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Abstract1

Deploying graph neural networks (GNNs) on whole-graph classification or regres-2

sion tasks is known to be challenging: it often requires computing node features3

that are mindful of both local interactions in their neighbourhood and the global4

context of the graph structure. GNN architectures that navigate this space need5

to avoid pathological behaviours, such as bottlenecks and oversquashing, while6

ideally having linear time and space complexity requirements. In this work, we7

propose an elegant approach based on propagating information over expander8

graphs. We provide an efficient method for constructing expander graphs of a9

given size, and use this insight to propose the EGP model. We show that EGP is10

able to address all of the above concerns, while requiring minimal effort to set up,11

and provide evidence of its empirical utility on relevant datasets and baselines in12

the Open Graph Benchmark. Importantly, using expander graphs as a template13

for message passing necessarily gives rise to negative curvature. While this ap-14

pears to be counterintuitive in light of recent related work on oversquashing, we15

theoretically demonstrate that negatively curved edges are likely to be required to16

obtain scalable message passing without bottlenecks. To the best of our knowledge,17

this is a previously unstudied result in the context of graph representation learning,18

and we believe our analysis paves the way to a novel class of scalable methods to19

counter oversquashing in GNNs.20

1 Introduction21

Graph neural networks (GNNs) are a flexible class of models for learning representations over22

graph-structured data [1]. Their versatility [2–4] and generality [5, 6] has made them a very attractive23

approach, leading to considerable application in areas as diverse as virtual drug screening [7], traffic24

prediction [8], combinatorial chip design [9] and pure mathematics [10, 11].25

Most GNNs rely on repeatedly propagating information between neighbouring nodes in the graph.26

This is commonly expressed in the message passing [4] paradigm: nodes send vector-based messages27

to each other along the edges of the graph, and nodes update their representations by aggregating all28

the messages sent to them, in a permutation-invariant manner. Under many industrially-relevant tasks29

(which require identifying node-level properties, often with homophily assumptions), this formalism30

is very well aligned, often allowing for highly scalable model variants [12–14].31

However, in many areas of scientific interest, purely local interactions are likely to be insufficient.32

Among the principal tasks over graphs, graph classification is perhaps most ripe with such situations:33

to meaningfully attach a label to a graph, in many cases it is insufficient to treat graphs as “bags34

of nodes”. For example, when classifying a molecule for its potency as a candidate drug [7], the35

label is driven by complex substructure interactions in the molecule [15], rather than a naïve sum of36

atom-level effects. Accordingly, GNNs deployed in this regime need to update node features in a37

manner that is mindful of the global properties of the graph.38

It quickly became apparent (as early as [2]) that it is often inadequate to merely stack more message39

passing layers over the input graph. In fact, for many standard graph classification tasks, such40

approaches may be weaker than discarding the graph structure altogether [16, 17]. Now, it is well-41

understood that stacking many local layers leaves GNNs vulnerable to pathological behaviours such42
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Figure 1: Left: The Cayley graph of SLp2,Z3q, constructed using our method. It has |V | “ 24
nodes and it is 4-regular (implying |E| “ 2|V |), hence it is sparse. Despite its sparsity, it is highly
interconnected: any node is reachable from any other node by no more than 4 hops. Hence, it
can serve as a strong “template” for globally propagating node features with a GNN. Right: The
Cayley graph of SLp2,Z5q, constructed in an analogous way (with |V | “ 120 nodes). A 2-hop
neighbourhood of one node (in red) is highlighted, demonstrating its tree-like local structure.

as oversquashing [18], wherein nodes close to bottlenecks in the graph would need to store quantities43

of information that are exponentially increasing with model depth.44

Within this space, we are interested in proposing a method that satisfies four desirable criteria: (C1) it45

is capable of propagating information globally in the graph; (C2) it is resistant to the oversquashing46

effect and does not introduce bottlenecks; (C3) its time and space complexity remain subquadratic47

(tighter than Op|V |2q for sparse graphs); and (C4) it requires no dedicated preprocessing of the input.48

Satisfying all four of these criteria simultaneously is challenging, and we will survey many of the49

popular approaches in the next section—demonstrating ways in which they fail to meet some of them.50

In this paper, we identify expander graphs as very attractive objects in this regard. Specifically, they51

offer a family of graph structures that are fundamentally sparse (|E| “ Op|V |q), while having low52

diameter: thus, any two nodes in an expander graph may reach each other in a short number of53

hops, eliminating bottlenecks and oversquashing (see Figure 1). Further, we will demonstrate an54

efficient way to construct a family of expander graphs (leveraging known theoretical results on the55

special linear group, SLp2,Znq). Once an expander graph of appropriate size is constructed, we56

can perform a certain number of GNN propagation steps over its structure to globally distribute the57

nodes’ features. Accordingly, we name our method expander graph propagation (EGP).58

Another important contribution of our work concerns extending the implications of prior art on59

oversquashing via curvature analysis [19]. According to [19], edges that are negatively curved60

are causing the oversquashing effect—yet, counterintuitively, the edges of the expander graphs61

we construct will always be negatively curved! We prove, however, that our expanders can never62

be sufficiently negatively curved to trigger the conditions necessary for the results in [19] to be63

applicable, and show that the existence of negatively curved edges might in fact be required in order64

to have sparse communication without bottlenecks.65

2 Related work66

We begin with a survey of the many prior approaches to handling global context in graph representation67

learning, evaluating them carefully against our four desirable criteria (C1–C4; cf. Table 1). This list68

is by no means exhaustive, but should be indicative of the most important directions.69

Stacking more layers. As already highlighted, one way to achieve global information propagation is70

to have a deeper GNN. In this case, we are capable of satisfying (C1) and (C4)—no dedicated prepro-71

cessing is needed. However, depending on the graph’s diameter, we may need up to Op|V |q layers to72

cover the graph, leading to quadratic complexity (violating (C3)) and introducing a vulnerability to73

bottlenecks (C2), as theoretically and empirically demonstrated in [18].74

Master nodes. An attractive approach to introducing global context is to introduce a master node75

to the graph, and connect it to all of the graph’s nodes. This can be done either explicitly [4] or76

implicitly, by storing a “global” vector [20]. It trivially reduces the graph’s diameter to 2, introduces77
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Table 1: A summary of principal approaches to handling global context in graph representation
learning (Section 2). “(✓)” indicates that a criterion may be satisfied, depending on the method’s
tradeoffs. Our proposal, the expander graph propagation (EGP) method, satisfies all four criteria.

Approach (C1) (C2) (C3) (C4)
(global prop.) (no bottlenecks) (subquadratic) (no dedicated preproc.)

GNNs ✗ ✗ ✓ ✓
Sufficiently deep GNNs ✓ ✗ ✗ ✓
Master node [4, 20] ✓ ✗ ✓ ✓
Fully connected [18, 21–25] ✓ ✓ ✗ ✓
Feature aug. [26–31] ✓ (✓) (✓) ✗
Graph rewiring [19, 32] ✓ ✓ ✓ ✗
Hierarchical MP [33–38] ✓ ✓ (✓) ✗

EGP (ours) ✓ ✓ ✓ ✓

Op1q new nodes and Op|V |q new edges, and requires no dedicated preprocessing, hence it satisfies78

(C1, C3, C4). However, these benefits come at the expense of introducing a bottleneck in the master79

node: it has a very challenging task (especially when graphs get larger) to continually incorporate80

information over a very large neighbourhood in a useful way. Hence it fails to satisfy (C2).81

Fully connected graphs. The converse approach is to make every node a master node: in this case,82

we make all pairs of nodes connected by an edge—this was initially proposed as a powerful method83

to alleviate oversquashing by [18]. This strategy proved highly popular in the recent surge of Graph84

Transformers [22, 23, 25], and is common for GNNs used in physical simulation [21] or reasoning85

[24] tasks. The graph’s diameter is reduced to 1, no bottlenecks remain, and the approach does not86

require any dedicated preprocessing. Hence (C1, C2, C4) are trivially satisfied. The main downside87

of this approach is the introduction of Op|V |2q edges, which means (C3) can never be satisfied—and88

this approach will hence be prohibitive even for modestly-sized graphs.89

Feature augmentation. An alternative approach is to provide additional features to the GNN which90

directly identify the structural role each node plays in the graph structure [26]. If done properly (i.e., if91

the computed features are directly relevant to the target task), this can drastically improve expressive92

power. Hence, in theory, it is possible to satisfy (C1) while not violating (C2, C3). However,93

computing appropriate features requires either specific domain knowledge, or an appropriate pre-94

training procedure [27–31] to be applied, in order to obtain such embeddings. Hence all of these95

gains come at the expense of failing to satisfy (C4).96

Graph rewiring. Another promising line of research involves modifying the edges of the original97

graph, in order to alleviate bottlenecks. Popular examples of this approach involve using diffusion98

[32]—which diffuse additional edges through the application of kernels such as the personalised99

PageRank, and stochastic discrete Ricci flows [19]—which surgically modify a small quantity of100

edges to alleviate the oversquashing effect on the nodes with negative Ricci curvature. If realised101

carefully, such approaches will not deviate too far from the original graph, while provably alleviating102

oversquashing; hence it is possible to satisfy (C1, C2, C3). However, this comes at a cost of having to103

examine the input graph structure, with methods that do not necessarily scale easily with the number104

of nodes. As such, dedicated preprocessing is needed, failing to satisfy (C4).105

Hierarchical message passing. Lastly, going beyond modifying the edges, it is also possible to106

introduce additional nodes in the graph—each of them responsible for a particular substructure in107

the graph1. If done carefully, it has the potential to drastically reduce the graph’s diameter while not108

introducing bottlenecked nodes (hence, allowing us to satisfy (C1, C2)). However, in prior work,109

a cost has to be paid for this, usually in the need for dedicated preprocessing. Prior proposals for110

hierarchical GNNs that remain scalable require a dedicated pre-processing step [33–35], sometimes111

coupled with domain knowledge [35]—thus failing to satisfy (C4). In addition, such methods may112

require adding prohibitively large numbers of substructures [36, 37] or expensive pre-computation,113

e.g. computing the graph Laplacian eigenvectors [38]. This might make even (C3) hard to satisfy.114

1The master node approach discussed before is a special case of this, wherein a single node is responsible for
a “substructure” spanning the entire graph.
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Before proceeding to present EGP-specific material, we remark that our work is not the first to115

study expander graph-related topics in the context of GNNs. Specifically, the ExpanderGNN [39]116

leverages expander graphs over neural network weights to sparsify the update step in GNNs, and117

the Cheeger constant has been previously used to quantify oversquashing in [19]. With respect to118

our contributions, neither of these cases discuss expander graphs in the context of the computational119

graph for a GNN, nor attempt to propagate messages over such a structure. Further, neither of these120

proposals successfully satisfies all four of our desired criteria (C1–C4).121

3 Theoretical background122

We now dedicate our attention to the key theoretical results over expander graphs, which will allow123

EGP to have favourable properties and be efficiently precomputable.124

Definition 1. For a finite connected graph G “ pV pGq, EpGqq, we consider functions f : V pGq Ñ R.
The Laplacian Lf : V pGq Ñ R of such a function is defined to be

Lfpvq “ degpvqfpvq ´
ÿ

vwPEpGq

fpwq,

where degpvq is the degree of the vertex v.125

The mapping L : RV pGq Ñ RV pGq sending a function f to its Laplacian Lf is a linear transformation.
It is not hard to show [40] that L is symmetric with respect to the standard basis for RV pGq and
positive semi-definite and hence has non-negative real eigenvalues

0 “ λ0pGq ă λ1pGq ď λ2pGq ď . . . .

The smallest eigenvalue is 0 and its associated eigenspace consists of the constant functions (assuming126

G is connected). The smallest positive eigenvalue, λ1pGq, is central to the definition of expander127

graphs, as the next definition shows.128

Definition 2. A collection tGiu of finite connected graphs is an expander family if there is a constant129

c ą 0 such that for all Gi in the collection, λ1pGiq ě c.130

Expander families [41–43] have many remarkable and useful properties, particularly when there is a131

uniform upper bound on the degree of the vertices of Gi.132

Definition 3. Let G be a finite graph. For A Ă V pGq, its boundary BA is the collection of edges
with one endpoint in A and one endpoint not in A. The Cheeger constant hpGq is defined to be

hpGq “ min

"

|BA|

|A|
: A Ă V pGq, 0 ă |A| ď |V pGq|{2

*

.

Thus, having a small Cheeger constant is equivalent to the graph having a ‘bottleneck’, in the sense133

that there is a collection of edges BA that, when removed, disconnects the vertices into two sets134

(A and its complement, V pGqzA), with the property that the sizes of A and its complement are135

significantly larger than the size of BA.136

Expander families can be reinterpreted using Cheeger constants, as follows (see, e.g., [44–47]):137

Theorem 4. Let tGiu be a collection of finite connected graphs with a uniform upper bound on their138

vertex degrees. Then the following are equivalent:139

1. tGiu is an expander family;140

2. there is a constant ϵ ą 0 such that for all graphs in the collection, hpGiq ě ϵ.141

Hence, expander graphs have higher Cheeger constants and will hence provably be bottleneck-free.142

The following result is one of the many useful properties of expander families, and it concerns their143

diameter. It was proved by Mohar [48, Theorem 2.3]. See also [45].144

Theorem 5. The diameter diampGq of a graph G satisfies

diampGq ď 2

R

∆pGq ` λ1pGq

4λ1pGq
logp|V pGq| ´ 1q

V

,

where ∆pGq is the maximal degree of any vertex of G. Hence, if tGiu is an expander family of finite
graphs with a uniform upper bound on their vertex degrees, then there is a constant k ą 0 such that
for all graphs in the family,

diampGiq ď k log V pGiq.
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Therefore, if we want to globally propagate information over an expander graph which has |V | nodes,145

we only need Oplog |V |q propagation steps to do so—yielding subquadratic complexity.146

We have now successfully shown that expander graphs are bottleneck-free, and have favourable147

propagation qualities. What is missing is an efficient method of constructing an expander graph of148

(roughly) |V | nodes. To demonstrate such a method, we leverage known results from group theory.149

Definition 6. A group pΓ, ˝q is a set Γ equipped with a composition operation ˝ : ΓˆΓ Ñ Γ (written150

concisely by omitting ˝, i.e. g ˝ h “ gh, for g, h P Γ), satisfying the following axioms:151

• (Associativity) pghql “ gphlq, for g, h, l P Γ.152

• (Identity) There exists a unique e P Γ satisfying eg “ ge “ g for all g P Γ.153

• (Inverse) For every g P Γ there exists a unique g´1 P Γ such that gg´1 “ g´1g “ e.154

A group is hence a natural construct for reasoning about transformations that leave an object invariant155

(unchanged). Further, we define a relevant notion of a group’s generating set:156

Definition 7. Let Γ be a group. A subset S Ď Γ is a generating set for Γ if it can be used to “generate”157

all of Γ via composition. Concretely, any element g P Γ can be expressed by composing elements in158

the generating set, or their inverses; that is, we can express g “ s˘1
1 s˘1

2 s˘1
3 ¨ ¨ ¨ s˘1

n´1s
˘1
n for si P S.159

Now we are ready to define a Cayley graph of a group w.r.t. its generating set.160

Definition 8. Let Γ be a group with a finite generating set S. Then the associated Cayley graph161

CaypΓ;Sq has vertex set Γ and it has an edge g Ñ gs for each g P Γ and each s P S. We say that162

s is the label on this edge. This is a potentially non-simple graph, as it may have edges with both163

endpoints on the same vertex and it may have multiple edges between a pair of vertices. In particular,164

when s has order 2, then we view the edge g Ñ gs and the edge g Ñ gs2 “ g as being distinct edges.165

Note that the degree of each vertex of a Cayley graph CaypΓ;Sq is 2|S|. This is because each vertex166

g is joined by edges to gs and gs´1 for each s P S. Thus, we shall be particularly interested in the167

case where there is a uniform upper bound on |S|. The specific group we use for EGP is as follows.168

For each positive integer n, the special linear group SLp2,Znq denotes the group of 2 ˆ 2 matrices
with entries that are integers modulo n and with determinant 1. One of its generating sets is:

Sn “

"ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙*

.

Central to our constructions is the following important result.169

Theorem 9. The family of Cayley graph CaypSLp2,Znq;Snq forms an expander family.170

The proof uses a result of Selberg [49] who showed that the smallest positive eigenvalue of the171

Laplacian of certain hyperbolic surfaces is at least 3{16. One can use this to a produce a lower bound172

on the first eigenvalue of the Laplacian on CaypSLp2,Znq;Snq. Full proofs are given in [42, 43].173

Lastly, it is useful to state a known result: the number of nodes of CaypSLp2,Znq;Snq is:174

|V pCaypSLp2,Znq;Snqq| “ n3
ź

prime p|n

ˆ

1 ´
1

p2

˙

, (10)

hence, it is of the order of Opn3q. We now study the local properties of Cayley graphs in detail.175

4 Local structure of the Cayley graphs, and the utility of negative curvature176

Recent work [19] has suggested that the local structure of the graph G underlying a GNN may play177

an important role in the way that information propagates around G. In particular, various notions of178

‘Ricci curvature’ such as Forman curvature [50], Ollivier curvature [51, 52] and balanced Forman179

curvature [19] have been examined. These are all local quantities, in the sense that they depend on the180

structure of the graph within a small neighbourhood of each edge. In this section, we will therefore181

examine the local structure of the Cayley graphs Gn “ CaypSLp2,Znq;Snq.182

The various notions of curvature given above are defined for each e of the graph G. Since, as defined183

by [19], the balanced Forman curvature of an edge depends only on local structures (i.e. triangles184
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and squares) around that edge, they can be determined by only observing the immediate 2-hop185

surrounding of that edge. Formally, for an edge e of a graph G, let N2peq be the induced subgraph186

with vertices that are at most two hops away from at least one endpoint of e. Then the curvature of e187

only depends on the isomorphism type of N2peq. More specifically, if e and e1 are edges in possibly188

distinct graphs, and there is a graph isomorphism between N2peq and N2pe1q that sends e to e1, then189

this guarantees that the curvatures of e and e1 are equal.190

This situation arises prominently in the Cayley graphs that we are considering, as follows.191

Proposition 11. Let s be one of
ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙

.

Let n, n1 ą 18 and let e and e1 be s-labelled edges in Gn and Gn1 . Then there is a graph isomorphism192

between N2peq and N2pe1q taking e to e1.193

We prove Proposition 11 in Appendix A. This immediately allows us to characterise the balanced194

Forman curvature and Ollivier curvature for all of the Cayley graphs we generate:195

Proposition 12. The balanced Forman curvatures Ricpnq, and the Ollivier curvatures κpnq of all
edges of Cayley graphs Gn are given by:

Ricpnq “

$

’

’

&

’

’

%

0 if n “ 2

´1{4 if n “ 3

´1{2 if n “ 4

´1 if n ě 5,

κpnq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if n “ 2

´1{8 if n “ 3

´1{4 if n “ 4

´3{8 if n “ 5

´1{2 if n ě 6.

Proof. Proposition 11 implies that the balanced Forman and Ollivier curvatures are all equal for196

n ą 18. Their values for 2 ď n ď 19 can all be empirically computed, and are given as above.197

Prior work [19] suggests it is preferable for GNNs to operate on graphs with positive Ricci curvature,198

whereas our graphs Gn pn ą 2q all have negative Ricci curvature. However, we contend that negative199

Ricci curvature is not in itself an impediment to efficient propagation around a GNN. Indeed, it was200

shown in [19, Theorem 4] that poor propagation arises when the balanced Forman curvature is close201

to ´2, specifically if it is at most ´2 ` δ for some δ ą 0. Here, δ is required to satisfy certain202

inequalities. But, with certainty, δ “ 1 can never be satisfied in the hypotheses of [19, Theorem 4].203

Furthermore, positive Ricci curvature may have downsides when used for GNNs. One significant204

downside to non-negative Ricci curvature can be derived using the main result of [53], which says205

that the three properties of expansion, sparsity and non-negative Ollivier curvature are incompatible,206

in the following sense.207

Theorem 13. For any ϵ ą 0, δ ą 0 and ∆ ą 0, there are only finitely many graphs with maximum208

vertex degree ∆, Cheeger constant at least δ and Olliver curvature at least ´ϵ.209

We prove Theorem 13 in Appendix B. Furthermore, quoting directly from [53]:210

“The high-level message is that on large sparse graphs, non-negative curvature (in an even weak sense)211

induces extremely poor spectral expansion. This stands in stark contrast with the traditional idea212

– quantified by a broad variety of functional inequalities over the past decade – that non-negative213

curvature is associated with good mixing behavior.”214

In our view, it is highly desirable that the graphs used for GNNs have high Cheeger constants, in215

the sense of globally lacking bottlenecks. Having bounded vertex degree is certainly useful too,216

since it implies that the graphs will be sparse, and the nodes will not have to handle ever-increasing217

neighbourhoods for message passing as graphs grow larger in size2. As we have just shown, using218

the results from [53], non-negative Ollivier curvature is incompatible with these properties when the219

graph is sufficiently large.220

The negative curvature of each edge in Gn implies that they are locally ‘tree-like’. In Appendix C,221

we make this statement precise by showing that Gn is ‘tree-like’ up to scale c logpnq about each node,222

for c » p1{2qplogpp1 `
?
5q{2qq´1 (see Figure 1 (Right) for a schematic view).223

2This property would not hold for GNNs with master nodes, as the master node has OpV q neighbours.
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This tree-like structure might seem, at first, to be counter-productive for good propagation across224

the graphs Gn. Indeed, GNNs based on trees have been shown to have provably poor performance225

[18]. The reason for this seems to be two-fold. On the one hand, trees have small Cheeger constant.226

Indeed, any tree G on n vertices has a Cheeger constant 1{tn{2u, since we may find an edge that,227

when removed, decomposes the graph into subgraphs with tn{2u and rn{2s vertices. As discussed228

in Section 3 and in [19], when a graph has small Cheeger constant, its performance when used as229

a template for a GNN is likely to become poor. Secondly, GNNs based on trees are susceptible230

to oversquashing. For a k-regular infinite tree, there are kpk ´ 1qr´1 vertices at distance r from a231

given vertex. Hence, if information is to be propagated at least distance r from a given vertex, then232

seemingly an exponential amount of information is required to be stored.233

However, neither of these issues are problematic for a GNN based on the Cayley graph Gn. By234

Theorem 9, their Cheeger constants are bounded away from 0. Secondly, although they are tree-like235

locally, this is only true up to scale Oplog nq. In fact, the r-neighbourhood of any vertex is the whole236

graph Gn as soon as r ą C log n, for some constant C, by Theorem 5. Being tree-like up to distance237

Oplog nq does not lead to a requirement to store too much information as the message propagates.238

This is because kpk ´ 1qr´1 is linear in n when r ď Oplog nq.239

Beyond this scale, there exist many additional connections, which lead to many possible paths joining240

any pair of vertices. Each of these paths can be a potential route of transfer of information from one241

vertex to another. The perspective of information transfer also gives rise to another perspective in242

which expanders fare very favourably: the mixing time of their corresponding Markov chain. We243

state several known facts about the favourable mixing times of expanders in Appendix D, to further244

supplement our claims on their efficient communication properties.245

5 Expander graph propagation246

Let an input to a graph neural network be a node feature matrix X P R|V |ˆk, and an adjacency matrix247

A P R|V |ˆ|V |. This setup is such that the feature vector of node u, xu P Rk, can be recovered by248

taking an appropriate row from X. Note that the adjacency information can also be fed in an edge-list249

manner, which is desirable from a scalability perspective. Further, each edge in the graph may be250

endowed with additional features rather than a single real scalar. None of the above modifications251

would change the essence of our findings; we use a matrix formalism here purely for simplicity.252

There exist many ways in which the computed Cayley graph CaypSLp2,Znq;Snq can be leveraged253

for message propagation, and exploring these variations could be very useful for future work. Here,254

we opt for a simple construction: interleave running a standard GNN over the given input structure,255

followed by running another GNN layer over the relevant Cayley graph. If we let ACaypnq be an256

adjacency matrix derived from CaypSLp2,Znq;Snq, this implies:257

H “ GNNpGNNpX,Aq,ACaypnqq (14)

Here, GNN refers to any preferred GNN layer, such as the graph isomorphism network [54, GIN]:258

hu “ ϕ

˜

p1 ` ϵqxu `
ÿ

vPNu

xv

¸

(15)

where Nu is the neighbourhood of node u, i.e. in our setup, the set of all nodes v such that avu ‰ 0.259

ϵ P R is a learnable scalar, and ϕ : Rk Ñ Rk1

is a two-layer MLP.260

This procedure is iterated for a certain number of steps, after which the computed node embeddings261

in H can be used for any downstream task of interest—such as node classification, link prediction262

or graph classification. Note that, unlike [18], who apply their custom layer only at the tail of the263

architecture, we apply the expander graph immediately after each layer over the input graph. We find264

that if the input graph given by A contains bottlenecks, applying the GNN over ACaypnq only at the265

end may result in oversquashing occurring before any expander graph propagation can take place.266

The setup so far assumed the number of nodes in our input graph to line up with the Cayley graph,267

that is, ACaypnq P R|V |ˆ|V |. However, there is no guarantee that we can find an appropriate n such268

that CaypSLp2,Znq;Snq would have |V | nodes. What we can do in practice, as an approximation, is269

choose the smallest n such that the number of nodes of CaypSLp2,Znq;Snq is ě |V |, then consider270

A
Caypnq

1:|V |,1:|V |
—i.e. only the subgraph containing the first |V | nodes in the Cayley graph.271
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There is a slight misalignment to our theory in this specific slicing choice—if the |V | vertices in272

this subgraph are chosen completely arbitrarily, we risk disconnecting the graph. However, in all273

our experiments we construct the Cayley graph in a breadth-first manner, starting from the identity274

element as “node zero”. Hence, the node at index i is always guaranteed to be reachable from275

the nodes at lower indices (j ă i), and the graph cannot be disconnected under this construction.276

More interesting strategies for this step can also be considered in the future, in order to optimise the277

communicativity properties of this subgraph.278

Note that we do not need to perform matching of the nodes in the original graph to the nodes of the279

Cayley graph. This is because, much like the fully connected graph used by [18], we interpret the280

Cayley graph mainly as a template for global information propagation, in order to relieve bottlenecks281

in a scalable way.282

Algorithm 1 summarises the steps of our proposed EGP model. As direct corollaries of results we283

proved or demonstrated, we note that EGP satisfies all four of our desirable criteria: (C1) by Theorem284

5 (so long as logarithmically many layers are applied), (C2) by Theorem 4 (high Cheeger constant285

implies no bottlenecks), (C3) by the fact our Cayley graphs are 4-regular and hence sparse, and286

(C4) by the fact we can generate a Cayley graph of appropriate size without detailed analysis of the287

input—we may precompute a “bank” of Cayley graphs of various sizes to use in an ad-hoc manner.288

Algorithm 1: Expander graph propagation (EGP) forward pass

Inputs :Node features X P R|V |ˆk, Adjacency matrix A P R|V |ˆ|V |

Output :Node embeddings H

// Choose the smallest Cayley graph from our family that has number of nodes equal to, or greater than, |V |

n Ð argminmPN|V pCaypSLp2,Zmq;Smqq| ě |V |; // We can use Equation 10 to determine n

GCaypnq Ð CaypSLp2,Znq;Snq

A
Caypnq
uv Ð

"

1 pu, vq P EpGCaypnqq

0 otherwise
; // Populate adjacency matrix of the Cayley graph

Hp0q Ð X; // Initialise GNN inputs

for t P t1, . . . , T u do
if t mod 2 “ 0 then

Hptq Ð GNNptq
pHpt´1q,Aq ; // GNN layer over input graph; e.g. Equation 15

end
else

Hptq Ð GNNCay
´

Hpt´1q,A
Caypnq

1:|V |,1:|V |

¯

; // GNN layer over Cayley graph; e.g. Equation 15

end

end

return HpT q ; // Return final embeddings for downstream use

6 Empirical evaluation289

Our work provides mainly a theoretical contribution: demonstrating a simple, theoretically-grounded290

approach to relieving bottlenecks and oversquashing in GNNs without requiring quadratic complexity291

or dedicated preprocessing. Further, we prove several additional results which deepen our understand-292

ing of curvature-based analysis of GNNs, showing how our expanders can be favourable in spite of293

their negatively-curved edges.294

We now provide several direct comparative experiments in order to ascertain that our EGP addition295

can directly help existing graph classification baselines, even without further hyperparameter tuning.296

Datasets To show this, we leverage the established Open Graph Benchmark collection of tasks297

[55, OGB]. Specifically, we provide results on all of its graph classification datasets: ogbg-molhiv,298

ogbg-molpcba, ogbg-ppa and ogbg-code2. The first two are among the largest molecule property299

prediction datasets in the MoleculeNet benchmark [56]. The third dataset is concerned with classifying300

8
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Table 2: Statistics of the three graph classification datasets studied in our evaluation.

Name Number of graphs Avg. nodes/graph Avg. edges/graph Metric
ogbg-molhiv 41, 127 25.5 27.5 ROC-AUC
ogbg-molpcba 437, 929 26.0 28.1 Avg. precision
ogbg-ppa 158, 100 243.4 2, 266.1 Accuracy
ogbg-code2 452, 741 125.2 124.2 F1 score

Table 3: Comparative evaluation performance on the four datasets studied. Our baseline model is a
GIN [54], using exactly the same implementation as in [55].

Model ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2

GIN 0.7558 ˘ 0.0140 0.2266 ˘ 0.0028 0.6892 ˘ 0.0100 0.1495 ˘ 0.0023
GIN + EGP 0.7934 ˘ 0.0035 0.2329 ˘ 0.0019 0.7027 ˘ 0.0159 0.1497 ˘ 0.0015

species into their taxa, from their protein-protein association networks [57, 58] given as input. The301

fourth dataset is a code summarisation task: it requires predicting the tokens in the name of a Python302

method, given the abstract syntax tree (AST) of its implementation.303

We provide a summary of important dataset statistics in Table 2; please see [55] for detailed informa-304

tion on the data. These datasets are designed to span a wide variety of domains (virtual drug screening,305

molecular activity prediction, protein-protein interactions, code summarisation) and sizes (from small306

molecules to very large syntax trees—the largest graph in ogbg-code2 has 36, 123 nodes).307

Models In all four datasets, we want to directly evaluate the empirical gain of introducing an EGP308

layer and completely rule out any effects from parameter count, or similar architectural decisions.309

To enable this, we take inspiration from the experimental setup of [18]. Our baseline model is the310

GIN [54], with hyperparameters as given by [55]. We use the official publicly available model311

implementation from the OGB authors [55], and modify all even layers of the architecture to operate312

over the appropriately-sampled Cayley graph.313

Note that our construction leaves both the parameter count and latent dimension of the model314

unchanged, hence any benefits coming from optimising those have been diminished.315

Results The results of our evaluation are presented in Table 3. It can be observed that, in all four cases,316

propagating information over the Cayley graph yields improvements in mean performance—these im-317

provements are most apparent on ogbg-molhiv, where our approach significantly outperforms even318

the “virtual node” version of GIN, which uses „ 1.8ˆ more parameters and achieves 0.7707˘0.0149319

AUC [55]. We believe that these results provide encouraging empirical evidence that propagating320

information over Cayley graphs is an elegant idea for alleviating bottlenecks.321

7 Conclusion322

In this paper, we have presented expander graph propagation (EGP), a novel and elegant approach to323

alleviating bottlenecks in graph representation learning, which provably supports global communica-324

tion while not requiring quadratic complexity or dedicated preprocessing of the input.325

To this end, we offered a detailed theoretical overview of Cayley graphs of special linear groups,326

CaypSLp2,Znq;Snq. We cite proofs that these graphs have highly favourable properties for infor-327

mation propagation in graph neural networks: they are sparse and 4-regular, they have logarithmic328

diameter, and they can be efficiently precomputed by a simple procedure that does not rely on the329

input structure. We show that, in spite of having negatively curved edges, our findings do not violate330

any prior results on understanding oversquashing via curvature. Even under a simple intervention—331

interleaving EGP layers inbetween standard GNN layers—we have been able to recover significant332

performance returns without changing the parameter count or latent space dimensionality.333

We hope that our work serves as a foundation for further work on deploying Cayley graphs—or other334

expander families—within the context of GNNs.335
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[11] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,362

Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al. Advancing mathemat-363

ics by guiding human intuition with ai. Nature, 600(7887):70–74, 2021. 1364

[12] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining365

label propagation and simple models out-performs graph neural networks. arXiv preprint366

arXiv:2010.13993, 2020. 1367

[13] Shyam A Tailor, Felix Opolka, Pietro Lio, and Nicholas Donald Lane. Do we need anisotropic368

graph neural networks? In International Conference on Learning Representations, 2021.369

[14] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.370

Simplifying graph convolutional networks. In International conference on machine learning,371

pages 6861–6871. PMLR, 2019. 1372

[15] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,373

Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning374

molecular fingerprints. Advances in neural information processing systems, 28, 2015. 1375

[16] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph376

neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019. 1377

[17] Enxhell Luzhnica, Ben Day, and Pietro Liò. On graph classification networks, datasets and378

baselines. arXiv preprint arXiv:1905.04682, 2019. 1379

[18] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical380

implications. arXiv preprint arXiv:2006.05205, 2020. 2, 3, 7, 8, 9381

[19] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and382

Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.383

arXiv preprint arXiv:2111.14522, 2021. 2, 3, 4, 5, 6, 7384

[20] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius385

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan386

Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint387

arXiv:1806.01261, 2018. 2, 3388

10



Expander Graph Propagation

[21] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction389

networks for learning about objects, relations and physics. Advances in neural information390

processing systems, 29, 2016. 3391

[22] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.392

Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-393

cessing Systems, 34, 2021. 3394

[23] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph395

structure in transformers. arXiv preprint arXiv:2106.05667, 2021. 3396

[24] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter397

Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning.398

Advances in neural information processing systems, 30, 2017. 3399

[25] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,400

and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in401

Neural Information Processing Systems, 34, 2021. 3402

[26] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving403

graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on404

Pattern Analysis and Machine Intelligence, 2022. 3405

[27] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In406

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and407

data mining, pages 855–864, 2016. 3408

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-409

sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge410

discovery and data mining, pages 701–710, 2014.411

[29] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-412

scale information network embedding. In Proceedings of the 24th international conference on413

world wide web, pages 1067–1077, 2015.414

[30] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer,415
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A Proof of Proposition 11497

Let s be one of
ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙

.

Let n, n1 ą 18 and let e and e1 be s-labelled edges in Gn and Gn1 . Then there is a graph isomorphism498

between N2peq and N2pe1q taking e to e1.499

Proof. Note first that, by the homogeneity of the Cayley graphs Gn and Gn1 , we may assume that e500

and e1 emanate from the identity vertex of each graph.501

Let G8 be the Cayley graph of SLp2,Zq with respect to the generators

S8 “

"ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙*

.

Let e8 be the s-labelled edge emanating from the identity vertex of G8. The quotient homomorphism

SLp2,Zq Ñ SLp2,Znq

induces a graph homomorphism G8 Ñ Gn sending e8 to e. We will show that it restricts to a graph
isomorphism

N2pe8q Ñ N2peq.

As there is a similar graph isomorphism N2pe8q Ñ N2pe1q, the proposition will follow.502

Note that two elements of SLp2,Zq map to the same element of SLp2,Znq if and only if they differ
by multiplication by an element of the kernel Kn. This is

Kn “

"ˆ

a b
c d

˙

P SLp2,Zq : a ” d ” 1 mod n and b ” c ” 0 mod n

*

.

The graph homomorphism sends edges to edges, and so it is distance non-increasing. Hence it503

certainly sends N2pe8q to N2peq. It is also clearly surjective, because any element of N2peq is504

reached from an endpoint of e by a path of length at most 2, and there is a corresponding path in505

N2pe8q.506

We just need to show that this is an injection. If not, then two distinct vertices g1 and g2 in N2pe8q507

map to the same vertex in N2peq. Note then that as elements of SLp2,Zq, g1 “ g2k for some k P Kn.508

There are paths with length at most 3 joining the identity 1 to g1 and g2 respectively. Hence, the509

distance in G8 between g1 and g2 is at most 6. Therefore, the distance between 1 and g´1
1 g2 is at510

most 6. This element g´1
1 g2 lies in Kn. We will show that when n ą 18, the only element of Kn511

that has distance at most 6 from the identity is the identity itself. This will imply that g´1
1 g2 “ 1 and512

hence g1 “ g2. But this contradicts the assumption that g1 and g2 are distinct vertices. Our argument513

follows that of [59].514

The operator norm ||A|| of a matrix A P SLp2,Zq is

||A|| “ supt|Apvq| : v P R2, |v| “ 1u.

This is submultiplicative: ||AB|| ď ||A|| ||B|| for matrices A and B. It can be calculated as the
square root of the largest eigenvalue of AtA. In our case, the operator norms satisfy

›

›

›

›

ˆ

1 1
0 1

˙
›

›

›

›

“

›

›

›

›

ˆ

1 0
1 1

˙
›

›

›

›

“
1 `

?
5

2
.

Consider an element

K “

ˆ

a b
c d

˙
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of Kn that is not the identity. Since a ” d ” 1 modulo n and b ” c ” 0 modulo n, we deduce that at
least one |a|, |b|, |c| and |d| is at least n ´ 1. Therefore, this matrix acts on one of the vectors p1, 0qt

or p0, 1qt by scaling its length by at least n ´ 1. Therefore, ||K|| ě n ´ 1. Suppose now that K has
distance at most 6 from the identity. Then K can be written as a word in the generators of SLp2,Zq

with length at most 6. Therefore, we obtain the inequality

||K|| ď

ˆ

1 `
?
5

2

˙6

ă 17.95.

Hence, n ă 18.95 and therefore, as n is integral, n ď 18.515

B Proof of Theorem 13516

For any ϵ ą 0, δ ą 0 and ∆ ą 0, there are only finitely many graphs with maximum vertex degree517

∆, Cheeger constant at least δ and Olliver curvature at least ´ϵ.518

Proof. This is a consequence of the main result of Salez [53, Theorem 3]. This states if Gn “

pVn, Enq is a sequence of graphs with the following properties:

sup
ně1

#

1

|Vn|

ÿ

vPVn

degpvq log degpvq

+

ă 8

@ϵ ą 0,
1

|En|
|te P En : κpeq ă ´ϵu| Ñ 0 as n Ñ 8,

then

@ρ ă 1, lim inf
nÑ8

"

1

|Vn|
|ti : µipGnq ě ρu|

*

ą 0.

Here, κpeq is the Ollivier curvature of an edge e and

1 “ µ0pGq ě µ1pGq ě ¨ ¨ ¨ ě 0

are the eigenvalues of the lazy random walk operator. To prove the theorem, we suppose that on the
contrary, there are infinitely many distinct graphs Gn “ pVn, Enq with with maximum vertex degree
∆, Cheeger constant at least δ and Olliver curvature at least ´ϵ. Then

ÿ

vPVn

degpvq log degpvq ď |Vn|∆ log∆

and so (1) is satsfied. Condition (2) is trivially satisfied because the Ollivier curvature of each graph is
at least ´ϵ. Thus, we deduce that the conclusion of Salev’s theorem holds. Setting ρ “ 1´ pδ2{4∆2q,
we deduce that a definite proportion of the eigenvalues of the random walk operator are at least
1 ´ pδ2{4∆2q. In particular, µ1pGnq ě 1 ´ pδ2{4∆2q. Denote the eigenvalues of the normalised
Laplacian by

0 “ λ1
0pGnq ď λ1

1pGnq ď . . .

These are related to the eigenvalues of the lazy random walk operator by λ1
ipGnq “ 2 ´ 2µipGnq.

Hence, λ1
1pGnq ď δ2{p2∆2q. There is a variation of Cheeger’s inequality that relates λ1

1 to the
conductance of the graph. To define this, one considers subsets A of the vertex set, and defines their
volume to be volpAq “

ř

vPA degpvq. The conductance ϕpGq of a graph G is

ϕpGq “ min

"

|BA|

volpAq
: A Ă V pGq, 0 ă volpAq ď volpV pGqq{2

*

.

Then, by Chung [40, Theorem 2.2],

ϕpGq ď

b

2λ1
1pGq

Hence, in our case,
ϕpGnq ď δ{∆.

Consider any subset An of the vertex set that realises ϕpGnq. Thus 0 ă volpAnq ď volpVnq{2 and
|BAn|{volpAnq “ ϕpGnq ď δ{∆. If An is at most half the vertices of Gn, then this implies that the
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Cheeger constant hpGnq ď δ. On the other hand, if An is more than half the vertices of Gn, we
consider its complement Ac

n. Its cardinality |Ac
n| satisfies

|Ac
n| ě volpAc

nq{∆.

Hence,

hpGnq ď
|BAc

n|

|Ac
n|

ď
|BAn|∆

volpAc
nq

ď
|BAn|∆

volpAnq
“ ϕpGnq∆ ď δ.

In either case, we deduce that the Cheeger constant of Gn is at most δ, contradicting one of our519

hypotheses. Hence, there must have been only finitely many graphs satisfying the conditions of the520

theorem.521

C Cayley graph at infinity is quasi-isometric to a tree522

As all vertices of Gn look the same, we focus attention on Nrp1q, the r-neighbourhood of the identity523

vertex. The proof of Proposition 11 immediately gives the following.524

Proposition 16. Let r be a positive integer satisfying

r ď
1

2

ˆ

log

ˆ

1 `
?
5

2

˙˙´1

logpn ´ 1q.

Then there is a graph isomorphism between the r-neighbourhood of the identity vertex in Gn and525

the r-neighbourhood of the identity vertex in G8. This isomorphism takes the identity vertex to the526

identity vertex.527

Proof. As shown above, there is a graph homomorphsm from Nrp1q in G8 to Nrp1q in Gn that is
a surjection. If it fails to be an injection, then there is a non-trivial element K in the kernel Kn of
SLp2,Zq Ñ SLp2,Znq satisfying

||K|| ď

ˆ

1 `
?
5

2

˙2r

.

But any non-trivial element K in Kn satisfies

||K|| ě n ´ 1.

Rearranging gives the required inequality.528

This raises the question of the local structure of G8. The answer is well-known: it is ‘tree-like’.529

Specifically, it is quasi-isometric to a tree. The formal definition of quasi-isometry is as follows.530

Definition 17. A quasi-isometry between two metric spaces pX1, d1q and pX2, d2q is a function531

f : X1 Ñ X2 that satisfies the following two conditions:532

1. there are constants c, C ą 0 such that, for every x, x1 P X1

c d1px, x1q ´ c ď d2pfpxq, fpx1qq ď C d1px, x1q ` C,

2. there is a constant K ě 0 such that for every y P X2, there is an x P X1 with d2pfpxq, yq ď K.533

If there is such a quasi-isometry, we say that pX1, d1q and pX2, d2q are quasi-isometric.534

This forms an equivalence relation on metric spaces. When two metric spaces are quasi-isometric,535

they are viewed as being ‘essentially the same’ at large scales.536

When S and S1 are finite generating sets for a group Γ, the graphs CaypΓ;Sq and CaypΓ;S1q are537

quasi-isometric. Hence, the quasi-isometry type of finitely generated group is well-defined, and this538

is the central object of study in geometric group theory.539

The group SLp2,Zq has as a finite-index subgroup that is a free group F . If S1 denotes a free540

generating set for F , then CaypF ;S1q is a tree. As passing to a finite-index subgroup preserves541

its quasi-isometry class, we deduce that the Cayley graph G8 “ CaypSLp2,Zq;S8qq is indeed542

quasi-isometric to a tree, as claimed above.543
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D Mixing time properties of expander graphs544

Expanders are well known to have small mixing time, in the following sense.545

Let G be a graph. We will consider probability distributions π on V pGq. The lazy random walk546

operator M acts on probability distributions as follows. We think of πpvq as being the probability of547

the random walk being at vertex v. If the current location of the walk is at v, then at the next step548

of the walk, either we stay put with probability 1{2 or we move to one of its neighbours with equal549

probability. Then Mπ is the new probability distribution.550

In the case when G is k-regular, this takes a particular simple form. The operator M is represented by551

the matrix p1{2qI ` p1{2kqA, where A is the adjacency matrix. In that case, any initial distribution552

π converges under powers of M to the uniform distribution.553

This is true for any reasonable notion of convergence, but we will use the } ¨ }1 norm, where for two
probability distributions π and π1,

›

›π ´ π1
›

›

1
“

ÿ

vPV pGq

|πpvq ´ π1pvq|.

Definition 18. The mixing time for a regular graph G is the minimum value of ℓ such that for any
starting probability distribution π on the vertex set of G,

›

›M ℓπ ´ u
›

›

1
ď

1

4
.

Here, u is the uniform probability distribution on the vertex set, and M is the lazy random walk554

operator.555

Expanders have small mixing times in the following very strong sense.556

Theorem 19. For any k ą 0 and δ ą 0, there is a constant c ą 0 with the following property. If G is557

a connected k-regular graph on n vertices with Cheeger constant at least δ ą 0, then the mixing time558

for G is at most c logpnq.559
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