
Flashlight : Scalable Link Prediction with Effective Decoders

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Link prediction (LP) has been recognized as an important task in graph learning2

with its board practical applications. A typical application of LP is to retrieve the3

top scoring neighbors for a given source node, such as the friend recommendation.4

These services desire the high inference scalability to find the top scoring neighbors5

from many candidate nodes at low latencies. There are two popular decoders that6

the recent LP models mainly use to compute the edge scores from node embeddings:7

the HadamardMLP and Dot Product decoders. After theoretical and empirical8

analysis, we find that the HadamardMLP decoders are generally more effective9

for LP. However, HadamardMLP lacks the scalability for retrieving top scoring10

neighbors on large graphs, since to the best of our knowledge, there does not exist11

an algorithm to retrieve the top scoring neighbors for HadamardMLP decoders in12

sublinear complexity. To make HadamardMLP scalable, we propose the Flashlight13

algorithm to accelerate the top scoring neighbor retrievals for HadamardMLP:14

a sublinear algorithm that progressively applies approximate maximum inner15

product search (MIPS) techniques with adaptively adjusted query embeddings.16

Empirical results show that Flashlight improves the inference speed of LP by17

more than 100 times on the large OGBL-CITATION2 dataset without sacrificing18

effectiveness. Our work paves the way for large-scale LP applications with the19

effective HadamardMLP decoders by greatly accelerating their inference.20

1 Introduction21

The goal of link prediction (LP) is to predict the missing links in a graph [1]. LP is drawing increasing22

attention in the past decade due to its board practical applications [2]. For instance, LP can be used to23

recommend new friends on social media [3], and recommend attractive items to the costumers on24

E-commerce sites [4], so as to improve the user experience. During inference, these applications25

demand the LP methods to retrieve the top scoring neighbors for a source node at low latencies. This26

is especially challenging on large graphs because the LP methods need to search many candidate27

nodes to find the top scoring neighbors.28

There are two main kinds of architecture followed by the recent LP models. The first uses an encoder,29

e.g., GCN [5], to obtain the node-level embeddings and uses a decoder, e.g., Dot Product, to get the30

edge scores between the paired nodes [6]. The second crops a subgraph for every edge and computes31

the edge score from the subgraph directly [7]. The inference speed of the second is much lower than32

the first, so we focus on the first kind of models to achieve fast inference on large graphs. In the33

last years, extensive research focuses on developing more expressive LP encoders [6, 8]. However,34

much less work pays attention to the essential impacts of the choice of decoders on LP’s performance.35

In this work, we theoretically and empirically analyze two popular LP decoders: Dot Product and36

HadamardMLP (a MLP following the Hadamard Product), and find that the latter is generally more37

effective than the former.38

In practical applications, we should not only consider the effectiveness of LP, but also inference39

efficiency. Many LP applications generally require fast retrieval of the top scoring neighbors for low-40

latency services [3, 9, 10]. For a Dot Product decoder, this retrieval can be approximated efficiently41

at the sublinear time complexity [11]. However, to the best of our knowledge, no such sublinear42

algorithms exist for the top scoring neighbor retrievals of the HadamardMLP decoders. This means43

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.



Flashlight : Scalable Link Prediction with Effective Decoders

Figure 1: Two popular LP decoders: The Dot Product (left), equivalent to the element-wise summa-
tion following the Hadamard product, and the HadamardMLP decoder (right).

that for every source node, we have to iterate over all the nodes in the graph to compute the scores44

so as to find the top scoring neighbors for HadamardMLP, which is of linear complexity and cannot45

scale to large graphs.46

To allow LP applications to enjoy the high effectiveness of HadamardMLP decoders while avoiding47

the poor inference scalability, we propose the scalable top scoring neighbor search algorithm named48

Flashlight. Our Flashlight progressively calls the well-developed approximate maximum inner49

product search (MIPS) techniques for a few iterations. At every iteration, we analyze the retrieved50

neighbors and adaptively adjust the query embedding for Flashlight to find the missed high scoring51

neighbors. Our Flashlight algorithm holds sublinear time complexity on finding top scoring neighbors52

for HadamardMLP decoders, allowing for fast and scalable inference. Empirical results show that53

Flashlight accelerates the inference of LP models by more than 100 times on the large OGBL-54

CITATION2 dataset without sacrificing the effectiveness. Overall, our work paves the way for the55

use of effective LP decoders in practical settings by greatly accelerating their inference.56

2 Revisiting Link Prediction Decoders57

In this section, we formalize the link prediction (LP) problem and the LP decoders. Typically, many58

LP models include an encoder that learns the node-level embeddings xi, i ∈ V , where V is the set of59

nodes, and an decoder ϕ : Rd×Rd → R that combines the node-level embeddings of a pair of nodes:60

xi,xj into a single score: sij . If sij is higher, the link between nodes i and j is more likely to exist.61

The state-of-the-art models generally use graph neural networks as the encoders [5, 6, 8, 12, 13].62

From here on, we mainly focus on the decoder ϕ.63

2.1 Dot Product Decoder64

The most common decoder of link prediction is the Dot Product [6, 8, 10]:65

sij = ϕdot(xi,xj) := xi • xj , (1)

where • denotes the dot product.66

Training a link prediction model with the Dot Product decoder encourages the embeddings of the67

connected nodes to be close to each other. Intuitively, the score sij can be thought as a measure of the68

squared Eulidean distance between the node embeddings xi,xj , as ∥xi−xj∥2 = ∥xi∥2− 2xi •xj +69

∥xj∥2, if the ∥xj∥ is constant over the neighbors j ∈ N , e.g., after normalization [14]. Because the70

node embeddings represent the semantic information of nodes, Dot Product assumes the homophily71

of graph topology, i.e., the semantically similar nodes are more likely to be connected.72

2.2 HadamardMLP (MLP following Hadamard Product) Decoder73

Multi layer perceptrons (MLPs) are known to be universal approximators that can approximate any74

continuous function on a compact set [15]. A MLP layer can be defined as a function f : Rdin →75

Rdout :76

fW(x) = ReLU(Wx) (2)
which is parameterized by the learnable weight W ∈ Rdout×din (the bias, if exists, can be represented77

by an additional column in W and an additional channel in the input x with the value as 1). ReLU78

is the activation function. In a MLP, several layers of f are stacked, e.g., a 3-layer MLP can be79

formalized as fW3
(fW2

(fW1
(x))).80

2



Flashlight : Scalable Link Prediction with Effective Decoders

Figure 2: HadamardMLP achieves higher Mean Reciprocal Rank (MRR, higher is better) than other
decoders on the OGBL-CITATION2 [16] dataset with the encoder as GraphSAGE [12] and GCN [5].
More empirical results and the detailed settings are in Sec. 6.3.

The state-of-the-art models widely use a MLP following the Hadamard Product between the paired81

nodes as the decoder (short as the HadamardMLP decoders) [6, 8, 10, 16]:82

sij = ϕMLP(xi,xj) := MLP(xi ⊙ xj) = wT
L(fWL−1

(. . . fW1(xi ⊙ xj) . . . )), (3)

where ⊙ denotes the Hadamard Product. Fig. 1 illustrates these two models the Dot Product and83

HadamardMLP decoders.84

2.3 Other Link Prediction Decoders85

In principle, every function that takes two vectors as the input and outputs a scalar can act as the86

decoder. For example, there are bilinear dot product decoder (short as Bilinear decoder) [6]:87

sij = hT
i Whj , (4)

where W is the learnable weight, and the MLPs following the concatenate decoder [6, 10] (short as88

ConcatMLP decoder):89

sij = MLP(hi∥hj) (5)

, etc. These two decoders are used much less than Dot Product and HadamardMLP in the state-of-90

the-art LP models possibly due to their lower effectiveness [6, 8, 10, 16].91

2.4 HadamardMLP is Generally More Effective than Other Decoders92

Dot Product demands the homophily of graph data to effectively infer the link between nodes. In93

contrast, thanks to the universal approximation capability, MLP can approximate any continuous94

function, and thus does not demand the homophily of graph data for effective LP. This gap in the95

expressiveness accounts for the performance difference of these two decoders on many datasets (see96

Sec. 6.3). We additionally show in Appendix. A that using a HadamardMLP is easy to learn Dot97

Product, which also partially accounts for the better effectiveness of the HadamardMLP decoders98

over the Dot Product. Existing work also finds that the effectiveness of Bilinear and ConcatMLP is99

generally worse than the HardmardMLP or Dot Product decoder [6, 8, 10, 16]. We confirm these100

findings more rigorously in the empirical results in Fig. 2 and more complete in Sec. 6.3.101

3 Scalability of Link Prediction Decoders102

Most academic studies focus on training runtime when discussing scalability. However, in industrial103

applications, the inference speed is often more important. The inference of many LP applications104

needs to retrieve the top scoring neighbors given a source node, e.g., recommending friends to a105

user for friend recommendation. Given a source node, if there are n nodes in the graph, then the106

inference time complexity is O(n) if the decoder needs to iterate over all the n nodes to compute107

the edge scores. For large scale applications, n is typically in the range of millions, or even larger.108

The empirical results show that the inference time of finding the top scoring neighbors for a source109

3



Flashlight : Scalable Link Prediction with Effective Decoders

node is longer than one second for HadamardMLP on the OGBL-CITATION2 dataset of nearly three110

million nodes (see Sec. 6.5).111

For a Dot Product decoder, the problem of finding the top scoring neighbors can be approximated112

efficiently. This is a well-studied problem, known as approximate maximum inner product search113

(MIPS) [17, 18] (see Sec. 5.2 for a comprehensive literature review). MIPS techniques allow Dot114

Product’ inference to be completed in a few milliseconds, even with millions of neighbors. There115

exists some work that tries to extend MIPS to the ConcatMLP [19, 20]. These methods hold strict116

assumptions on the models’ training and are not directly applicable to the HadamardMLP. To the best117

of our knowledge, no such sublinear techniques exist for the top scoring neighbor retrieval with the118

HadamardMLP [10], which is a complex nonlinear function.119

To summarize, the HadamardMLP decoder is not scalable for the real time LP services on large graphs,120

while the Dot Product decoder allows fast retrieval using the well established MIPS techniques.121

4 Flashlight: Scalable Link Prediction with Effective Decoders122

Sec. 2 has shown that the HadamardMLP decoder enjoys higher effectiveness than the Dot Product123

decoder, which supports the superior performance of HadamardMLP on many LP benchmarks. On124

the other hand, Sec. 3 has shown that the HadamardMLP is not scalable for real time LP applications125

on large graphs, while Dot Product supports the fast inference using the well-established MIPS126

techniques. In this section, we aim to devise fast inference algorithms for HadamardMLP to enable127

scalable LP with effective decoders.128

We try to exploit the advances in the well-developed MIPS techniques to accelerate the inference of129

HadamardMLP. Specifically, we divide the top scoring retrievals for HadamardMLP predictors into a130

sequence of MIPS. Our algorithm works in a progressive manner. The query embedding in every131

search is adaptively adjusted to find the high scoring neighbors missed in the last search.132

The challenge of retrieving the neighbors of highest scores for HadamardMLP is rooted in the133

unawareness of which neurons are activated, since if we know which neurons are activated, the134

nonlinear HadamardMLP degrades to a linear model. On the lth MLP layer, we define the mask135

matrix MA,l ∈ Rdl×dl to represent the set of activated neurons A as136

Mij =

{
1, if i = j and i ∈ A
0, otherwise

(6)

With MA,l, we reformulate the HadamardMLP decoder as:137

sij = ϕMLP(xi,xj) = wT
LMA,L−1WL−1 . . .MA,1W1(xi ⊙ xj)

= (WT
1 MA,1 . . .W

T
L−1MA,L−1wL ⊙ xi) • xj (7)

Because the vector WT
1 MA,1 . . .W

T
L−1M

T
A,L−1wL is determined by the weights of MLP and the138

activated neurons A, we term it as MLPA(·):139

MLPA(·) := WT
1 MA,1 . . .W

T
L−1M

T
A,L−1wL (8)

Given the source node i, because the score sij is obtained by the dot product between140

(WT
1 MA,1 . . .W

T
L−1M

T
A,L−1wL ⊙ xi) and the neighbor embedding xj , we term the former vector141

as the query embedding q:142

q := WT
1 MA,1 . . .W

T
L−1MA,L−1wL ⊙ xi = MLPA(·)⊙ xi (9)

In this way, we can reformulate the output of decoder ϕMLP (xi,xj) as143

sij = ϕMLP(xi,xj) = q • xj . (10)

In practice, we can use the q as the query embedding in MIPS to retrieve the neighbors of highest144

inner products, which correspond to the highest scores. Here, how to get the activated neurons A so145

as to obtain the query embedding q is an issue. Different node pairs activate different neurons A.146

Initially, without knowing which neurons are activated, we first assume all the neurons are activated,147

i.e., we have the initial query embedding as:148

q[1] = (

L−1∏
i=1

WT
i )wL ⊙ xi (11)

4



Flashlight : Scalable Link Prediction with Effective Decoders

Algorithm 1 Flashlight : progressively “illuminates” the semantic space to retrieve the high
scoring neighbors for the LP HadamardMLP decoders.

Input: A trained HadamardMLP decoder ϕMLP that outputs the logit sij for the input xi ⊙ xj . The
set of nodes V . The node embedding set X = {xi|i ∈ V}. A source node i. The number of iterations
T . The number of neighbors to retrieve at every iteration: N = [N1, N2, . . . , NT ].
Output: The recommended neighbors N for the source node i.

1: Initialize the set of retrieved recommended neighbors N ← ∅
2: Initialize the set of activated neurons as A[0] as all the neurons in MLP.
3: for t← 1 to T do
4: Calculate the query embedding q[t]← xi ⊙MLPA[t−1](·).
5: N [t]← Nt neighbors in X that maximizes the inner product with q[t].
6: X ← X \ {xj |j ∈ N [t]}.
7: j⋆[t] = argmaxj∈N [t] MLP(xi ⊙ xj)
8: A[t]← A(MLP(·),xi ⊙ xj⋆[t]).
9: N ← N ∪N [t].

10: return N

This initial design can reflect the general trends of increasing the edge scores on LP, without restricting149

which neurons are activated. We use q[1] as the query embedding to retrieve the highest inner product150

neighbors as N [1] in the first iteration. Then, given the retrieved neighbors in the tth iteration as151

N [t], we analyze the N [t] and adaptively adjust the query embedding q[t + 1] that we use in the152

next iteration to find more high scoring neighbors. Specifically, we operate the feed-forward to MLP153

for N (t). We define the function A(·, ·) that returns the set of activated neurons for a MLP (the first154

input) with the input xi ⊙ xj (the second input). Then we can use it to extract A as:155

A = A(MLP(·),xi ⊙ xj). (12)

Then, we obtain the set of activated neurons of the highest scored neighbor at the tth iteration as:156

A[t]← A(MLP(·),xi ⊙ xj⋆[t]), where j⋆[t] = arg max
j∈N [t]

MLP(xi ⊙ xj). (13)

This implies that the neighbors activating A[t] can obtain the high edge scores. Then, if we take A[1]157

as the set of neurons that we activate at the next query, we could find more high scoring neighbors. In158

this way, we set the neurons that we assume to activate in the next iteration as A[t]. We repeat the159

above iterations until enough neighbors are retrieved. The algorithm is summarized in Alg. 1.160

We name our algorithm as Flashlight because it works like a flashlight to progressively “illuminates”161

the semantic space to find the high scoring neighbors. The query embeddings are like the lights sent162

from the flashlight. And our process of adjusting the query embeddings is just like progressively163

adjusting the “lights” from the “flashlight” by checking the “objects” found in the last “illumination”.164

In the experiments, we find that our Flashlight algorithm is effective to find the top scoring neighbors165

from the massive candidate neighbors. For example, in Fig. 3, our Flashlight is able to find the top166

100 scoring neighbors from nearly three million candidates by retrieving only 200 neighbors in the167

large OGBL-CITATION2 graph dataset for the HadamardMLP decoders.168

Complexity Analysis. Using MLP decoders to compute the LP probabilities of all the neighbors169

holds the complexity as O(N), where N is the number of nodes in the whole graph. Finding the top170

scoring neighbors from the exact probabilities of all the neighbors also holds the linear complexity171

O(N). Overall, using MLP decoders to find the top scoring neighbors is of the time complexity172

O(N). In contrast, our Flashlight progressively calls the MIPS techniques for a constant number173

of times invariant to the graph data, which leads to the sublinear complexity as same as MIPS. In174

conclusion, our Flashlight improves the scalability and applicability of HadamardMLP decoders by175

reducing their inference time complexity from linear to sublinear time.176

5



Flashlight : Scalable Link Prediction with Effective Decoders

Table 1: Statistics of datasets.

Dataset OGBL-DDI OGBL-COLLAB OGBL-PPA OGBL-CITATION2

#Nodes 4,267 235,868 576,289 2,927,963
#Edges 1,334,889 1,285,465 30,326,273 30,561,187

5 Related Work177

5.1 Link Prediction Models178

Existing LP models can be categorized into three families: heuristic feature based [3, 9, 21–23],179

latent embedding based [12, 24–28], and neural network based ones. The neural network-based link180

prediction models are mainly developed in recent years, which explore non-linear deep structural181

features with neural layers. Variational graph auto-encoders [13] predict links by encoding graph with182

graph convolutional layer [5]. Another two state-of-the-art neural models WLNM [29] and SEAL183

[30] use graph labeling algorithm to transfer union neighborhood of two nodes (enclosing subgraph)184

as meaningful matrix and employ convolutional neural layer or a novel graph neural layer DGCNN185

[31] for encoding. More recently, [6, 8] summarized the architectures LP models, and formally define186

the encoders and decoders.187

Different from the previous work, we focus on analyzing the effectiveness of different LP decoders188

and improving the scalability of the effective LP decoders. In practice, we find that the Hadamard189

decoders exhibit superior effectiveness but poor scalability for inference. Our work significantly190

accelerates the inference of HadamardMLP decoders to make the effective LP scalable.191

5.2 Maximum Inner Product Search192

Finding the top scoring neighbors for the Dot Product decoder at the sublinear time complexity is a193

well studied research problem, known as the approximate maximum inner product search (MIPS).194

There are several approaches to MIPS: sampling based [11, 32, 33], LSH-based [34–37], graph based195

[38–40], and quantization approaches [17, 18]. MIPS is a fundamental building block in various196

application domains [41–46], such as information retrieval [47, 48], pattern recognition [49, 50], data197

mining [51, 52], machine learning [53, 54], and recommendation systems [55, 56].198

With the explosive growth of datasets’ scale and the inevitable curse of dimensionality, MIPS is199

essential to offer the scalable services. However, the HadamardMLP decoders are nonlinear and there200

do not exist the well studied sublinear complexity algorithms to find the top scoring neighbors for201

HadamardMLP [10]. In this work, we utilize the well studied approximate MIPS techniques with the202

adaptively adjusted query embeddings to find the top scoring neighbors for the MLP decoders in a203

progressive manner. Our method supports the plug-and-play use during inference and significantly204

acclerates the LP inference with the effective MLP decoders.205

6 Experiments206

In this section, we first compare the effectiveness of different LP decoders. We find that the207

HadamardMLP decoders generally perform better than other decoders. Then, we implement our208

Flashlight algorithm with LP models to show that Flashlight effectively retrieves the top scoring209

neighbors for the HadamardMLP decoders. As a result, the inference efficiency and scalability of210

HadamardMLP decoders are improved significantly by our work.211

6.1 Datasets212

We evaluate the link prediction on Open Graph Benchmark (OGB) data [57]. We use four OGB213

datasets with different graph types, including OGBL-DDI, OGBL-COLLAB, OGBL-CITATION2,214

and OGBL-PPA. OGBL-DDI is a homogeneous, unweighted, undirected graph, representing the drug-215

drug interaction network. Each node represents a drug. Edges represent interactions between drugs.216

OGBL-COLLAB is an undirected graph, representing a subset of the collaboration network between217

authors indexed by MAG. Each node represents an author and edges indicate the collaboration218

between authors. All nodes come with 128-dimensional features. OGBL-CITATION2 is a directed219

graph, representing the citation network between a subset of papers extracted from MAG. Each220

6



Flashlight : Scalable Link Prediction with Effective Decoders

Table 2: The test effectiveness comparison of LP decoders on four OGB datasets (DDI, COLLAB,
PPA, and CITATION2) [16]. We report the results of the standard metrics averaged over 10 runs
following the existing work [6, 16]. HadamardMLP is more effective than other decoders. Flashlight
effectively retrieves the top scoring neighbors for HadamardMLP and keep its exact outputs.

Decoder Dot Product Bilinear ConcatMLP HadamardMLP HadamardMLP w/ Flashlight
OGBL-DDI

GCN [5] 13.8 ± 1.8 16.1 ± 1.2 12.9 ± 1.4 37.1 ± 5.1 37.1 ± 5.1
GraphSAGE [12] 36.5 ± 2.6 39.4 ± 1.7 34.2 ± 1.9 53.9 ± 4.7 53.9 ± 4.7
Node2Vec [27] 11.6 ± 1.9 13.8 ± 1.6 10.8 ± 1.7 23.3 ± 2.1 23.3 ± 2.1

OGBL-COLLAB
GCN [5] 42.9 ± 0.7 43.2 ± 0.9 42.3 ± 1.0 44.8 ± 1.1 44.8 ± 1.1
GraphSAGE [12] 37.3 ± 0.9 41.5 ± 0.8 37.0 ± 0.7 48.1 ± 0.8 48.1 ± 0.8
Node2Vec [27] 27.7 ± 1.1 31.5 ± 1.0 27.2 ± 0.8 48.9 ± 0.5 48.9 ± 0.5

OGBL-PPA
GCN [5] 5.1 ± 0.4 5.8 ± 0.5 6.2 ± 0.6 18.7 ± 1.3 18.7 ± 1.3
GraphSAGE [12] 3.2 ± 0.3 6.5 ± 0.7 5.8 ± 0.4 16.6 ± 2.4 16.6 ± 2.4
Node2Vec [27] 4.2 ± 0.5 7.8 ± 0.6 8.3 ± 0.4 22.3 ± 0.8 22.3 ± 0.8

OGBL-CITATION2
GCN [5] 65.3 ± 0.4 69.0 ± 0.8 62.7 ± 0.3 84.7 ± 0.2 84.7 ± 0.2
GraphSAGE [12] 62.2 ± 0.7 65.4 ± 0.9 60.8 ± 0.6 80.4 ± 0.1 80.4 ± 0.1
Node2Vec [27] 52.7 ± 0.8 54.1 ± 0.6 51.4 ± 0.5 61.4 ± 0.1 61.4 ± 0.1

node is a paper with 128-dimensional word2vec features. OGBL-PPA is an undirected, unweighted221

graph. Nodes represent proteins from 58 different species, and edges indicate biologically meaningful222

associations between proteins. The statistics of these datasets is presented in Table. 1.223

6.2 Hyper-parameter Settings224

For all experiments in this section, we report the average and standard deviation over ten runs with225

different random seeds. The results are reported on the the best model selected using validation226

data. We set hyper-parameters of the used techniques and considered baseline methods, e.g., the227

batch size, the number of hidden units, the optimizer, and the learning rate as suggested by their228

authors. We use the recent MIPS method ScaNN [18] in the implementation of our Flashlight. For229

the hyper-parameters of our Flashlight, we have found in the experiments that the performance of230

Flashlight is robust to the change of hyper-parameters in a board range. Therefore, we simply set the231

number of iterations of our Flashlight as T = 3 and the number of retrieved neighbors constant as232

200 per iteration by default. We run all experiments on a machine with 80 Intel(R) Xeon(R) E5-2698233

v4 @ 2.20GHz CPUs, and a single NVIDIA V100 GPU with 16GB RAM.234

6.3 Effectiveness of Link Prediction Decoders235

We follow the standard benchmark settings of OGB datasets to evaluate the effectiveness of LP with236

different decoders. The benchmark setting of OGBL-DDI is to predict drug-drug interactions given237

information on already known drug-drug interactions. The performance is evaluated by Hits@20:238

each true drug interaction is ranked among a set of approximately 100,000 randomly-sampled negative239

drug interactions, and count the ratio of positive edges that are ranked at 20-place or above. The240

task of OGBL-COLLAB is to predict the future author collaboration relationships given the past241

collaborations. Evaluation metric is Hits50, where each true collaboration is ranked among a set242

of 100,000 randomly-sampled negative collaborations. The task of OGBL-PPA is to predict new243

association edges given the training edges. Evaluation metric is Hits@100, where each positive edge244

is ranked among 3,000,000 randomly-sampled negative edges. The task of OGBL-CITATION2 is245

predict missing citation given existing citations. The evaluation metric is Mean Reciprocal Rank246

(MRR), where the reciprocal rank of the true reference among 1,000 sampled negative candidates is247

calculated for each source nodes, and then the average is taken over all source nodes.248

We implement different decoders as introduced in Sec. 2, including the Dot Product, Bilinear,249

ConcatMLP, and the HadamardMLP decoders, over the LP encoders, including GCN [5], GraphSAGE250

[12], and Node2Vec [27], to compare the effects of different decoders on the LP effectiveness. We251

present the results on the OGBL-DDI, OGBL-COLLAB, OGBL-PPA, and OGBL-CITATION2252

datasets in Table. 2. We observe that the HadamardMLP decoder outperforms other decoders on all253

7



Flashlight : Scalable Link Prediction with Effective Decoders

encoders and datasets. Our Flashlight algorithm can effectively retrieve the top scoring neighbors for254

the HadamardMLP decoder and keep the exact LP probabilities of HadamardMLPs’ output, which255

leads to the same results of the HadamardMLP decoder with and without Flashlight.256

Note that the benchmark settings of these datasets sample a small portion of negative edges for the test257

evaluation, which is not challenging enough to evaluate the scalability of LP decoders on retrieving258

the top scoring neighbors from massive candidates in practice.259

6.4 The Flashlight Algorithm Effectively Finds the Top Scoring Neighbors260

To evaluate the effectiveness of our Flashlight on retrieving the top scoring neighbors for the261

HadamardMLP decoder, we propose a more challenging test setting for the OGB LP datasets.262

Given a source node, we takes its top 100 scoring neighbors of the HadamardMLP decoder as the263

ground-truth for retrievals. We set the task as retrieving k neighbors for a source node that can match264

the ground-truth neighbors as much as possible. We formally define the metric as Recall@k, which is265

the portion of the ground-truth neighbors being in the top k neighbors retrieved by different methods.266

0 100 200 300 400 500
k Neighbors Retrieved by Flashlight

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

@
k

(%
)

Oracle

Flashlight on OGBL-CITATION2

Flashlight on DDI

Figure 3: Recall@k is the fraction of the 100 top
scoring neighbors of HadamardMLP ranked in the
top k neighbors retrieved by Flashlight. We report
Recall@k averaged over all the source nodes on OGBL-
CITATION2 and OGBL-DDI.

We sample 1000 nodes as the source267

nodes from the OGBL-DDI and OGBL-268

CITATION2 datasets respectively for eval-269

uation. We evaluate the effectivness of our270

Flashlight algorithm by checking whether it271

can find the top scoring neighbors for every272

source node. We set the number of Flash-273

light iterations as 10 and the number of re-274

trieved neighbors per iteration as 50. We275

present the Recall@k for k from 1 to 500276

averaged over all the source nodes in Fig.277

3. The “oracle” curve represents the perfor-278

mance of a optimum searcher, of which the279

retrieved top k neighbors are exactly the top280

k scoring neighbors of HadamardMLP.281

When k = 100, the 100 neighbors retrieved282

by our Flashlight can cover more than 80%283

ground-truth neighbors. When k ≥ 200,284

the recall reaches 100%. As a comparison,285

if we randomly sample the candidate neighbors for retrievals, the Recall@k grows linearly with k286

and is less than 1× 10−4 for k = 100 on the OGBL-CITATION2 dataset. The curves of Flashlight is287

close the optimum curve of the “oracle”. These results demonstrate the highly effectiveness of our288

Flashlight on finding the top scoring neighbors.289

Given the large OGBL-Citation2 dataset and smaller DDI dataset, our Flashlight exhibits similar290

Recall@k performance given different numbers k of retrieved neighbors. This implies that our291

Flashlight can accurately find the top scoring neighbors for both small and large graphs.292

6.5 Inference Efficiency of Link Prediction with Our Flashlight Algorithm293

We use the throughputs to evaluate the inference speed of neighbor retrieval of different methods.294

The throughput is defined as how many source nodes that a method can serve to retrieve the top295

100 scoring neighbors per second. Except for the LP models that follow the encoder and decoder296

architectures, e.g., GraphSAGE [12], GCN [5], and PLNLP [6], there are some subgraph based LP297

models, e.g., SUREL [7] and SEAL [58]. The common issue of the subgraph based models is the poor298

efficiency: they have to crop a seperate subgraph for every node pair to calculate the LP probability299

on the node pair. In this sense, the node embeddings cannot be shared on the LP calculation for300

different node pairs. This leads to the much lower inference speed of the subgraph based LP models301

than the encoder-decoder LP models. We compare the inference effeciency of different methods on302

the OGBL-CITATION2 dataset in Fig. 4, where we present the inference speed of different methods303

when achieving the 100% recall@100 for the top 100 scoring neighbors.304

We observe that our Flashlight significantly accelerate the inference speed of LP models GraphSAGE305

[12], GCN [5], and PLNLP [6] with the HadamardMLP decoders by more than 100 times. This gap306

8



Flashlight : Scalable Link Prediction with Effective Decoders

Figure 4: The inference speed of different LP methods on the OGBL-CITATION2 dataset. The
y-axis (througputs) is in the logarithmic scale.

0.0 0.2 0.4 0.6 0.8 1.0
Recall @100

10−1

100

101

102

T
h

ro
u

gh
p

u
t

(n
od

es
/

se
co

n
d

)

HadmardMLP w/ Random Sampling

HadmardMLP w/ Flashlight

0.0 0.2 0.4 0.6 0.8 1.0
Recall @100

10−1

100

101

102

T
h

ro
u

gh
p

u
t

(n
od

es
/

se
co

n
d

)

HadmardMLP w/ Random Sampling

HadmardMLP w/ Flashlight

Figure 5: The tradeoff between the inference speed (y-axis) and the effectiveness of finding the top
scoring neighbors (x-axis) on the OGBL-CITATION2 (left) and OGBL-PPA (right) datasets.

will be even larger for the datasets of larger scales, because the inference with our Flashlight holds the307

sublinear time complexity while the HadamardMLP decoders holds the linear complexity. Note that308

the y-axis is in logoratimic scale. The subgraph based methods SUREL [7] and SEAL [58] hold the309

inference speed of throuputs lower than 1×10−2 and 1×10−3 respectively, which is not applicable to310

the practical services that require the low latency of milliseconds.311

Taking a further step, we comprehensively evaluate the tradeoff between the inference speed and the312

effectiveness of finding the top scoring neighbors. Taking GraphSAGE as the encoder, we present313

the tradeoff curves between the throughputs and the Recall@100 on the OGBL-CITATION2 and314

OGBL-PPI datasets in Fig. 5. In comparison with our Flashlight, we take the HadamardMLP decoder315

with the Random Sampling as the baseline for comparison. For example, on the OGBL-CITATION2316

dataset, when achieving the Recall@100 as more than 80%, the HadamardMLP with our Flashlight317

can serve more than 200 source nodes per second, while the HadamardMLP with the random sampling318

can only serve less than 1 node per second. Overall, our Flashlight achieves much better inference319

speed and effectiveness tradeoff than the HadamardMLP with random sampling.320

7 Conclusion321

Our theoretical and empirical analysis suggests that the HadamardMLP decoders are a better default322

choice than the Dot Product in terms of LP effectiveness. Because there does not exist a well-323

developed sublinear complexity top scoring neighbor searching algorithm for HadamardMLP, the324

HadamardMLP decoders are not scalable and cannot support the fast inference on large graphs. To325

resolve this issue, we propose the Flashlight algorithm to accelerate the inference of LP models with326

HadamardMLP decoders. Flashlight progressively operates the well-studied MIPS techniques for a327

few iterations. We adaptively adjust the query embeddings at every iteration to find more high scoring328

neighbors. Empirical results show that our Flashlight accelrates the inference of LP models by more329

than 100 times on the large OGBL-CITATION2 graph. Overall, our work paves the way for the use330

of strong LP decoders in practical settings by greatly accelerating their inference.331

9



Flashlight : Scalable Link Prediction with Effective Decoders

References332

[1] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A:333

statistical mechanics and its applications, 390(6):1150–1170, 2011. 1334

[2] Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link prediction in335

complex networks. ACM computing surveys (CSUR), 49(4):1–33, 2016. 1336

[3] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):337

211–230, 2003. 1, 6338

[4] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-339

mender systems. Computer, 42(8):30–37, 2009. 1340

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional341

networks. arXiv preprint arXiv:1609.02907, 2016. 1, 2, 3, 6, 7, 8342

[6] Zhitao Wang, Yong Zhou, Litao Hong, Yuanhang Zou, and Hanjing Su. Pairwise learning for343

neural link prediction. arXiv preprint arXiv:2112.02936, 2021. 1, 2, 3, 6, 7, 8, 13344

[7] Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, and Pan Li. Algorithm and345

system co-design for efficient subgraph-based graph representation learning. arXiv preprint346

arXiv:2202.13538, 2022. 1, 8, 9347

[8] Chuxiong Sun and Guoshi Wu. Adaptive graph diffusion networks with hop-wise attention.348

arXiv preprint arXiv:2012.15024, 2020. 1, 2, 3, 6, 13349

[9] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information.350

The European Physical Journal B, 71(4):623–630, 2009. 1, 6351

[10] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. Neural collaborative filtering vs.352

matrix factorization revisited. In Fourteenth ACM conference on recommender systems, pages353

240–248, 2020. 1, 2, 3, 4, 6, 13, 14354

[11] Rui Liu, Tianyi Wu, and Barzan Mozafari. A bandit approach to maximum inner product search.355

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4376–4383,356

2019. 1, 6357

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large358

graphs. Advances in neural information processing systems, 30, 2017. 2, 3, 6, 7, 8359

[13] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint360

arXiv:1611.07308, 2016. 2, 6361

[14] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure362

Leskovec. Graph convolutional neural networks for web-scale recommender systems. In363

Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &364

data mining, pages 974–983, 2018. 2365

[15] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of366

control, signals and systems, 2(4):303–314, 1989. 2367

[16] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-368

lsc: A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430,369

2021. 3, 7370

[17] Xinyan Dai, Xiao Yan, Kelvin KW Ng, Jiu Liu, and James Cheng. Norm-explicit quantization:371

Improving vector quantization for maximum inner product search. In Proceedings of the AAAI372

Conference on Artificial Intelligence, volume 34, pages 51–58, 2020. 4, 6373

[18] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv374

Kumar. Accelerating large-scale inference with anisotropic vector quantization. In International375

Conference on Machine Learning, pages 3887–3896. PMLR, 2020. 4, 6, 7376

[19] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. Fast item ranking under neural network377

based measures. In Proceedings of the 13th International Conference on Web Search and Data378

Mining, pages 591–599, 2020. 4379

[20] Rihan Chen, Bin Liu, Han Zhu, Yaoxuan Wang, Qi Li, Buting Ma, Qingbo Hua, Jun Jiang,380

Yunlong Xu, Hongbo Deng, et al. Approximate nearest neighbor search under neural similarity381

metric for large-scale recommendation. arXiv preprint arXiv:2202.10226, 2022. 4382

10



Flashlight : Scalable Link Prediction with Effective Decoders

[21] Gobinda G Chowdhury. Introduction to modern information retrieval. Facet publishing, 2010.383

6384

[22] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In385

Proceedings of the twelfth international conference on Information and knowledge management,386

pages 556–559, 2003.387

[23] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similarity. In Proceed-388

ings of the eighth ACM SIGKDD international conference on Knowledge discovery and data389

mining, pages 538–543, 2002. 6390

[24] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In Joint391

european conference on machine learning and knowledge discovery in databases, pages 437–392

452. Springer, 2011. 6393

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-394

sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge395

discovery and data mining, pages 701–710, 2014.396

[26] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-397

scale information network embedding. In Proceedings of the 24th international conference on398

world wide web, pages 1067–1077, 2015.399

[27] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In400

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and401

data mining, pages 855–864, 2016. 7402

[28] Zhitao Wang, Chengyao Chen, and Wenjie Li. Predictive network representation learning for403

link prediction. In Proceedings of the 40th international ACM SIGIR conference on research404

and development in information retrieval, pages 969–972, 2017. 6405

[29] Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link prediction. In406

Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and407

data mining, pages 575–583, 2017. 6408

[30] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in409

neural information processing systems, 31, 2018. 6410

[31] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning411

architecture for graph classification. In Proceedings of the AAAI conference on artificial412

intelligence, volume 32, 2018. 6413

[32] Edith Cohen and David D Lewis. Approximating matrix multiplication for pattern recognition414

tasks. Journal of Algorithms, 30(2):211–252, 1999. 6415

[33] Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit S Dhillon. A greedy approach for budgeted416

maximum inner product search. Advances in neural information processing systems, 30, 2017.417

6418

[34] Qiang Huang, Guihong Ma, Jianlin Feng, Qiong Fang, and Anthony KH Tung. Accurate419

and fast asymmetric locality-sensitive hashing scheme for maximum inner product search. In420

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &421

Data Mining, pages 1561–1570, 2018. 6422

[35] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product423

search. In International Conference on Machine Learning, pages 1926–1934. PMLR, 2015.424

[36] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner425

product search (mips). Advances in neural information processing systems, 27, 2014.426

[37] Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James Cheng. Norm-ranging lsh for427

maximum inner product search. Advances in Neural Information Processing Systems, 31, 2018.428

6429

[38] Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, and Ming-Chang Yang. Understanding430

and improving proximity graph based maximum inner product search. In Proceedings of the431

AAAI Conference on Artificial Intelligence, volume 34, pages 139–146, 2020. 6432

[39] Stanislav Morozov and Artem Babenko. Non-metric similarity graphs for maximum inner433

product search. Advances in Neural Information Processing Systems, 31, 2018.434

11



Flashlight : Scalable Link Prediction with Effective Decoders

[40] Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li. Möbius transformation for fast inner435

product search on graph. Advances in Neural Information Processing Systems, 32, 2019. 6436

[41] Kazuo Aoyama, Kazumi Saito, Hiroshi Sawada, and Naonori Ueda. Fast approximate similarity437

search based on degree-reduced neighborhood graphs. In Proceedings of the 17th ACM SIGKDD438

international conference on Knowledge discovery and data mining, pages 1055–1063, 2011. 6439

[42] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. Hd-index: Pushing the440

scalability-accuracy boundary for approximate knn search in high-dimensional spaces. arXiv441

preprint arXiv:1804.06829, 2018.442

[43] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search443

with the navigating spreading-out graph. arXiv preprint arXiv:1707.00143, 2017.444

[44] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search445

using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and446

machine intelligence, 42(4):824–836, 2018.447

[45] Philipp M Riegger. Literature survey on nearest neighbor search and search in graphs. 2010.448

[46] Wenhui Zhou, Chunfeng Yuan, Rong Gu, and Yihua Huang. Large scale nearest neighbors449

search based on neighborhood graph. In 2013 International Conference on Advanced Cloud450

and Big Data, pages 181–186. IEEE, 2013. 6451

[47] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, Byron Dom,452

Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, et al. Query by image and video453

content: The qbic system. computer, 28(9):23–32, 1995. 6454

[48] Chun Jiang Zhu, Tan Zhu, Haining Li, Jinbo Bi, and Minghu Song. Accelerating large-scale455

molecular similarity search through exploiting high performance computing. In 2019 IEEE456

International Conference on Bioinformatics and Biomedicine (BIBM), pages 330–333. IEEE,457

2019. 6458

[49] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on459

information theory, 13(1):21–27, 1967. 6460

[50] Atsutake Kosuge and Takashi Oshima. An object-pose estimation acceleration technique for461

picking robot applications by using graph-reusing k-nn search. In 2019 First International462

Conference on Graph Computing (GC), pages 68–74. IEEE, 2019. 6463

[51] Qiang Huang, Jianlin Feng, Qiong Fang, Wilfred Ng, and Wei Wang. Query-aware locality-464

sensitive hashing scheme for l_p norm. The VLDB Journal, 26(5):683–708, 2017. 6465

[52] Masajiro Iwasaki. Pruned bi-directed k-nearest neighbor graph for proximity search. In466

International Conference on Similarity Search and Applications, pages 20–33. Springer, 2016.467

6468

[53] Yuan Cao, Heng Qi, Wenrui Zhou, Jien Kato, Keqiu Li, Xiulong Liu, and Jie Gui. Binary469

hashing for approximate nearest neighbor search on big data: A survey. IEEE Access, 6:470

2039–2054, 2017. 6471

[54] Scott Cost and Steven Salzberg. A weighted nearest neighbor algorithm for learning with472

symbolic features. Machine learning, 10(1):57–78, 1993. 6473

[55] Yitong Meng, Xinyan Dai, Xiao Yan, James Cheng, Weiwen Liu, Jun Guo, Benben Liao,474

and Guangyong Chen. Pmd: An optimal transportation-based user distance for recommender475

systems. In European Conference on Information Retrieval, pages 272–280. Springer, 2020. 6476

[56] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative477

filtering recommendation algorithms. In Proceedings of the 10th international conference on478

World Wide Web, pages 285–295, 2001. 6479

[57] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele480

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.481

Advances in neural information processing systems, 33:22118–22133, 2020. 6482

[58] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using483

graph neural networks for multi-node representation learning. Advances in Neural Information484

Processing Systems, 34:9061–9073, 2021. 8, 9485

12



Flashlight : Scalable Link Prediction with Effective Decoders

[59] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via486

over-parameterization. In International Conference on Machine Learning, pages 242–252.487

PMLR, 2019. 13488

[60] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials with489

neural networks. In International conference on machine learning, pages 1908–1916. PMLR,490

2014. 13491

A Learning a Dot Product decoder with a HadamardMLP decoder is Easy492

Before we have discussed the limitations of the Dot Product decoder. An interesting questions is493

whether the HadamardMLP decoder can replace the Dot Product decoder by approximating it. If the494

MLP decoder can learn a dot product easily, it is safe to use MLP decoder instead of the dot product495

ones in most cases. There are similar problems actively studied in machine learning. Existing work496

imply that the difficulty scales polynomial with dimensionality d and 1/ϵ in theory [10, 59, 60]. This497

motivates us to investigate the question empirically.498

0 2000 4000 6000 8000 10000
Epoch

10−4

10−3

10−2

10−1

100

101

102

T
es

t
M

S
E

Naive Output

1000 training pairs

2000 training pairs

5000 training pairs

10000 training pairs

20000 training pairs

0 2000 4000 6000 8000 10000
Epoch

10−4

10−3

10−2

10−1

100

101

102

T
es

t
M

S
E

Naive Output

5000 training pairs

10000 training pairs

20000 training pairs

50000 training pairs

100000 training pairs

Figure 6: A MLP decoder can learn a Dot Product decoder well with enough training data. The left
and right figures shows the MSE differences (y-axis) per epoch (x-axis) between the outputs of dot
product and the MLP decoders given different training sizes with the input embedding dimenionality
as d = 64 and d = 128 respectively. The naive output denotes the outputs of zeros.

2000 4000 8000 16000 32000 64000

Training Set Size (Number of Embedding Pairs)

101

102

103

104

105

106

107

T
es

t
In

ve
rs

e
M

S
E

d = 64

d = 96

d = 128

Figure 7: Test inverse MSE differences between the outputs of Dot Product and MLP decoders after
convergence (y-axis) versus the training set size (x-axis).

We set up a synthetic learning task where given two embeddings xi,xj ∈ Rd and a label xi • xj , we499

want to obtain a MLP function that approximates the xi • xj with the inputs xi,xj ∈ Rd. For this500

experiment, we create the datasets including the embedding matrix as E ∈ R106×d. We draw every501

row in E from N (0, I) independently. Then, we uniformly sample (without replacement) 104 and S502

embedding pair combinations from E to form the test and training sets (no overlap) respectively.503

We train the MLP on the training and evalute it on the test set. For the architecture of the MLP, we504

keep it simple: we follow the existing work [6, 8] to set the number of layers as 2 and the number of505

hidden units as same as the input embeddings: d. For the optimizer, we also folow the existing work506

[6, 8] to choose the Adam optimizer.507

13



Flashlight : Scalable Link Prediction with Effective Decoders

As for evaluation metrics, we compute the MSE (Mean Squared Error) differences between the508

predicted score of the MLP and the dot product decoders. We measure the MSE of a naive model that509

predicts always 0 (the average rating). Every experiment is repeated 5 times and we report the mean.510

Fig. 6 shows the approximation errors on the MLP per epoch given different number of training511

pairs and dimensions. The figure suggests that an MLP can easily approximate the dot product with512

enough training data. Consistent with the theory, the number of samples needed scales polynominally513

with the increasing dimensions and reduced errors. Ancedotally, we observe the number of needed514

training samples is about O(dα/ϵβ) for α ≈ 2, β ≪ 1 (see Fig. 7). In all cases, the MSE errors of515

the MLP decoder are negligible compared with the naive output.516

This experiment shows that an MLP can easily approximate the dot product with enough training517

data. We hope this can explain, at least partially, why the MLP decoder generally performs better518

than the dot product.519

Our conclusion seems to be distinct to to the existing work [10], which claims that the ConcatMLP520

is hard to learn a Dot Product. Actually, our conclusion is not conflicted with that in [10]. This521

ConcatMLP decoder processes the concatenation of the paired embeddings instead of the Hadamard522

product of the paired embeddings as the HadamardMLP. The HadamardMLP holds the inductive bias523

similar to the Dot Product, which makes the former easily learns the latter. Actually, we show that524

a simple two-layer MLP with only two hidden units is equivalent to the Dot Product with specific525

weights. We assign the first layer weights for two hidden units as 1 and −1 and the second layer526

weights as ones. Then, we have its output as:527

sij = ϕMLP(xi,xj) = ReLU(1•(xi⊙xj))+ReLU(−1•(xi⊙xj)) = 1•(xi⊙xj) = xi •xj , (14)

which is equivalent to the Dot Product decoder. From this result, we find that any MLP decoder with528

the careful initialization is equivalent to the Dot Product decoder and thus can learn the Dot Product529

easily.530

14


	1 Introduction
	2 Revisiting Link Prediction Decoders
	2.1 Dot Product Decoder
	2.2 HadamardMLP (MLP following Hadamard Product) Decoder
	2.3 Other Link Prediction Decoders
	2.4 HadamardMLP is Generally More Effective than Other Decoders

	3 Scalability of Link Prediction Decoders
	4 Flashlight: Scalable Link Prediction with Effective Decoders
	5 Related Work
	5.1 Link Prediction Models
	5.2 Maximum Inner Product Search

	6 Experiments
	6.1 Datasets
	6.2 Hyper-parameter Settings
	6.3 Effectiveness of Link Prediction Decoders
	6.4 The Flashlight Algorithm Effectively Finds the Top Scoring Neighbors
	6.5 Inference Efficiency of Link Prediction with Our Flashlight Algorithm

	7 Conclusion
	A Learning a Dot Product decoder with a HadamardMLP decoder is Easy

