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Abstract

Kernel k-means is arguably one of the most common approaches to clustering. In
this paper, we investigate the efficiency of kernel k-means combined with random-
ized sketches in terms of both statistical analysis and computational requirements.
More precisely, we propose a unified randomized sketches framework to kernel
k-means and investigate its excess risk bounds, obtaining the state-of-the-art risk
bound with only a fraction of computations. Indeed, we prove that it suffices to
choose the sketch dimension Ω(

√
n) to obtain the same accuracy of exact kernel

k-means with greatly reducing the computational costs, for sub-Gaussian sketches,
the randomized orthogonal system (ROS) sketches, and Nyström kernel k-means,
where n is the number of samples. To the best of our knowledge, this is the first
result of this kind for unsupervised learning. Finally, the numerical experiments on
simulated data and real-world datasets validate our theoretical analysis.

1 Introduction

Kernel learning is an important field of machine learning Yin et al. (2020b,a, 2021, 2022). Kernel
k-means is one of the fundamental approaches in unsupervised learning and has been widely used in
numerous applications Zhang & Rudnicky (2002); Dhillon et al. (2004); Chitta et al. (2011); Li &
Liu (2021), whose basic idea is to classify similar samples into the same cluster, and there is a large
difference between samples in different clusters.

The statistical properties of kernel k-means have been studied for decades, but they may appear to be
not sufficient. Consistency of the empirical minimizer of the clustering risk was shown in Abaya &
Wise (1984); Pollard (1981, 1982). Rates of convergence and nonasymptotic performance bounds
have been considered by Antos (2005); Antos et al. (2005); Bartlett et al. (1998); Linder (2000,
2002). The existing excess risk bounds are mostly dependent upon the dimension of the hypothesis
space. For example, in Bartlett et al. (1998), the clustering risk upper bound is O(

√
kd/n), where

n is the number of samples, k is the number of clusters, and d is the dimension of the hypothesis
space. Note that the hypothesis space of kernel k-means is typically an infinite-dimensional Hilbert
space and the upper bound become useless when d is very large. Subsequently, some researchers
deduced dimension-independent upper bounds for kernel k-means Koltchinskii (2006); Biau et al.
(2008); Maurer & Pontil (2010); Canas et al. (2012); Levrard et al. (2015); Fefferman et al. (2016);
Calandriello & Rosasco (2018); Liu (2021). However, the existing excess clustering risk bounds
either have a slow convergence rate O(k/

√
n) Biau et al. (2008); Calandriello & Rosasco (2018) or

require pretty strong assumptions on the underlying distribution or large approximate dimensions m
∗Corresponding author.
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to get the faster convergence rate. Specifically, in Calandriello & Rosasco (2018), if the approximate
dimension reaches Ω(

√
n), the clustering risk upper bound is O(k/

√
n), which is proportional to k.

Based on its method, Liu Yong Liu (2021) further improves the convergence rate to O(
√
k/n), but

the corresponding approximate dimension is increased to Ω(
√
nk). Meanwhile, in order to reduce

the approximate dimension to Ω(
√
n) with the convergence rate unchanged, this paper Liu (2021)

requires a stronger assumption of algebraically decreasing eigenvalues of the kernel matrix.

From the perspective of computational requirements, kernel k-means requires manipulating and
storing an empirical kernel matrix, which is unfeasible for large-scale problems. Exploring approxi-
mate kernel k-means algorithms to scale to large-scale application scenarios has become a subject of
recent works, see for example Nyström approximations Williams & Seeger (2001); Fowlkes et al.
(2004); Pourkamali-Anaraki et al. (2018); Calandriello & Rosasco (2018); Wang et al. (2019); Liu
(2021), randomized sketches Biau et al. (2008); Wang et al. (2019), random features Rahimi & Recht
(2008); Chitta et al. (2012); Pham & Pagh (2013); Atarashi et al. (2019), incremental clustering
Can (1993); Bradley et al. (2000), and reference therein. This paper focuses on the excess risk
bound and computational requirements for kernel k-means. Although there are many studies on the
approximate kernel k-means, these approximate works pay little attention to the excess risk of clusters
with the exception of Biau et al. (2008); Calandriello & Rosasco (2018); Liu (2021). For example,
the works in Wang et al. (2019) establish the 1 + ε relative-error bound for randomized sketches
kernel k-means instead of excess risk bound. Therefore, in this paper, we mainly introduce the most
related approximate kernel k-means with excess risk guarantees. In Biau et al. (2008), they employ
the randomized sketches method to project the data in Hilbert space so as to approximate kernel
k-means. However, the data in Hilbert space are implicit and infinite-dimensional, and its sketch
matrix is dense and unstructured. In Calandriello & Rosasco (2018), the excess risk upper bound is
O(k/

√
n) when the approximate dimension reaches Ω(

√
n). The upper bound of clustering risk in

Biau et al. (2008) and Calandriello & Rosasco (2018) does not reach the optimal O(
√
k/n) Bartlett

et al. (1998). In Liu (2021), the approximate Nyström kernel k-means obtains the risk upper bound
O(
√
k/n) with the approximate dimension Ω(

√
nk). Although this paper Liu (2021) further reduces

the approximate dimension to Ω(
√
n) by introducing a stronger assumption, this is not universal. In

addition, the computational requirements in Biau et al. (2008); Calandriello & Rosasco (2018); Liu
(2021) are still high.

Motivated by these issues, in this paper, we focus on improving the statistical analysis and computa-
tional approximations of kernel k-means. We propose a randomized sketches framework to kernel
k-means and construct three novel and specific examples: sub-Gaussian sketches, the randomized
orthogonal system (ROS) sketches, and Nyström kernel k-means. Theoretical analysis shows that
the proposed three randomized sketches methods obtain the optimal excess clustering risk upper
bound O(

√
k/n) with the sketch dimension (i.e. approximate dimension) of Ω(

√
n) (see Theorem

2). To the best of our knowledge, this is the first optimal excess risk bound with the least approximate
dimension and no strong assumptions for general approximate kernel k-means. From a computational
point of view, the proposed methods lead to massive improvements reducing the time complexity
from O(n2kt) to at least O(n

√
n+ n

√
nkt) and the memory complexity from O(n2) to O(n

√
n),

where t is the number of iterations. Moreover, we further derive the similarity bound of approximate
solutions in the general case, which can be effectively calculated by k-means++ (see Theorem 3).
Experimental results verify and illustrate our theoretical analysis.

The rest of the paper is organized as follows. Section 2 is the background of kernel k-means. Section
3 describes the proposed randomized sketches kernel k-means framework and provides three novel
examples. In section 4, we mainly show excess risk bounds of the proposed randomized sketches
kernel k-means and the further theoretical analysis in the general case of k-means++. Sections 5 and
6 are the experiments and conclusions.

2 Background

2.1 Notation

Given a sampling distribution µ on an arbitrary input space X and n samples S = {xi}ni=1 ∈ X
drawn i.i.d. from µ, we denote with µn(S) = 1

n

∑n
i=1 I{xi ∈ X} the empirical distribution, where

I(·) is the indicator function. In this paper, we use the feature map ϕ(·) : X → H to map X
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into a Reproducing Kernel Hilbert Space (RKHS) H Schölkopf et al. (2002); Scholkopf & Smola
(2018), and assume that H is separable, such that for any x ∈ X , we have Φx = ϕ(x). Let
κ : X × X → R be a mercer kernel. We denote the inner product of H by 〈·, ·〉, the associated
norm by ‖ · ‖, the Cartesian product of H by Hk = ⊗ki=1H, and with K the kernel matrix, where
Kij = κ(xi,xj) = 〈Φi,Φj〉 = ΦTi Φj . This paper assumes that ‖Φx‖ ≤ 1 for any x ∈ X .

2.2 Kernel k-Means

Let C = [c1, . . . , ck] be a collection of k centroids from H. We divide the given dataset into k
disjoint clusters, each characterized by its centroid cj . The Voronoi cell associated with a centroid cj
is defined as Calandriello & Rosasco (2018)

Cj := {i : j = arg min
s=[k]

‖Φi − cs‖2}, (1)

where [k] = 1, 2, . . . , k. That is, the point Φi belongs to the j-th cluster if cj is its closest centroid.
Now we formalize the criterion used to measure the clustering quality. The empirical squared norm
criterion is defined as

W (C, µn) :=
1

n

n∑
i=1

min
j=[k]

‖Φi − cj‖2, (2)

and the expected squared norm criterion is defined as

W (C, µ) := EΦ∼µ[min
j=[k]

‖Φ− cj‖2]. (3)

The empirical risk minimizer (ERM) is defined as

Cn := arg min
C∈Hk

W (C, µn). (4)

The sub-script n in Cn indicates that it minimizes W (C, µn) for n samples in S.

In this paper, we bound the excess clustering risk E(Cn) of the empirical risk minimizer Calandriello
& Rosasco (2018):

E(Cn) := ES∼µ[W (Cn, µ)]−W ∗(µ), (5)

where W ∗(µ) := infC∈HkW (C, µ) is the optimal clustering risk. In the following, we will ignore
the subscript S ∼ µ if the input dataset S is clear.

From a computational perspective, one cannot compute Cn directly, since the points Φi inH cannot
be explicitly represented. However, due to the properties of the squared norm criterion and the kernel
trick, one can reformulate the objective W (·, µn) of kernel k-means.

Proposition 1 (Proposition 2 of Calandriello & Rosasco (2018)). Let Knn ∈ Rn×n be the empir-
ical kernel matrix, and ki its i-th columns. Then

min
C∈H

W (C, µn) =
1

n
min
ν

k∑
j=1

∑
i∈Cj

∥∥∥∥∥∥Φi −
1

|Cj |
∑
s∈Cj

Φs

∥∥∥∥∥∥
2

=
1

n
min
ν

k∑
j=1

∑
i∈Cj

∥∥∥∥∥∥ki − 1

|Cj |
∑
s∈Cj

ks

∥∥∥∥∥∥
2

.

(6)

This approach constructs an n-dimensional embedding ki for each point i, namely the i-th columns
of the kernel matrix Knn, which can be explicitly computed, and perfectly preserves W (·, µn) and
its minimizer Cn. However, it requires O(n2) time and space to construct and store the kernel matrix
K, which is not scalable to large-scale scenarios.

2.3 The Existing Excess Risk Bounds of Kernel k-Means

Here we provide the existing upper bound and lower bound of kernel k-means.
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According to Bartlett et al. (1998), we know that there exists a collection of centroids Cl ∈ Hk and
‖Φx‖ ≤ 1 for any x ∈ X , such that

E[W (Cl, µ)]−W ∗(µ) = Ω

(√
k1−4/d

n

)
, (7)

where d is the dimension of Φx. In general, d is very large or even infinite. Therefore, the lower

bound of kernel k-means is Ω

(√
k
n

)
. The following is the upper bound of kernel k-means.

Theorem 1 (Theorem 1 in Liu (2021)). If ‖Φx‖ ≤ 1 for any x ∈ X , then for any δ ∈ (0, 1), with
probability at least 1− δ, we have,

E(Cn) = E[W (Cn, µ)]−W ∗(µ)

= O

(√
k

n
log2(

√
n)

)
= Õ

(√
k

n

)
.

(8)

Note that, p = O(u) means that there exists an constant c such that p ≤ cu. Õ(·) means to hide the

logarithmic terms. This upper bound matches the theoretical lower bound Ω

(√
k
n

)
, and therefore

shows that the ERM Cn achieve an excess risk (nearly) optimal in n.

3 The Proposed Algorithms

Kernel k-means is one of the most popular clustering methods Yin et al. (2020c). However, it is non-
scalable to large scenarios due to computing the exact embedding ki. To reduce the computational
requirements, we propose novel approximate embeddings by using randomized sketches. In this
section, we propose a unified randomized sketches kernel k-means. In addition, three specific
examples of randomized sketches algorithms and the corresponding complexity analysis are provided.

3.1 Framework of Randomized Sketches Kernel k-Means

We consider an approximation based on reducing the original column ki ∈ Rn to an m-dimensional
subspace of Rn, where m� n is the sketch dimension. More precisely, the proposed approximation
is defined via a sketch matrix R ∈ Rm×n, such that the m-dimensional subspace is generated by the
span of R. Therefore, the proposed randomized sketches method can be described as:

K̃ = RK = SQK ∈ Rm×n, (9)

where K = Knn and Q ∈ Rm×n is a sampling matrix. The rows of Q are composed of m rows
sampled uniformly from the n× n identity matrix without replacement. The matrix S ∈ Rm×m is
constructed in three ways, which will be introduced in detail in the following section.

Then the unified randomized sketches kernel k-means can be written as (similarly to Proposition 1):

C̄n,m = arg minC̄∈Rm×k
1

n

n∑
i=1

min
j=1,...,k

∥∥∥k̃i − c̄j

∥∥∥2

=
1

n
min
ν

k∑
j=1

∑
i∈Cj

∥∥∥∥∥∥k̃i − 1

|Cj |
∑
s∈Cj

k̃s

∥∥∥∥∥∥
2

,

(10)

where k̃i is the column of the approximate kernel matrix K̃ in Eq.(9) and C̄n,m = [c̄1, . . . , c̄k] is the
empirical clustering centers associated with the m-dimensional k̃1, . . . , k̃n. Each c̄j is the mean of
those k̃i’s in the Voronoi cell C̃j .
Define the clustering centers by

c̃j =

∑n
i=1 kiI{k̃i∈C̃j}∑n
i=1 I{k̃i∈C̃j}

, j = 1, . . . , k, (11)
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where C̃n,m = [c̃1, . . . , c̃j , . . . , c̃k] and I{·} is the indicator function. I{k̃i∈C̃j} = 1 if k̃i ∈ C̃j and
I{k̃i∈C̃j} = 0 otherwise.

The n-dimensional embeddings ki are replaced with the lowerm-dimensional enbeddings k̃i. We can
perform any k-means algorithms over {k̃1, . . . , k̃n} and compute the clustering centers in Eq.(11).

Algorithm 1 Unified Randomized Sketches Kernel k-Means
Input: dataset S = {xi}ni=1, number of clusters k, kernel parameter, and sketch dimension m.
Output: centroids C̃n,m.

1: Sample m data points from S according to the sampling matrix Q in Eq.(9).
2: Compute the approximate kernel matrix K̂ ∈ Rm×n between the m sampling data points and

the all data points in S.
3: Construct the matrix S ∈ Rm×m (See Section 3.2 for specific construction methods).
4: Compute SK̂, namely SK̂ = S(QK) = K̃ is Eq.(9).
5: Perform k-means algorithm over the columns of K̃.
6: Compute centroids C̃n,m in Eq.(11).

The detail of the proposed randomized sketches kernel k-means is shown in Algorithm 1. The
proposed algorithm is mainly divided into two parts. The first part is from step 1 to step 4, which is
mainly to construct the sketch matrix R = SQ and obtain the variant kernel matrix K̃ = SQK. The
second part is from step 5 to step 6, mainly performing k-means over the columns of K̃ and obtaining
centroids. In step 1, one samples m data points from S according to the sampling matrix Q. Then,
computing the variant kernel matrix K̂ ∈ Rm×n by m sampling data points and all n data points.
From a mathematical point of view, this step can be expressed as K̂ = QK. In step 3, we construct a
matrix S, whose specific expression will be given in Section 3.2. This paper provides three different
examples of S, which brings different effects in the approximate kernel k-mean algorithms. In step 5,
take the columns k̃i of K̃ = SK̂ generated in step 4 as the processing objects and execute k-means
algorithm on them. Finally, compute the centroids C̃n,m in Eq.(11).

3.2 Examples of Randomized Sketches Kernel k-Means

Here, we introduce three examples of randomized sketches kernel k-means, which are constructed by
three different matrices S in Eq.(9). In addition, the detailed complexity analysis of the corresponding
three approximate kernel k-means is provided.

Example 1: Sub-Gaussian Sketches Kernel k-Means The first example of approximate kernel
k-means is called sub-Gaussian sketches kernel k-means, whose matrix S ∈ Rm×m in Eq.(9) is
described by a hash function. Let σ be a hash function and σ(i) ∈ {+1,−1} is 2-wise independent
hash function. The entries Si,j = σ(i)/

√
m with a probability of 1√

n
and Si,j = 0 with a probability

of 1− 1√
n

.

Complexity analysis: In the terms of time, we first sample the data by Q, then generate the variant
kernel matrix K̂. Therefore, the time cost of computing SK̂ should be O(nm2). However, due to the
sparsity of the sub-Gaussian matrix S, we only need to compute the non-zero elements instead of the
total elements, which can further reduce the computational requirements of SK̂ from O(nm2) to
O(
√
nm2). In the iteration operation of performing k-means algorithm over the columns k̃i of K̃,

one needs O(nmkt) time. Combining the above, the total time cost of sub-Gaussian sketches kernel
k-means is O(

√
nm2 + nmkt). In terms of space, due to the operation of sampling, the key of the

space cost is changed to K̂ and K̃ instead of K. Therefore, the space complexity of the proposed
sub-Gaussian sketches kernel k-means is O(nm).

Example 2: ROS Sketches Kernel k-Means The second example of the random sketches kernel
k-means is based on the randomized orthogonal system (ROS) sketches. The corresponding matrix
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S ∈ Rm×m in Eq.(9) can be defined as below:

S = DA, (12)

where D ∈ Rm×m is a random diagonal matrix whose entries are i.i.d. Rademacher variables.
A ∈ Rm×m is an orthogonal matrix with uniformly bounded entries, for example the Hadamard
matrix Wallis (1976) and the discrete Fourier transform matrix. We use the Hadamard matrix in

this paper. The Hadamard matrix is defined recursively as: Am =

[
Am/2 Am/2

Am/2 −Am/2

]
with

A2 =

[
1 1
1 −1

]
, and A = 1√

m
Am.

Due to the constructed property of the Hadamard matrix A, we can use FFT (Fast Fourier Transform
algorithm) to compute the matrix-vector product, such as Au for any u ∈ Rm, whose time complexity
is O(m logm) instead of O(m2). Therefore, in step 4 of Algorithm 1, the computation of SK̂ can
be realized by the fast FFT, which is another way to further reduce the time cost, in addition to the
sparsity mentioned above.

Complexity analysis: In terms of time cost, due to the use of the Hadamard matrix, we can compute
SK̂ by FFT, whose time cost is O(nm logm). In the iteration operation of k-means algorithm over
the columns k̃i, the time cost is O(nmkt). Therefore, the total time cost of ROS sketches kernel
k-means isO(nm logm+nmkt). In terms of space, the key to the space cost is to store the matrices
K̂ and K̃, whose space requirements is O(nm). Therefore, the space complexity of the proposed
ROS sketches kernel k-means is O(nm).

Example 3: Nyström Kernel k-Means The third example of the approximate kernel k-means is
Nyström kernel k-means, whose matrix S ∈ Rm×m in Eq.(9) can be defined as: S = I, where I is
an identify matrix. That is, we only use the sample matrix Q in Eq.(9). Therefore, the proposed
Nyström kernel k-means can be converted into:

C̃n,m = arg minC̃∈Rm×k
1

n

n∑
i=1

min
j=1,...,k

∥∥∥k̃i − c̃j

∥∥∥2

= arg minC̃∈Rm×k
1

n

n∑
i=1

min
j=1,...,k

∥∥∥Φ̃i − c̃j

∥∥∥2

,

(13)

where Φ̃i = ΦT
mΦi, c̃j = ΦT

mcj , Φm = [Φπ(1), . . . ,Φπ(m)], π(i) ∈ [1, n], and the dictionary (i.e.,
subset) {Φπ(i)}mi=1 is m points Φj sampled from {Φj}nj=1 through the sampling matrix Q.

Note that, the proposed Nyström kernel k-means can also be understood as a variant ROS, based on
the identity matrix as an orthonormal matrix and not using the Rademacher randomization.

Complexity analysis: In terms of time cost, the matrix S is a scaled identity matrix so that the
computation of step 3 and step 4 in Algorithm 1 is not needed. Therefore, the time complexity of
Nyström kernel k-means is decided by the iteration operation of k-means algorithm over the columns
k̃i, which is O(nmkt). In terms of space, the key is the matrix K̃. Therefore, the space complexity
of the proposed Nyström kernel k-means is O(nm).

In algorithm, the function of Q is to reduce the scale of data. The function of S is to fuse data features.
In complexity, the proposed randomized sketches can reduce the time and space complexity. We
sample data points according to Q, then generate the variant kernel matrix, instead of generating and
processing the kernel matrix directly, which can greatly reduce the time and space complexity. In
addition, our matrices S are structured (in ROS) or sparse (in sub-Gaussian and Nyström), which can
speed up kernel k-means by FFT or sparsity. In theoretical analysis, we obtain the optimal excess
risk bound with a small sketch dimension based on the proposed randomized sketches, which can
further reduce the time and space complexity. Overall, the proposed randomized sketches can greatly
reduce the time and space complexity with the optimal excess risk bound.
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4 Theoretical Analysis

In this section, we exploit the excess risk bound of the proposed randomized sketches kernel k-means.
Theoretical analysis shows that we can improve the computational requirements of kernel k-means
using sub-Gaussian, ROS, and Nyström, while maintaining optimal generalization guarantees.
Theorem 2. If ‖Φx‖ ≤ 1 for any x ∈ X , ε ∈ (0, 1), δ ∈ (0, 1), and, in either one of the three cases

of sub-Gaussian, ROS, and Nyström, the sketch dimension is m = Ω
(

4 logn−2 log δ
ε−log(1+ε)

)
, then, with

probability at least 1− δ, we have

E[W (C̃n,m, µ)]−W ∗(µ) = Õ

(√
k

n

)
+O

(
ε

1− ε

)
. (14)

Remark 1. From a statistical point of view, let ε = 1/
√
n, Theorem 2 shows that when the sketch

dimension is m = Ω(
√
n), the proposed randomized sketches (sub-Gaussian, ROS, and Nyström)

kernel k-means achieve the same excess risk bound Õ
(√

k/n
)

as the exact kernel k-means.

Remark 2. From a computational point of view, we can construct the
√
n-dimension randomized

sketches simply, which can greatly reduces the total required space from O(n2) to O(n
√
n) and the

total required time from O(n2kt) to O(n
√
n+ n

√
nkt) at least, with the optimal excess risk bound.

Remark 3. In Calandriello & Rosasco (2018), when the approximate dimension m is Ω(
√
n), the

excess risk bound can reach Õ (k/
√
n), which is linearly dependent on k and fail to reach the optimal

bound. The corresponding space complexity and time complexity areO (n
√
n) andO

(
nkt
√
n+ n2

)
,

respectively. Compared to it, our proposed methods obtain the better excess risk bound and reduce
the time complexity from O

(
nkt
√
n+ n2

)
to O (nkt

√
n+ n

√
n) at least. Subsequently, Liu Yong

Liu (2021) further improves the excess risk bound of the method in Calandriello & Rosasco (2018)
to Õ

(√
k/n

)
, but the corresponding approximate dimension m is increased to Ω(

√
nk). Mean-

while, its space complexity and time complexity increase to O
(
n
√
nk
)

and O
(
nkt
√
nk + n2k

)
.

Compared to it, the proposed methods reduce the time complexity from O
(
nkt
√
nk + n2k

)
to

O (nkt
√
n+ n

√
n) at least and reduce the space complexity from O

(
n
√
nk
)

to O (n
√
n) while

maintaining the optimal excess risk bound Õ
(√

k/n
)

and the smaller m = Ω(
√
n). To the best of

our knowledge, the proposed methods are the first time that they are always possible to maintain
the optimal excess risk bound Õ

(√
k/n

)
in unsupervised non-parametric problem with smaller

m = Ω (
√
n), while greatly reducing the time and space requirements. In Table 1, we show the detail

space complexity, time complexity, excess risk bounds, and m of the approximate kernel k-means.

4.1 Further Results: k-Means++

We adopt the improved kernel k-means++ sampling Lattanzi & Sohler (2019), which has a local
search strategy, for the proposed randomized sketches kernel k-mean. Here is its theoretical analysis.
Lemma 1 (Lattanzi & Sohler (2019)). If C+

n is obtained by the improved k-means++ algorithm
with a local search strategy Lattanzi & Sohler (2019), then EJ [W (C+

n , µn)] ≤ $ ·W (Cn, µn),
where $ is a constant and J is the randomness derived from the k-means++ initialization.

Note that, this is a multiplicative error bound on the empirical risk.
Theorem 3. LetC+

n,m be obtained by the improved k-means++ algorithm with a local search strategy
Lattanzi & Sohler (2019). If ‖Φx‖ ≤ 1 for any x ∈ X , ε ∈ (0, 1), δ ∈ (0, 1), and, in either one of

the three cases of sub-Gaussian, ROS, and Nyström, the sketch dimension is m = Ω
(

4 logn−2 log δ
ε−log(1+ε)

)
,

then, with probability at least 1− δ, we have

ES
[
EJ
[
W (C+

n,m, µ)
]]

= Õ

(√
k

n
+W ∗(µ)

)
+O

(
ε

1− ε

)
, (15)

where J is the randomness derived from the k-means++ initialization.
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Table 1: Comparison of the approximate kernel k-means. The second and third columns represent the space and
time complexity. The fourth and fifth columns represent the excess risk bounds and m.

Approach Space Time Bound m

Kernel k-Means O
(
n2
)

O
(
n2kt

)
Õ
(√

k
n

)
/

NytrömCalandriello & Rosasco (2018) O (n
√
n) O

(
nkt
√
n+ n2

)
Õ
(

k√
n

) √
n

NytrömLiu (2021) O
(
n
√
nk
)
O
(
nkt
√
nk + n2k

)
Õ
(√

k
n

) √
nk

Sub-Gaussian Sketches (This Paper) O (n
√
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√
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Figure 1: Test accuracy and training time (in seconds) with different dimensions m of kernel k-means, Sub-
Gaussian, ROS, Nystrom (Ours), and Nystrom (Liu) on simulated data.

Theorem 3 shows that, if the optimal clustering risk W ∗(µ) is smaller than Õ(
√
k/n), the risk of

W (C+
n,m, µ) can reach Õ(

√
k/n). Note that ε is small, i.e. ε = 1/

√
n.

5 Experiments

In this section, we evaluate experimentally our theoretical analysis on both simulated data and
real-world data for the proposed methods. The server is 32 cores (2.40GHz) and 32 GB of RAM.
The compared methods are the exact kernel k-means, Gaussian Biau et al. (2008), Nyström (Liu) Liu
(2021), ROS, Sub-Gaussian, and Nyström (Ours). For the sake of distinguishing, Nyström (Liu) is
Nyström Liu (2021) in this paper. Each experiment is repeated 5 times.

5.1 Numerical Experiments on Simulated Data

We conduct the experiments to validate our theoretical analysis of the proposed randomized sketches
kernel k-means on simulated data. Now we generate the simulated data. Let c∗i ∈ R8, i = [1, k], be
the clustering centers, where the values of the dimensions are 1 or −1 with the probability of 1/2.
The data in ith clustering follows the normal distribution with mean c∗i and variance 1. The number
of data in each clustering is the same. We use the Gaussian kernel κ(x,x′) = exp

(
−‖x− x′‖2/8

)
.

Generating 10,000 samples for training and 10,000 samples for testing. The number of training
samples in each clustering is 10000/k. The accuracy of kernel k-means He & Zhang (2018) on the

test set can be written as
∑n̈
i=1 υ(ŷ,map(y))

n̈ , where y is the solution returned by the (approximate)

8



Table 2: The datasets used in this paper. Test accuracy and training time (in seconds) of kernel k-means,
Gaussian, Nyström (Liu), Sub-Gaussian sketches, ROS sketches, and Nyström (Ours) on real datasets.

Dataset Instance Class Kernel k-Means Gaussian Nyström (Liu)
Time Accuracy Time Accuracy Time Accuracy

dna 2000 3 0.16 0.50±0.01 0.12 0.49± 0.02 0.09 0.50±0.02
segment 2310 7 0.13 0.50±0.02 0.09 0.45±0.03 0.05 0.43±0.01

mushrooms 8124 2 0.56 0.64±0.01 0.32 0.63±0.02 0.11 0.61±0.01
pendigits 10992 10 0.61 0.11 ±0.01 0.34 0.11±0.01 0.21 0.10± 0.02

protein 17766 3 5.07 0.46±0.01 3.16 0.44±0.03 1.09 0.45±0.02
a8a 32561 2 6.47 0.75±0.01 3.21 0.73±0.03 1.12 0.73±0.02

w7a 49749 2 29.7 0.97±0.02 15.3 0.95±0.02 1.36 0.96± 0.01
connect-4 67557 3 0.28 0.61±0.01 0.22 0.60±0.03 0.11 0.59±0.02

covtype 581012 7 / / / / / /

Dataset Instance Class Sub-Gaussian (Ours) ROS (Ours) Nyström (Ours)
Time Accuracy Time Accuracy Time Accuracy

dna 2000 3 0.06 0.49± 0.01 0.07 0.50±0.01 0.04 0.50±0.01
segment 2310 7 0.03 0.47±0.03 0.03 0.49±0.01 0.02 0.42±0.01

mushrooms 8124 2 0.04 0.63±0.01 0.04 0.62±0.02 0.03 0.60±0.01
pendigits 10992 10 0.14 0.11±0.01 0.16 0.11± 0.01 0.03 0.11±0.02

protein 17766 3 0.16 0.45±0.01 0.21 0.46±0.01 0.03 0.44±0.02
a8a 32561 2 0.11 0.74±0.01 0.12 0.74±0.02 0.03 0.73±0.02

w7a 49749 2 0.30 0.94±0.02 0.36 0.95± 0.01 0.03 0.97±0.01
connect-4 67557 3 0.05 0.59±0.01 0.06 0.60±0.02 0.03 0.58±0.02

covtype 581012 7 1.02 0.32±0.02 1.36 0.33±0.04 0.66 0.32±0.03

kernel k-means using Lloyd’s algorithm Lloyd (1982), ŷ is the real label, and n̈ is the number of data
in the test set. If p = q, υ(p, q) = 1, otherwise υ(p, q) = 0. map(·) represents the best mapping to
match ŷ and y. The higher the accuracy, the better the method. The test accuracy and training time of
the approximate kernel k-means with different m are given in Figure 1 , which can be summarized as
follows: (1) There exists a lower bound of the approximate dimensions m =

√
n = 100. When this

lower bound is reached, the accuracy of the proposed methods tends to be stable. This is consistent
with our theoretical analysis in Theorem 2. (2) The accuracy of the proposed methods keeps the
similar accuracy to the exact kernel k-means. (3) We take the logarithm of the running time (in
seconds) in Figure 1. Our methods (ROS, Sub-Gaussian, Nyström) have obvious advantages over
other methods in running time. This verifies our complexity analysis.

5.2 Numerical Experiments on Real-World Scenarios

In this subsection, we perform the experiments on the 9 real datasets: dna, segment, mushrooms,
pendigits, protein, a8a, w7a, connect-4, and covtype, which are from LIBSVM website 2. 70 percent
of the data in each dataset is used for training experiments, and the rest is used for testing. m = 150.

The Gaussian kernel is exp
(
−‖x− x′‖2/σ2

)
,where σ =

√∑
ij ‖xi−xj‖2

n . The detail of the datasets
and experimental results are shown in Table 2. From the above results, we can find that these methods
give a similar accuracy as the exact kernel k-means. The proposed methods outperform Nytröm
(Liu) and Gaussian in time cost, which matches our theoretical analysis. If the training time exceeds
90 seconds or the memory is insufficient, the experiment will be stopped. In the large covtype
dataset, kernel k-means, Gaussian, and Nytröm (Liu) cannot achieve the experimental results, but
our proposed methods can obtain small training time and good accuracy. Those verify the smaller
computational requirements of the proposed methods.

6 Conclusions

We propose a unified randomized sketches framework to kernel k-means and provide three specific
examples of sub-Gaussian sketches, the randomized orthogonal system (ROS) sketches, and Nyström

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
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kernel k-means. Theoretical analysis show that the proposed methods obtain the state-of-the-art risk
bound and greatly reduce the computational requirements with sketch dimension Ω(

√
n). To the best

of our knowledge, this is the first optimal excess risk bound with the least approximate dimension
and no strong assumptions for general approximate kernel k-means. Moreover, we further derive
the similarity optimal bound of approximate solutions in the general case, which can be effectively
calculated by k-means++. The extensive experiments illustrate our theoretical analysis.
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A Notations and Preliminaries

Let
QC := {qC = (qc1

, . . . , qck) : C ∈ Hk} (16)
be a k-valued function with qcj (x) = ‖φx − cj‖2.
Proposition 2 (L∞ Contraction Inequality, Theorem 1 in Foster & Rakhlin (2019)). Let Q ⊆
{q : X → Rk} and l : Rk → R be L-Lipschitz with respect to the L∞ norm, that is ‖l(v) −
l(v
′
)‖∞ ≤ L · ‖v − v′‖∞,∀v,v

′ ∈ Rk. For any b > 0, there exists a constant C > 0 such that if
max{|l(q(x))|, ‖q(x)‖∞} ≤ ρ, then

Bn(l ◦ Q) ≤ C · L
√
kmax

i
B̃n (Qi) log

3
2 +b

(
ρn

maxi B̃n (Qi)

)
,

where Bn(l ◦ Q) = Eσ

[
supq∈Q |

∑n
i=1 σil (q (xi))|

]
, B̃n (Qi) = supX∈Xn Bn (Qi).

Proposition 3 (Lemma 24(a) in Lei et al. (2019)). Let η1, . . . , ηn ∈ H, whereH is a Hilbert space
with ‖ · ‖ being the associated norm. Let σ1, . . . , σn be a sequence of independent Rademacher
variables. Then, we have

Eσ

∥∥∥∥∥
n∑
i=1

σiηi

∥∥∥∥∥
2

≤
n∑
i=1

‖ηi‖2 , (17)

and

Eσ

∥∥∥∥∥
n∑
i=1

σiηi

∥∥∥∥∥ ≥ 1√
2

√√√√ n∑
i=1

‖ηi‖2. (18)

B Main Lemmas

To prove the main theorems in this paper, we firstly introduce some lemmas.
Lemma 2 (Lemma 3 in Yin et al. (2020c)). Let r1, r2 be any two numbers in {+1,−1, 0}. For any
a, b ∈ R, let c =

√
(a2 + b2)/2. Then ∀M ∈ R and s ∈ N0

+,

E
(
(M + ar1 + br2)2s

)
≤ E

(
(M + cr1 + cr2)2s

)
. (19)

Lemma 3. Let T ∼ N (0, 1), ‖ki‖2 ≤ 1. k̃ij is the element in i-th row and j-th column of K̃. For
all s ∈ N0

+, we have
E(k̃2s

ij ) ≤ E(T 2s). (20)

Proof. Let a “worst-case” unit vector w = 1√
n

(1, . . . , 1)T . For any vector kj , k̃ij = R·ikj , where
R·i is the i-th row of R.

If kj = (k1j , . . . ,knj)
T is such that k2

ij = k2
tj for all i, t, then by symmetry, R·ikj and R·iw are

identically distributed and this lemma holds trivially.

Otherwise, we can assume without loss of generality, that k2
1j 6= k2

2j and consider the “more balanced”

unit vector θ = (c, c,k3j , . . . ,knj)
T , where c =

√
(k2

1j + k2
2j)/2.
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We first express E(k̃2s
ij ) as a sum of averages over ri1, ri2 and apply Eq.(19) in Lemma 2 to get that

each term (average) in the sum, where ri1 is the element of i-th row and 1-th column of R.

More precisely, in sub-Gaussian case and ROS case,

E(k̃2s
ij ) = E((R·ikj)

2s)

=m−s
∑
M

E
(
(M + k1jri1 + k2jri2)2s

)
· P

[
n∑
t=3

ritktj =
M√
m

]

≤m−s
∑
M

E
(
(M + cri1 + cri2)2s

)
· P

[
n∑
t=3

ritktj =
M√
m

]
=E((R·iθ)2s).

In Nyström case,

E(k̃2s
ij ) = E((R·ikj)

2s)

=
∑
M

E
(
(M + k1jri1 + k2jri2)2s

)
· P

[
n∑
t=3

ritktj = M

]

≤
∑
M

E
(
(M + cri1 + cri2)2s

)
· P

[
n∑
t=3

ritktj = M

]
=E((R·iθ)2s).

Applying this argument repeatedly yields the lemma, as θ eventually becomes w, we obtain

E(k̃2s
ij ) = E((R·ikj)

2s) ≤ E((R·iw)2s). (21)

In the following, we prove E((R·iw)2s) ≤ E(T 2s).

To simplify notation, we write rit = Yt. Thus, in sub-Gaussian case and ROS case, R·iw =
1√
nm

∑n
t=1 Yt. In Nyström case, R·iw = 1√

n

∑n
t=1 Yt.

Let {Ti}ni=1 be a family of i.i.d. standard Normal random variables. Then
∑n
i=1 Ti is a Normal

random variable with variance n. Therefore, T = 1√
n

∑n
i=1 Ti and T ∼ N (0, 1).

For every s = 0, 1, . . .,

E(T 2s) =
1

(
√
n)2s

n∑
i1=1

· · ·
n∑

i2s=1

E(Ti1 · · ·Ti2s), (22)

and in sub-Gaussian and ROS cases

E((R·iw)2s) =
1

(
√
nm)2s

n∑
i1=1

· · ·
n∑

i2s=1

E(Yi1 · · ·Yi2s),

in Nyström case

E((R·iw)2s) =
1

(
√
n)2s

n∑
i1=1

· · ·
n∑

i2s=1

E(Yi1 · · ·Yi2s).

To prove this lemma, in the following, we will prove that for every value assignment to the indices
i1, . . . , i2s,

E(Yi1 · · ·Yi2s) ≤ E(Ti1 · · ·Ti2s). (23)

In sub-Gaussian case:

Let V = 〈v1, v2, . . . , v2s〉 be the value assignment considered. For i ∈ {1, . . . , n}, let cV (i)
be the number of times that i appears in V . Observe that if for some i, cV (i) is odd then the
expectations appearing in Eq.(22) are 0, since {Yi}ni=1 and {Ti}ni=1 are independent families and
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E(Yi) = E(Ti) = 0 for all i. Thus, we can assume that there exists a set {j1, j2, . . . , jp} of indices
and corresponding values {l1, l2, . . . , lp} such that

E(Ti1 · · ·Ti2s) = E(T 2l1
j1
T 2l2
j2
· · ·T 2lp

jp
)

and
E(Yi1 · · ·Yi2s) = E(Y 2l1

j1
Y 2l2
j2
· · ·Y 2lp

jp
).

Note that since the indices j1, j2, · · · , jp are distinct, {Tjt}
p
t=1 and {Yjt}

p
t=1 are families of i.i.d.

Therefore,
E(Ti1 · · ·Ti2s) = E(T 2l1

j1
)× · · · × E(T

2lp
jp

) (24)
and

E(Yi1 · · ·Yi2s) = E(Y 2l1
j1

)× · · · × E(Y
2lp
jp

).

So, in order to prove Eq.(23) it suffices to prove that for every l = 0, 1, . . .

E(Y 2l
1 ) ≤ E(T 2l

1 ).

We know that (2l)-th moment of N (0, 1) is

(2l − 1)!! = (2l)!/(l!2l) ≥ 1. (25)

For all l ≥ 0, we have E(Y 2l
1 ) ≤ 1. Therefore, we have E(Yi1 · · ·Yi2s) ≤ E(Ti1 · · ·Ti2s).

In ROS and Nyström cases:

{Yi}ni=1 is a family of i.i.d. One knows that
E(Yi1 · · ·Yi2s) = E(Yi1)× · · · × E(Yi2s).

Combining −1 ≤ E(Yi1) ≤ 1, Eq.(24), and Eq.(25), we know that E(Yi1 · · ·Yi2s) ≤ E(Ti1 · · ·Ti2s).
Here, we complete the proof of E(Yi1 · · ·Yi2s) ≤ E(Ti1 · · ·Ti2s) and E((R·iw)2s) ≤ E(T 2s).

Combining E((R·iw)2s) ≤ E(T 2s) and Eq.(21), we obtain E(k̃2s
ij ) ≤ E(T 2s).

Lemma 4. For all h ∈ [0,m/2), and ‖ki‖2 ≤ 1, we have

E(exp(hk̃2
ij)) ≤

1√
1− 2h/m

, (26)

and
E(k̃4

ij) ≤ 3/m2. (27)

Proof. According to Lemma 3, we know

E(k̃4
ij) ≤ E(T 4), (28)

while

E(T 4) =

∫ +∞

−∞

1√
2π

exp(−λ2/2)
(
λ4/m2

)
mλ = 3/m2.

The following will prove Eq.(26).

For any real-valued random variable U and for all h such that E(exp(hU2)) is bounded. According
to the Monotone Convergence Theorem (MCT), we get the formula

E(exp(hU2)) = E

( ∞∑
t=0

(hU2)t

t!

)
=

∞∑
t=0

ht

t!
E(U2t).

Here we obtain

E(exp(hT 2)) =

∫ +∞

−∞

1√
2π

exp(−λ2/2) exp(hλ2/m)mλ

=
1√

1− 2h/m
=

∞∑
t=0

ht

t!
E(T 2t)

≥
∞∑
t=0

ht

t!
E(k̃2t

ij ) = E(exp(hk̃2
ij)).

(29)
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For converge, we take h ∈ [0,m/2) and apply the MCT in Eq.(38). Therefore, we have
E(exp(hk̃2

ij)) ≤ 1√
1−2h/m

, for h ∈ [0,m/2). This proof logic is similar to Yin et al. (2020c).

Lemma 5. Let S be an arbitrary set of n samples in X and K ∈ Rn×n be its kernel matrix. The
i-th column of K is represented by ki. Given ε, δ ∈ (0, 1), let

m = Ω

(
4 log n− 2 log δ

ε− log(1 + ε)

)
, (30)

K̃ = RK ∈ Rm×n,
and R be a m× n random matrix in one of the three cases of sub-Gaussian, ROS, and Nyström. And
let f : Rn → Rm map the i-th column of K to the i-th column of K̃.

For all ki,kj ∈ K, with probability at least 1− δ, we have,

(1− ε)‖ki − kj‖2 ≤ ‖f(ki)− f(kj)‖2 ≤ (1 + ε)‖ki − kj‖2.

Proof. For arbitrary h > 0, according to Markov’s inequality we get

P
[∑m

i=1(R·i · kTj )2

‖kj‖2
> 1 + ε

]
=P
[

exp(h

∑m
i=1(R·i · kTj )2

‖kj‖2
) > exp(h(1 + ε))

]
<E
(

exp(h

∑m
i=1(R·i · kTj )2

‖kj‖2
)
)

exp
(
− h(1 + ε)

)
.

(31)

Let ‖k1‖2 = 1, we have:

E
(

exp(h

∑m
i=1(R·i · kTj )2

‖kj‖2
)
)

=E
( m∏
i=1

exp(h
(R·i · kTj )2

‖kj‖2
)
)

=

(
E
(

exp(h
(R·i · kT1 )2

‖k1‖2
)

))m
=
(
E
(
exp(h(R·i · kT1 )2)

))m
.

(32)

According to Eq.(26) of Lemma 4, we have

E
(
exp(h(R·i · kT1 )2)

)
≤ 1√

1− 2h/m
. (33)

Let h = mε
2(1+ε) <

m
2 . Taking Eq.(31), Eq.(32), and Eq.(33) to Eq.(34), for any 0 < ε < 1, we obtain

that

P
[∑m

i=1(R·i · kTj )2

‖kj‖2
> 1 + ε

]
<
(
E
(
exp(h(R·i · kT1 )2)

))m
exp

(
− h(1 + ε)

)
≤
( 1√

1− 2h/m

)m
exp

(
− h(1 + ε)

)
=
( 1

1 + ε

)−m/2
exp

(−mε
2

)
.

(34)

Similarly, for arbitrary h > 0 and 0 < ε < 1, we have

P
[∑m

i=1(R·i · kTj )2

‖kj‖2
< 1− ε

]
=P
[

exp(h

∑m
i=1(R·i · kTj )2

‖kj‖2
) < exp(h(1− ε))

]
<E
(

exp(−h
∑m
i=1(R·i · kTj )2

‖kj‖2
)
)

exp
(
h(1− ε)

)
=
(
E
(
exp(−h(R·i · kT1 )2)

))m
exp

(
h(1− ε)

)
.

(35)

16



By expanding exp(−h(R·i · kT1 )2), we get that

P
[∑m

i=1(R·i · kTj )2

‖kj‖2
< 1− ε

]
<
(
E
(

1− h(R·i · kT1 )2 +
(−h(R·i · kT1 )2)2

2!

))m
exp

(
h(1− ε)

)
=

(
1− hE((R·i · kT1 )2) +

h2

2
E((R·i · kT1 )4)

)m
exp

(
h(1− ε)

)
.

(36)

According to Eq.(27) in Lemma 4, we know

E((R·i · kT1 )4) ≤ 3/m2. (37)

According to Eq.(38), we have

1√
1− 2h/m

≥
∞∑
t=0

ht

t!
E(k̃2t

ij ) ≥
1∑
t=0

ht

t!
E(k̃2t

ij ) = 1 + hE(k̃2
ij) = 1 + hE((R·i · kT1 )2). (38)

So, one can obtain

E((R·i · kT1 )2) ≤ 1

h
(

1√
1− 2h/m

− 1). (39)

Let h = m
2 ·

ε
(1+ε) <

m
2 . Taking Eq.(37) and Eq.(39) into Eq.(36), we obtain that

P
[∑m

i=1(R·i · kTj )2

‖kj‖2
< 1− ε

]
<
(

1− (
1√

1− 2h/m
− 1) +

3h2

2m2

)m
exp

(
h(1− ε)

)
<
( 1

1 + ε

)−m/2
exp

(−mε
2

)
.

(40)

Let

2×
( 1

1 + ε

)−m/2
exp

(−mε
2

)
≤ 2δ/n2,

we obtain
m ≥ 4 log n− 2 log δ

ε− log(1 + ε)
.

According to Eq.(34) and Eq.(40), we know that, for each of the
(
n
2

)
pairs ki,kj , with the probability

of 1−
(
n
2

)
× 2δ/n2 > 1− δ, the squared norm of the vector ki − kj is maintained within a factor of

1± ε. That is, with the probability at least 1− δ, for all ki,kj ∈ K,

(1− ε)‖ki − kj‖2 ≤ ‖k̃i − k̃j‖2 ≤ (1 + ε)‖ki − kj‖2. (41)

Lemma 6. If constructing the random matrix R in one of the three cases of sub-Gaussian, ROS, and
Nyström, by

m = Ω

(
4 log n− 2 log δ

ε− log(1 + ε)

)
,

given any ε, δ ∈ (0, 1), then we have, with probability at least 1− δ,

W (C̃n,m, µn)−W (Cn, µn) ≤ 2ε

1− ε
. (42)
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Proof. We denote by C̄n,m = [c̄1, . . . , c̄k] the empirical clustering centers associated with the m-
dimensional embeddings k̃1, . . . , k̃n. Each c̄j is the mean of those k̃i’s in the Voronoi cell C̃j , that
is

c̄j =

∑n
i=1 k̃iI{k̃i∈C̃j}∑n
i=1 I{k̃i∈C̃j}

, j = 1, . . . , k.

Let α̃j =
∑n
i=1 I{k̃i∈C̃j} and βj =

n∑
i=1

I{ki∈Cj}. We have

W
(
C̄n,m, µn

)
=

1

n

n∑
i=1

min
j=[k]

∥∥∥k̃i − c̄j

∥∥∥2

=
1

n

k∑
j=1

n∑
i=1

∥∥∥k̃i − c̄j

∥∥∥2

I{k̃i∈C̃j}

=

k∑
j=1

1

2nα̃j

n∑
i1,i2=1

∥∥∥k̃i1 − k̃i2

∥∥∥2

I{(k̃i1 ,k̄i2)∈C̃2j}.

Combining the optimality of the k-means procedure (Lemma 1 in Linder (2002)), we get

W
(
C̄n,m, µn

)
≤

k∑
j=1

1

2nβj

n∑
i1,i2=1

∥∥∥k̃i1 − k̃i2

∥∥∥2

I{(ki1 ,ki2)∈C2j}.

Therefore, combining Lemma 5, with probability at least 1− δ, we have

W
(
C̄n,m, µn

)
≤(1 + ε)

k∑
j=1

1

2nβj

n∑
i1,i2=1

‖ki1 − ki2‖2I{(ki1 ,ki2)∈C2j}

=(1 + ε)W (Cn, µn) .

Using the similar proof methods, we can obtain

(1− ε)W (C̃n,m, µn) ≤W
(
C̄n,m, µn

)
.

Note that W (cn, µn) ≤ 1 and ε ∈ (0, 1). So, we have

W (C̃n,m, µn)−W (Cn, µn) ≤ 2ε

1− ε
W (Cn, µn) ≤ 2ε

1− ε
.

Lemma 7. For δ ∈ (0, 1), with probability 1− δ, we have

sup
qC∈QC

∣∣∣∣∣
n∑
i=1

σiqC(x)

∣∣∣∣∣ ≤ O (√kn log2(
√
n)
)
. (43)

Proof. Note that ‖φx‖ ≤ 1 and QC := {qC = (qc1 , . . . , qck) : C ∈ Hk}is a k-valued function
with qcj (x) = ‖φx − cj‖2. Therefore, we have ‖cj‖ ≤ 1, qcj (x) ≤ 2‖φx‖ + 2‖cj‖ ≤ 4,
‖qC(x)‖∞ = maxj |qcj (x)| ≤ 4, and |l(qC(x))| = |minj=[k] qcj (x)| ≤ 4, for all x ∈ X .

Due to qcj (x) ≤ 2‖φx‖+ 2‖cj‖ ≤ 4, we get

max

{
sup
x∈X

sup
qC∈QCi

|qC(x)| , i = 1, . . . , k

}
≤ 4. (44)

According to L∞ contraction inequality in Proposition 2, with L = 1, ρ = 4, and b = 1/2, one can
get

sup
qC∈QC

∣∣∣∣∣
n∑
i=1

σiqC(x)

∣∣∣∣∣ ≤ C · √kmax
i
B̃n (QCi) log2

(
4n

maxi B̃n (QCi)

)
, (45)
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where B̃n (QCi) = supX∈Xn Bn (QCi), Bn(QC) = supqC∈QC
|
∑n
i=1 σiqC(x)|, and C is a con-

stant.

For all j, we get,

B̃n
(
QCj

)
= sup

X∈Xn
Eσ

[
sup

qC∈QCj

∣∣∣∣∣
n∑
i=1

σiqC(xi)

∣∣∣∣∣
]

≥ sup
x∈X

Eσ

[
sup

qC∈QCj

∣∣∣∣∣
n∑
i=1

σiqC(x)

∣∣∣∣∣
]

≥ sup
x∈X ,qC∈QCj

Eσ

∣∣∣∣∣
n∑
i=1

σiqC(x)

∣∣∣∣∣ (46)

≥
√
n√
2

sup
x∈X ,qC∈QCj

√
|qC(x)|. (47)

According to Jensen’s inequality, we obtain Eq.(46). Eq.(47) is obtained by Eq.(18) of Proposition 3.
So, we have

max
i
B̃n (QCi) ≥

√
n

√
max

{
supx∈X supqC∈QCi

|qC(x)| , i = 1, . . . , k
}

√
2

. (48)

For i ∈ {1, . . . , k}, we have

Eσ sup
qC

∈ QCi

∣∣∣∣∣∣
n∑
j=1

σjqC(xj)

∣∣∣∣∣∣ = Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj ‖φj − c‖2
∣∣∣∣∣∣

≤ 2Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj 〈φj , c〉

∣∣∣∣∣∣+ Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj‖c‖2
∣∣∣∣∣∣

(49)

According to Eq.(17) of Proposition 3 and ‖c‖ ≤ 1, we have

Eσ supc∈H

∣∣∣∣∣∣
n∑
j=1

σj‖c‖2
∣∣∣∣∣∣ ≤ Eσ

∣∣∣∣∣∣
n∑
j=1

σj

∣∣∣∣∣∣ ≤
√√√√√Eσ

∣∣∣∣∣∣
n∑
j=1

σj

∣∣∣∣∣∣
2

≤
√
n, (50)

and

Eσ supc∈H

∣∣∣∣∣∣
n∑
j=1

σj 〈φj , c〉

∣∣∣∣∣∣ =Eσ sup
c∈H

∣∣∣∣∣∣
〈

n∑
j=1

σjφj , c

〉∣∣∣∣∣∣ ≤
√√√√√Eσ

∥∥∥∥∥∥
n∑
j=1

σjφj

∥∥∥∥∥∥
2

≤

√√√√ n∑
i=1

‖φi‖2 ≤
√
n.

(51)

Combining Eq.(49), Eq.(50) and Eq.(51), we obtain

max
i
B̃n (QCi) ≤ 3

√
n. (52)

Combining Eq.(44), Eq.(45), Eq.(48), and Eq.(52), we have

sup
qC∈QC

∣∣∣∣∣
n∑
i=1

σiqC(x)

∣∣∣∣∣ ≤ 3C1

√
kn log2(

√
n), (53)

where C1 is a constant. Here we complete this proof.
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Lemma 8. For δ ∈ (0, 1), with probability 1− δ, we have

E
[
W (C̃n,m, µ)−W (C̃n,m, µn)

]
≤ O

√k log2(
√
n) +

√
log 1

δ√
n

 . (54)

Proof. Let x
′

1, . . . ,x
′

n be a copy of x1, . . . ,xn, independent of the σi’s. According to a standard
symmetrization argument Bartlett & Mendelson (2002), one can obtain that

E sup
C∈Hk

|W (C, µ)−W (C, µn)|

≤E sup
qC∈QC

∣∣∣∣∣ 1n
n∑
i=1

σi

[
qC(x)− qC

(
x
′
)]∣∣∣∣∣

≤2E sup
qC∈QC

∣∣∣∣∣ 1n
n∑
i=1

σiqC(x)

∣∣∣∣∣ =
2

n
E sup
qC∈QC

∣∣∣∣∣
n∑
i=1

σiqC(x)

∣∣∣∣∣ .
(55)

According to Bartlett & Mendelson (2002), we have, with probability 1− δ,

E sup
qC∈QC

∣∣∣∣∣
n∑
i=1

σiqC(x)

∣∣∣∣∣ ≤ sup
qC∈QC

∣∣∣∣∣
n∑
i=1

σiqC(x)

∣∣∣∣∣+

√
2n log

1

δ
. (56)

According to Lemma 7, we know, with probability 1 − δ, supqC∈QC
|
∑n
i=1 σiqC(x)| ≤

O
(√

kn log2(
√
n)
)
. Therefore, combining Eq.(55), Eq.(56), and Lemma 7, one can obtain

E sup
C∈Hk

|W (C, µn)−W (C, µ)| ≤ O

√k log2(
√
n) +

√
log 1

δ√
n

 . (57)

Note that E
[
W (C̃n,m, µ)−W (C̃n,m, µn)

]
≤ E supC∈Hk |W (C, µ)−W (C, µn)|. So we obtain

the result in this lemma.

C Proof of Theorem 2

Proof. Note that

E
[
W (C̃n,m, µ)

]
−W ∗(µ)

≤E
[
W (C̃n,m, µ)−W (C̃n,m, µn)

]
︸ ︷︷ ︸

Term-A

+E
[
W (C̃n,m, µn)−W (Cn, µn)

]
︸ ︷︷ ︸

Term-B

+ E [W (Cn, µn)−W (Cn, µ)]︸ ︷︷ ︸
Term-C

+E [W (Cn, µ)]−W ∗(µ)︸ ︷︷ ︸
Term-D

.

(58)

According to Lemma 8, with probability 1− δ, we have Term-A ≤ O
(√

k log2(
√
n)+
√

log 1
δ√

n

)
.

According to Lemma 6, for m = Ω
(

4 logn−2 log δ
ε−log(1+ε)

)
, we have, with probability at least 1 − δ,

Term-B ≤ 2ε
1−ε .

Note that Term-C = E [W (Cn, µn)−W (Cn, µ)] ≤ E supC∈Hk |W (C, µn) −W (C, µ)|. There-

fore, according to Eq.(57), we can obtain Term-C ≤ O
(√

k log2(
√
n)+
√

log 1
δ√

n

)
.
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According to Theorem 1, with probability at least 1− δ, we have, Term-D ≤ O
(√

k
n log2(

√
n)

)
.

Here, we complete this proof.

D Proof of Theorem 3

Proof. We have

ES
[
EJ
[
W (C+

n,m, µ)
]]

= ES
[
EJ
[
W (C+

n,m, µ)
]
− EJ

[
W (C+

n,m, µn)
]]

+ES
[
EJ
[
W (C+

n,m, µn)
]]
.

(59)

According to Lemma 1, one can obtain that

ES
[
EJ
[
W (C+

n,m, µn)
]]
≤ $·E[W (C̃n,m, µn)] = $·E[W (C̃n,m, µn)−W (C̃n,m, µ)]+$·E[W (C̃n,m, µ)],

Therefore, Eq.(59) can be transferred into

ES
[
EJ
[
W (C+

n,m, µ)
]]
≤ES

[
EJ
[
W (C+

n,m, µ)
]
− EJ

[
W (C+

n,m, µn)
]]︸ ︷︷ ︸

Term-A

+$ · E[W (C̃n,m, µn)−W (C̃n,m, µ)]︸ ︷︷ ︸
Term-B

+$ · E[W (C̃n,m, µ)]︸ ︷︷ ︸
Term-C

,

Note that Term-A ≤ E supC∈Hk |W (C, µn)−W (C, µ)|. Therefore, according to Eq.(57), we can

obtain Term-A ≤ O
(√

k log2(
√
n)+
√

log 1
δ√

n

)
.

According to Lemma 8, with probability 1− δ, we have Term-B ≤ O
(√

k log2(
√
n)+
√

log 1
δ√

n

)
.

According to Theorem 2, we have Term-C = E
[
W (C̃n,m, µ)

]
≤W ∗(µ)+Õ

(√
k
n

)
+O

(
ε

1−ε

)
.

We complete this proof.

21


	Introduction
	Background
	Notation
	Kernel k-Means
	The Existing Excess Risk Bounds of Kernel k-Means

	The Proposed Algorithms
	Framework of Randomized Sketches Kernel k-Means
	Examples of Randomized Sketches Kernel k-Means

	Theoretical Analysis
	Further Results: k-Means++

	Experiments
	Numerical Experiments on Simulated Data
	Numerical Experiments on Real-World Scenarios

	Conclusions
	Notations and Preliminaries
	Main Lemmas
	Proof of Theorem 2
	Proof of Theorem 3

