
i
s,aV

˚
h`1u “ Q˚hps, aq,

V kh psq “ max
a

Qkhps, aq ě max
a

Q˚hps, aq “ V ˚h psq.

We now prove the second inequality. Let δ1 “ e´ι. We define the desired event E “
Ş

k,m,i,j E
m,i,j
k ,785

where786

Em,i,jk “

#

∣∣∣∣∣∣
ÿ

pv,uqPT m,ik

clipjpx
m
v,uµqε

m
κ,h

∣∣∣∣∣∣ ď 4

g

f

f

e

ÿ

pv,uqPTm,ik

clip2
j px

m
v,uµqVarpεmv,u | Fv

uq ln
1

δ1
` 4`j ln

1

δ1
,@µ P B

+

.

Note that for a fixed k, we have that |clipjpxmv,uµqεmv,u| ď `j ď 1 and that787

Var
´

clipjpx
m
v,uµqε

m
v,uItpv, uq P T

m,i
k u | Fv

u

¯

“ clipjpx
m
k,hµq

2Itpv, uq P T m,i
k uVarpεmv,u | Fv

uq,

so by Lemma 11 with b “ `j , ε “ 1, we have788

Pr

»

—

–

∣∣∣∣∣∣
ÿ

pv,uqPTm,ik

clipjpx
m
v,uµqε

m
v,u

∣∣∣∣∣∣ ě 4

g

f

f

e

ÿ

pv,uqPT m,ik

clip2
j px

m
v,uµqVarpεmv,u | Fv

uq ln
1

δ1
` 4`j ln

1

δ1

fi

ffi

fl

ď 4δ1 log2pHKq.

Using a union bound over pµ,m, i, j, kq P B ˆ Λ0 ˆ Λ1 ˆ Λ2 ˆ rKs, we have PrrEs ě 1 ´789

Opδ1K|B| log4
pHKqq ě 1´Opδq.790

Next we show that the event E implies that θ˚ P Θk for every k P rKs. We show by induction791

over k. For k “ 1 it is clear. For k ě 1, since θ˚ P Θk, for every h P rHs, we have ηmk,h “792

maxθPΘktθx
m`1
k,h ´ pθxmk,hq

2u ě θ˚xm`1
k,h ´ pθ˚xmk,hq

2 ě Varpεmk,h | Fk
h q, which, together with793

the event
Ş

m,i,j E
m,i,j
k`1 , implies that θ˚ P Θk`1.794
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E.4 Proof of Lemma 22795

Proof. We define796

Im,i,jk,h “ It@u ď h : Φm,i,jk,u pµmk,uq ď 4pd` 2q2Φm,i,jk pµmk,uqu.

Then we have Ikh “
ś

m,i,j I
m,i,j
k,h . Also we have797

ÿ

h

pIkh ´ I
k
h`1q ď

ÿ

m,i,j

ÿ

h

pIm,i,jk,h ´ Im,i,jk,h`1q.

Note that Ikh ě Ikh`1 and Im,i,jk,h ě Im,i,jk,h`1. For each fixed m, i, j, if
ř

hpI
m,i,j
k,h ´ Im,i,jk,h`1q “ 1, then798

there exists h P rHs, such that for the time step pk, hq, we have Φm,i,jk,h pµq ą 4pd ` 2q2Φm,i,jk pµq799

for some µ. By Lemma 14 with fpxq “ clippx, `jqx and ` “ `j , there are at most Opd log2
pdHKqq800

such time steps. We conclude by noting that we have |Λ0 ˆ Λ1 ˆ Λ2| ď Oplog3
pdHKqq possible801

m, i, j pairs.802

E.5 Proof of Lemma 24803

To prove this lemma, we define the index sets to help us apply the peeling technique. We denote804

T m,i,j
k “ tpv, uq P T m,i

k :
∣∣xmv,uµmv,u∣∣ P p`j`1, `jsu,

T m,i,L2`1
k “ tpv, uq P T m,i

k :
∣∣xmv,uµmv,u∣∣ P r0, `L2`1su,

and Ť m,i,j
k “ tpv, uq P T m,i,j

k : Ivu “ 1u. We also denote T m,i,j “ T m,i,j
K`1 , Ť m,i,j “ Ť m,i,j

K`1 .805

Proof. Since θmk,h P Θk Ď Θm,i,j
k , choosing µ “ µmk,h in the confidence set definition and using that806

xmv,uµ
m
k,h “ εmv,upθ

˚q ´ εmv,upθ
m
k,hq, we have807

Φm,i,jk pµmk,hq “
ÿ

pv,uqPT m,ik

clipjpx
m
v,uµ

m
k,hqx

m
v,uµ

m
k,h ` `

2
j

ď

∣∣∣∣∣∣
ÿ

pv,uqPTm,ik

clipjpx
m
v,uµ

m
k,hqε

m
v,upθ

˚q

∣∣∣∣∣∣`
∣∣∣∣∣∣

ÿ

pv,uqPTm,ik

clipjpx
m
v,uµ

m
k,hqε

m
v,upθ

m
k,hq

∣∣∣∣∣∣` `2j
ď 8

d

ÿ

pv,uqPTm,ik

clipjpx
m
v,uµ

m
k,hqη

m
v,uι` 8`jι` `

2
j

ď 8
b

Ψm,i,j
k pµmk,hqι` 16`jι. (38)

Therefore, when Ihk “ 0, we have808

Φm,i,jk,h pµmk,hq

4pd` 2q2
ď Φm,i,jk pµmk,hq ď 16p

b

Ψm,i,j
k,h pµmk,hqι` `jιq.

Next we analyze the sum. Using the fact that809

64pd` 2q2
´
b

Ψm,i,j
k,h pµmk,hqι` `jι

¯

Φm,i,jk,h pµmk,hq
ě 1,

we obtain810

ÿ

pk,hqPŤ m,i,j
xmk,hµ

m
k,h ď

ÿ

pk,hqPŤ m,i,j
xmk,hµ

m
k,h

64pd` 2q2
´
b

Ψm,i,j
k,h pµmk,hqι` `jι

¯

Φm,i,jk,h pµmk,hq
(39)

ď 64pd` 2q2
ÿ

pk,hqPŤm,i,j

¨

˝

xmk,hµ
m
k,h

?
`iι

b

Φm,i,jk,h pµmk,hq
`
xmk,hµ

m
k,h`jι

Φm,i,jk,h pµmk,hq

˛

‚, (40)
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where the last inequality uses that for every µ, we have811

Ψm,i,j
k,h pµq “

ÿ

pv,uqPT m,ik,h

clip2
j px

m
v,uµqη

m
v,u ď `i

ÿ

pv,uqPTm,ik,h

clipjpx
m
k,hµqx

m
k,hµ ď `iΦ

m,i,j
k,h pµq.

(41)

In (41), the first inequality uses that ηmv,u ď `i for pv, uq P T m,i
k,h and that clip2

j pαq ď clipjpαqα for812

α P R, and the second inequality uses the definition of Φm,i,jk,h pµq. Next we bound the two terms in813

(40). To bound the first term, we note that814

ÿ

pk,hqPŤ m,i,j

xmk,hµ
m
k,h

b

Φm,i,jk,h pµmk,hq
ď

b∣∣Ť m,i,j
∣∣gff
e

ÿ

pk,hqPŤ m,i,j

pxmk,hµ
m
k,hq

2

Φm,i,jk,h pµmk,hq
(42)

ď

b∣∣Ť m,i,j
∣∣gff
e

ÿ

pk,hqPŤ m,i,j

clip2
j px

m
k,hµ

m
k,hq

Φm,i,jk,h pµmk,hq
(43)

ď

b∣∣Ť m,i,j
∣∣gff
f

e

ÿ

pk,hqPŤ m,i,j

clip2
j px

m
k,hµ

m
k,hq

ř

pv,uqPŤm,i,jk,h

clipjpx
m
v,uµ

m
k,hqx

m
v,uµ

m
k,h ` `

2
j

(44)

ď

b∣∣Ť m,i,j
∣∣ˆOpbd4 log3

pdHKqq, (45)

where (42) uses Cauchy’s inequality, (43) uses that xmk,hµ
m
k,h ď `j for pk, hq P T m,i,j , (44) uses the815

definition of Φm,i,jk,h pµq, and (45) uses Lemma 17. To bound the second term in (40), we have816

ÿ

pk,hqPŤ m,i,j

xmk,hµ
m
k,h`j

Φm,i,jk,h pµmk,hq
ď

ÿ

pk,hqPTm,i,j

2clip2
j px

m
k,hµ

m
k,hq

Φm,i,jk,h pµmk,hq
ď Opd4 log3

pdHKqq, (46)

where the first inequality uses that xmk,hµ
m
k,h ě `j{2 for pk, hq P T m,i,j and the second inequality is817

the same as what we have shown from (43) to (45). As a result, combining (40),(45) and (46), we818

have819

ÿ

pk,hqPŤ m,i,j
xmk,hµ

m
k,h ď 64pd` 2q2 ˆO

ˆ

b

d4`i
∣∣Ť m,i,j

∣∣ι log3
pdHKq ` d4ι log3

pdHKq

˙

(47)

ď O

ˆ

d4
b

`i
∣∣Ť m,i,j

∣∣ι log3
pdHKq ` d6ι log3

pdHKq

˙

. (48)

Recall that (48) requires xmk,hµ
m
k,h P r`j{2, `js, which would be false for j “ L2 ` 1. In this corner820

case, j “ L2 ` 1, we have821
ÿ

i

ÿ

pk,hqPŤ m,i,j
xmk,hµ

m
k,h ď KH`j ď Op1q. (49)

Finally, combining (48) and (49), we have822
ÿ

k,h

x̌mk,hµ
m
k,h “

ÿ

i,j

ÿ

pk,hqPŤm,i,j
xmk,hµ

m
k,h

ď Op1q `
ÿ

i,j

O

ˆ

d4
b

`i
∣∣Ť m,i,j

∣∣ι log3
pdHKq ` L2d

6ι log3
pdHKq

˙

ď O

¨

˝d4

d

ÿ

k,h

η̌mk,hι log7
pdHKq ` d6ι log5

pdHKq

˛

‚, (50)

where (50) uses that `i
∣∣Ť m,i,j

∣∣ ď Op1`
ř

k,h η̌
m
k,hq, which can be proved as follows: for i ď L1, it823

is due to ηmk,h ě `i{2; for i “ L1 ` 1, it is due to 1{`i ě KH ě
∣∣Ť m,i,j

∣∣.824
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E.6 Proof of Lemma 25825

Proof. Define826

ζ̌mk,h “ pPskh,akhpV
k
h`1q

2m`1

´ pPskh,akhpV
k
h`1q

2mq2qIkh .

We note that M̌m is a martingale, so by Lemma 11 with a union bound over m, we have827

Pr

»

–@m P Λ0 :
∣∣M̌m

∣∣ ď 2

d

2
ÿ

k,h

ζ̌mk,h ln
1

δ
` 4 ln

1

δ

fi

fl ě 1´Opδ log2
pdKHqq. (51)

By the definition of η̌mk,h, we have828

ÿ

k,h

η̌mk,h ď
ÿ

k,h

ˆ

ζ̌mk,h ` max
θPΘk

x̌m`1
k,h pθ ´ θ

˚q ` 2 max
θPΘk

x̌mk,hpθ ´ θ
˚q

˙

(52)

“
ÿ

k,h

ζ̌mk,h ` Řm`1 ` 2Řm, (53)

We have that829
ÿ

k,h

ζ̌mk,h “
ÿ

k,h

´

Pskh,akhpV
k
h`1q

2m`1

´ pPskh,akhpV
k
h`1q

2mq2
¯

Ikh

ď
ÿ

k,h

´

Pskh,akhpV
k
h`1q

2m`1

´ pV kh`1ps
k
h`1qq

2m`1
¯

Ikh `
ÿ

k,h

pV kh ps
k
hqq

2m`1

pIkh ´ I
k
h`1q

`
ÿ

k,h

´

pV kh ps
k
hqq

2m`1

´ pPskh,akhpV
k
h`1q

2mq2
¯

Ikh

ď M̌m`1 `Opd log5
pdHKqq `

ÿ

k,h

´

pV kh ps
k
hqq

2m`1

´ pPskh,akhpV
k
h`1q

2mq2
¯

Ikh

ď M̌m`1 `Opd log5
pdHKqq `

ÿ

k,h

´

pV kh ps
k
hqq

2m`1

´ pPskh,akhV
k
h`1q

2m`1
¯

ď M̌m`1 `Opd log5
pdHKqq ` 2m`1

ÿ

k,h

Ikh ¨maxtV kh ps
k
hq ´ Pskh,akhV

k
h`1, 0u

ď M̌m`1 `Opd log5
pdHKqq ` 2m`1

ÿ

k,h

Ikh

ˆ

rpskh, a
k
hq ` max

θPΘk
x0
k,hpθ ´ θ

˚q

˙

ď M̌m`1 `Opd log5
pdHKqq ` 2m`1pK ` Ř0q. (54)

Finally, by (53), (54) and Lemma 24, we have830

Řm ď O

ˆ

d4
b

pM̌m`1 `Opd log5
pdHKqq ` 2m`1pK ` Ř0q ` Řm`1 ` 2Řmqι log7

pdHKq ` d6ι log5
pdHKq

˙

ď O

ˆ

d4
b

pM̌m`1 ` 2m`1pK ` Ř0q ` Řm`1 ` Řmqι log7
pdHKq ` d6ι log5

pdHKq

˙

, (55)

which proves the first part of the lemma. By (51) and (54), we have831 ∣∣M̌m

∣∣ ď O

ˆ

b

pM̌m`1 `Opd log5
pdHKqq ` 2m`1pK ` Ř0qq logp1{δq ` logp1{δq

˙

, (56)

which proves the second part of the lemma.832

E.7 Proof of Lemma 23833

Proof. Let bm “ Řm ` |M̌m|. By (55) and (56), we can bound bm recursively as834

bm ď O

˜

c

d9 log5
pTdq log

1

δ

b

bm ` bm`1 ` 2m`1pK ` Ř0q ` d
7 log6

pTdq log
1

δ

¸

. (57)
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Note that bm ď 2KH for m P Λ1. By Lemma 12 with parameters835

λ1 “ 2KH, λ2 “

b

d9 log5
pTdq logp1{δq, λ3 “ K ` Ř0, λ4 “ d7 log6

pTdq logp1{δq,

we obtain that836

Ř0 ď b0 ď O

ˆ

b

d9pK ` Ř0q log5
pTdq logp1{δq ` d9 log6

pTdq logp1{δq

˙

,

which implies837

b0 ď O

ˆ

d4.5
b

K log5
pTdq logp1{δq ` d9 log6

pTdq logp1{δq

˙

and completes the proof.838
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