
Vision GNN: An Image is Worth Graph of Nodes
(Supplemental Material)

Anonymous Author(s)
Affiliation
Address
email

1 Theoretical Analysis1

In our ViG block, we propose to increase feature diversity in nodes by utilizing more feature2

transformation such as FFN module. We show the empirical comparison between vanilla ResGCN3

and our ViG model in our paper. Here we make a simple theoretical analysis of the benefit of FFN4

module in ViG on increasing the feature diversity. Given the output features of graph convolution5

X ∈ RN×D, the feature diversity [1] is measured as6

γ(X) = ‖X − 1xT ‖, where x = argmin
x
‖X − 1xT ‖, (1)

where ‖ · ‖ is the `1,∞ norm of a matrix. By applying FFN module on the features, we have the7

following theorem.8

Theorem 1. Given a FFN module, the diversity γ(FFN(X)) of its output features satisfies9

γ(FFN(X)) ≤ λγ(X), (2)

where λ is the Lipschitz constant of FFN with respect to p-norm for p ∈ [1,∞].10

Proof. The FFN includes weight matrix multiplication, bias addition and elementwise nonlinear11

function, which all preserve the constancy-across-rows property of FFN(1xT). Therefore, we have12

γ(FFN(X)) = ‖FFN(X)− 1x′
T ‖p

≤ ‖FFN(X)− FFN(1xT)‖p . FFN preserves constancy-across-rows.

≤ λ‖X − 1xT ‖p . Definition of Lipschitz constant.
= λγ(X),

13

The Lipschitz constant of FFN is related to the norm of weight matrices and is usually much larger14

than 1 [2]. Thus, the Theorem 1 shows that introducing γ(FFN(X)) in our ViG block tends to15

improve the feature diversity in graph neural network.16

2 Pseudocode17

The proposed Vision GNN framework is easy to be implemented based on the commonly-used layers18

without introducing complex operations. The pseudocode of the core part, i.e., ViG block is shown in19

Algorithm 1.20

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Algorithm 1 PyTorch-like Code of ViG Block

import torch.nn as nn
from deep_gcns_torch.gcn_lib.dense.torch_vertex import DynConv2d
deep_gcns_torch is downloaded from https://github.com/lightaime/deep_gcns_torch

class GrapherModule(nn.Module):
"""Grapher module with graph conv and FC layers
"""
def __init__(self, in_channels, hidden_channels, k=9, dilation=1, drop_path=0.0):
super(GrapherModule, self).__init__()
self.fc1 = nn.Sequential(
nn.Conv2d(in_channels, in_channels, 1, stride=1, padding=0),
nn.BatchNorm2d(in_channels),

)
self.graph_conv = nn.Sequential(
DynConv2d(in_channels, hidden_channels, k, dilation, act=None),
nn.BatchNorm2d(hidden_channels),
nn.GELU(),

)
self.fc2 = nn.Sequential(
nn.Conv2d(hidden_channels, in_channels, 1, stride=1, padding=0),
nn.BatchNorm2d(in_channels),

)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

def forward(self, x):
B, C, H, W = x.shape
x = x.reshape(B, C, -1, 1).contiguous()
shortcut = x
x = self.fc1(x)
x = self.graph_conv(x)
x = self.fc2(x)
x = self.drop_path(x) + shortcut
return x.reshape(B, C, H, W)

class FFNModule(nn.Module):
"""Feed-forward Network
"""
def __init__(self, in_channels, hidden_channels, drop_path=0.0):
super(FFNModule, self).__init__()
self.fc1 = nn.Sequential(
nn.Conv2d(in_channels, in_channels, 1, stride=1, padding=0),
nn.BatchNorm2d(in_channels),
nn.GELU()

)
self.fc2 = nn.Sequential(
nn.Conv2d(hidden_channels, in_channels, 1, stride=1, padding=0),
nn.BatchNorm2d(in_channels),

)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

def forward(self, x):
shortcut = x
x = self.fc1(x)
x = self.fc2(x)
x = self.drop_path(x) + shortcut
return x

class ViGBlock(nn.Module):
"""ViG block with Grapher and FFN modules
"""
def __init__(self, channels, k, dilation, drop_path=0.0):
super(ViGBlock, self).__init__()
self.grapher = GrapherModule(channels, channels * 2, k, dilation, drop_path)
self.ffn = FFNModule(channels, channels * 4, drop_path)

def forward(self, x):
x = self.grapher(x)
x = self.ffn(x)
return x

2

References21

[1] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure attention22

loses rank doubly exponentially with depth. In ICML, pages 2793–2803. PMLR, 2021.23

[2] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient24

estimation. In NeurIPS, pages 3839–3848, 2018.25

3

	Theoretical Analysis
	Pseudocode

